George Perkins Marsh Institute

Current Research Projects

The Marsh Institute draws on expertise from the social, natural, and technical sciences to conduct multidisciplinary, integrated research programs, both nationally and internationally. Its studies typically represent the interactions in various ways of humans and the environment. Many diverse themes exist.

The following are some of the Institute's current projects, listed alphabetically by principal investigator:



The Global Shift in R&D Alliances: Multinational Enterprises (MNEs) and the Quest for the 'Base of the Pyramid' (BOP) Markets

Principal Investigators: Yuko Aoyama, Clark University
Collaborator: Balaji Parthasarathy, International Institute of Information Technology, Bangalore

Funding Agency: National Science Foundation

In this proposed research, we examine how MNEs are devising new ways to access market intelligence by forging alliances with non-governmental organizations (NGOs), and develop cases studies of organizational innovation in emerging economies. In particular, we focus on the emerging phenomenon of R&D alliances between MNEs and NGOs, and analyze the significance of global corporate R&D activities in five metropolitan areas in India. In understanding the process and organizational dynamics of innovative activities that target BOP markets, we aim to develop a new conceptual framework that explicitly recognizes innovation as interactions between technological knowledge and market intelligence. Furthermore the NGOs' new role as partners in innovation demands a broader understanding of their role in shaping the behavior of MNEs. How MNEs and NGOs co-innovate, co-develop and nurture knowledge assets, in spite of competing incentive structures, institutional objectives, and organizational cultures, require not only new solutions to multi-dimensional coordination problems, but a new conceptual framework of possibly a new form of market governance. Emerging collaborations between for-profit and non-profit entities in seeking market intelligence for BOP on innovation will provide new theoretical insights and empirical evidence into the emerging trends in capitalism and development, and contributes to broader debates on the transformation of, and the heterogeneity of capitalism(s). Through this international collaborative effort between institutions in the USA and in India, we aim at fostering an intellectual dialog among academics in the two countries on the involvement of global forces in shaping the future of the Indian economy.

Conserving Small Natural Features with Large Ecosystem Functions in Urbanizing Landscapes

Principal Investigator at Clark University: Dana Bauer
Collaborators: Kathleen Bell, Aram Calhoun, Malcolm Hunter, Cynthia Loftin, and Michael Kinnison (University of Maine), and Erik Nelson (Bowdoin College)

Funding Agency: National Science Foundation

Many landscapes have small natural features whose importance for biodiversity or ecosystem services belies their small size. Management challenges for these areas include: uncertainties over their location and contributions to ecosystem services; tensions between private property rights and public rights to environmental protection; and the spatial mismatch between the broad, regional accrual of beneficial services and the concentrated, local costs of protection. Conservation strategies are undermined by limited scientific knowledge, especially of mechanisms that link ecological and social processes. In the forested landscapes of the Northeast, small, seasonally inundated wetlands (vernal pools) emerge as an excellent model system to study the dynamics of small natural feature management. This project brings together a team of ecologists and economists from multiple sub-disciplines and institutions to: (1) explore the biophysical and socioeconomic components of one type of small natural feature, vernal pools, as a coupled-systems model for management of these features; (2) improve strategies for conserving vernal pools and other small natural features with large significance; and (3) share results with local and state-level stakeholders and policy makers.

Research and Knowledge Mobilization on the Extractive Industries: Institutionalizing a Cross-Regional Network

Principal Investigator: Anthony Bebbington

Funding Agency: Subcontract from York University, Canada, on prime award from Social Sciences and Humanities Research Council, Canada

This project will develop and institutionalize an interdisciplinary and cross-regional research and knowledge mobilization network on extractive industries/EI (oil, mining, and gas) during 2012-2015 (2.5 years). It builds upon the cooperative relationships established among a group of institutions and researchers that developed from an international academic conference held at York University in March 2009 where participants recommended the creation of a permanent forum for research collaboration and information exchange and an international expert workshop on networking and collaborative research, held in November 2010. Professor Bebbington will be involved in supervising and supporting the research carried out in Latin America, and will act as the co-chair of the working group on "Constructing and Contesting EI Governance". Graduate students at Clark University and Professor Bebbington will produce a comparative study of the genesis of EITI in Peru, Bolivia and Colombia, titled "Engagement with the EITI Process: A comparative study of Peru, Bolivia and Colombia," exploring how EITI emerged (or did not) in each case, the politics involved, and the role of trade and investment agreements with the US and Canada.

Tracking the Politics of Natural Resources and Inclusive Development Over Time

Principal Investigator: Anthony Bebbington

Funding Agency: Effective States and Inclusive Development Research Centre, Manchester, UK

The exploitation and governance of natural resources (taken here to refer to mining, oil and gas extraction) offers a particularly insightful window onto the role of political settlements and development ideologies in shaping the prospects for inclusive development, and the significance of how our core domains of accumulation, redistribution and recognition relate to each other. It is also a domain in which transnational private and public actors have special weight. ESID Natural Resources Project One will track the historical experience of countries with long-established histories of natural resource extraction in both Latin America and sub-Saharan Africa. Clark University will provide Research Assistantship support to University of Manchester researchers, providing background research and briefing documents on the Extractive Industries Transparency Initiative in Peru, Bolivia, Ghana and Zambia, and on changes in the international context of extractive industries since the 1960s with a particular focus on changes in IFI policies and practices, and changes in NGO advocacy related to extractive industries.

Climate Smart Agriculture (CSA) Uptake

Principal Investigator: Edward Carr

Funding Agency: USAID/Integra Government Services International, LLC

Under this project, the Humanitarian Response and Development Lab (HURDL) will participate in a rigorous and systematic analysis of existing evidence on the adoption barriers and incentive structures around climate-smart agriculture (CSA) practices, with a view to providing recommendations for USAID policy and programming. Specifically, HURDL will review and validate the literature review created by the larger team, work with the team to build a shared understanding of "behavior change" in the context of CSA, assist in the development of questionnaire tools for case studies that validate the literature review, and work with the team to produce final reports.

Governing to Maintain Legacies: Urban Governance, Policies and the Long-term Impacts of the Olympics

Principal Investigator: Mark Davidson

Funding Agency: International Olympic Committee, ADVANCED OLYMPIC RESEARCH GRANT PROGRAMME

It is essential that each Olympic Games provides substantial and varied positive legacy outcomes for host city populations. But the delivery of legacies is not straightforward. Each host city must manage legacy commitments against other evolving demands. This research examines the varied ways in which recent host cities have developed institutional and policy innovations in order to deliver Olympic-related legacy commitments. The research aims to provide a comparative account of how legacies are produced over-time and across contexts. The research will report on successful methods of innovation to inform past and future host city governments.

Developing Remote Sensing Capabilities for Meter-scale Sea Ice Properties

Principal Investigator: Karen Frey

Funding Agency: US Office of Naval Research

An increasing array of higher resolution commercial satellite assets has created the opportunity to directly track meter-scale sea ice properties over large areas. These high resolution satellite assets provide panchromatic optical, multispectral optical, and synthetic aperture radar (SAR) capabilities at high enough resolution (0.5-2.0m) to directly resolve features like melt ponds, floe boundaries, and individual ridges. These features have not been resolved by most earlier space-based remote sensing assets but are of substantial geophysical importance. Collecting imagery of the sea ice using these assets and applying this imagery to track these meter-scale processes at carefully chosen, regionally-representative sites will provide an important set of data products for modeling and process studies, and permit a newly comprehensive assessment of the processes driving ice loss in the Arctic. Throughout the program we will focus on disseminating both data and techniques developed to ensure the broadest possible impact of the work. The work will directly address a particular focus of the 2013 ONR core program solicitation by contributing to "the development of sea ice and ocean products derived from remotely sensed data."

The Polaris Project II: Amplifying the Impact

Principal Investigator: Karen Frey

Funding Agency: National Science Foundation

The Polaris Project II seeks to amplify the impact of Polaris I (now in its third and final year) through its extension, expansion, and enhancement. The three overarching objectives of Polaris II are to 1) train the next generation of arctic researchers, 2) advance scientific understanding of the Arctic, and 3) expand public awareness of the feedbacks between the Arctic and the global climate system. These objectives will be accomplished through a multi-faceted effort that includes a summer field course/research experience in the Siberian Arctic, a series of on-campus arctic-focused courses, and a wide range of outreach activities. While undergraduate students remain the primary focus of Polaris II, participation in the annual field course will be expanded to include a K-12 teacher, graduate student, postdoctoral researcher, and visiting faculty member each year. Outreach activities will target K-12 students and teachers, undergraduate students and faculty, and a diverse public audience.

The unifying scientific theme of the Polaris Project is the transport and transformation of carbon and nutrients as they move with water from terrestrial uplands to the Arctic Ocean. Research conducted by the interdisciplinary Polaris Project team of faculty and students will make fundamental contributions to the scientific understanding of this topic, a central issue in arctic system science. While continued scientific advances are essential for arctic system understanding, prediction, and protection, tackling the climate change challenge is also a matter of education. Polaris II offers a unique experience in undergraduate research that will inspire and prepare a new generation of arctic researchers. Further, it will convey the importance of the Arctic to the public and to policy-makers, providing them with the knowledge they need to make informed decisions.

Karen Frey Watch an interview with assistant professor Karen Frey on The Polaris Project.

Collaborative Research: Toward a Circumarctic Lakes Observation Network (CALON)

Co-Principal Investigator: Karen Frey

Funding Agency: National Science Foundation

The scientific goals and methods that address the intellectual merits of the research are: (1) Expand on existing lake monitoring sites in northern Alaska by developing a network of regionally representative lakes along environmental gradients from which we will collect baseline data to assess current physical, chemical, and biological lake characteristics. This will allow the project scientists to make spatial and temporal comparisons to determine the impact of warmer temperatures, changing cloud cover and precipitation patterns, permafrost degradation, and direct human impacts on lakes; (2) Implement a multiscale (hierarchical) lake instrumentation scheme such that basic data is collected from 51 lakes, while a subset of lakes are more intensively instrumented; (3) Provide regional scaling and extrapolation of key metrics through calibration and validation of satellite imagery with ground measurements; and (4) Develop and implement standardized protocols to enable inter-site comparison and to prepare for expansion towards a pan-Arctic network. The education/outreach goals that address the broader impacts of the research outlined above are: (1) Incorporate indigenous observations of lake physical and biological characteristics and changes. Innovative interactive methods of sharing information will be developed and made available through native and local organizations. Scientific and technical training will be provided to Iñupiat students for monitoring lake and drinking water quality; (2) Develop a demonstration monitoring network based on the Delay Tolerant Network (DTN) architecture and link this network to research centers, indigenous communities, and other power- and connectivity-challenged environments; (3) Develop and refine data management, visualization, and archiving activities with A-CADIS; and (4) Provide an introduction to Arctic science for several beginning investigators.

Collaborative Research: Pacific-Arctic Carbon Synthesis - Transformations, Fluxes, and Budgets

Co-Principal Investigator: Karen Frey

Funding Agency: National Science Foundation

Predicting future conditions of the Arctic Ocean system requires scientific knowledge of its present status as well as a process-based understanding of the mechanisms of change. This research effort will synthesize a number of recent, upcoming, and historical datasets to create three regional carbon budgets for the Chukchi/western Beaufort Sea, the Bering Sea, and the northern Gulf of Alaska. As waters from the North Pacific make their way through these regions a number of transformations occur that modify them before they enter the central Arctic Ocean. In general, the waters exiting these shelf seas are fresher, colder, and have lower pH due to the uptake of CO2 and the remineralization of organic matter. Because of the importance that biogeochemical transformations have in preconditioning the waters of the central Arctic and ultimately parts of the North Atlantic it is important to gain a better understanding of how these processes impact the carbon biogeochemistry of the region. The investigators propose to address this issue by better constraining the carbon budgets for three zones in the Pacific sector of the Arctic Ocean including coastal fluxes, rates of primary production and air-sea exchange of CO2 as well as developing algorithms with predictive capabilities for carbonate mineral saturation states. The aim of this effort is to determine how physical forcing and biological responses control the marine carbon cycle including the rates of air-sea CO2 exchange and net community production as well as ocean acidification effects in the contrasting shelf environments, and to better constrain the present stocks and fluxes of carbon and determine how climate change will affect the regional carbon cycle. The project will support four early career investigators, a postdoctoral scientist, and a Ph.D. student.

Collaborative Research: The Distributed Biological Observatory (DBO)-A Change Detection Array in the Pacific Arctic Region

Principal Investigator: Karen Frey

Collaborative Principal Investigators: Robert Pickart (Woods Hole Oceanographic Institution) and Jacqueline Grebmeier (University of Maryland Center for Environmental Sciences)

Funding Agency: National Science Foundation

Several regionally critical marine sites in the Pacific Arctic sector that have very high biomass and are focused foraging points for apex predators, have been reoccupied during multiple international cruises. The data documenting the importance of these ecosystem "hotspots" provide a growing marine time-series from the northern Bering Sea to Barrow Canyon at the boundary of the Chukchi and Beaufort seas. Results from these studies show spatial changes in carbon production and export to the sediments as indicated by infaunal community composition and biomass, shifts in sediment grain size on a S-to-N latitudinal gradient, and range extensions for lower trophic levels and further northward migration of higher trophic organisms, such as gray whales. There is also direct evidence of negative impacts on ice dependent species, such as walruses and polar bears. To more systematically track the broad biological response to sea ice retreat and associated environmental change, an international consortium of scientists are developing a coordinated Distributed Biological Observatory (DBO) that includes selected biological measurements at multiple trophic levels. These measurements are being made simultaneously with hydrographic surveys and satellite observations. The DBO currently focuses on five regional biological "hotspot" locations along a latitudinal gradient. The spatially explicit DBO network is being organized through the Pacific Arctic Group (PAG), a consensus-driven, international collaboration sanctioned by the International Arctic Science Committee. This project will be a U.S. contribution to the DBO effort in the Pacific Sector, and the scientific needs to be met are consistent with research needs identified in the US National Ocean Policy planning effort, and the NOAA strategic plan. The implemented project will serve as a contribution to the US-led Arctic Observing Network and will improve international cooperative efforts for evaluating ecosystem impacts from high latitude climate change. Identifying and collecting key prey-predator biological data in the context of high priority physical and chemical measurements will allow for integration of these data into scientific community analyses and ecosystem modeling efforts. Outreach to local communities and media will ensure that both those immediately impacted and the broader public will be made aware of changes going on in this sensitive area of the Arctic.

Collaborative Research: Investigating the Influence of Sea-surface Variability on Ice Sheet Mass Balance and Outlet Glacier Behavior using Records from Disko Bugt, West Greenland

Principal Investigator: Karen Frey

Collaborative Principal Investigator: Matthew Evans (Wheaton College)

Funding Agency: National Science Foundation

This project will further understanding of ocean-ice-atmosphere interaction around the Jakobshavn Isbrae and Disko Bay region of west Greenland, with a particular focus on the role of sea surface temperature and sea ice variability in modulating past outlet glacier behavior and ice sheet/cap mass balance (snowfall and melt) over the past two centuries. The PIs will reconstruct past environmental conditions in the Disko and Baffin Bay region based on new glaciochemical and stratigraphic records from three 100-m deep ice cores, several firn cores, and geophysical studies from three sites surrounding Disko Bay. Their field activities will commence in 2013 with the primary ice coring activity in 2014 and lab and computation work following to derive climate reconstructions from the cores. The results will complement recent glaciological studies of regional ice dynamic behavior, as well as recent paleoceanographic and glacial geologic reconstructions of conditions from this area and era. Das and Frey will each supervise a full-time PhD student, and Evans will supervise undergraduate research assistants and senior theses. A high school science teacher will also participate in the field work and interact with students at his school in Massachusetts as well as from the ice.

Observing and Understanding the Impacts of a Thinning and Retreating Sea Ice Cover on Light Propagation, Primary Productivity, and Biogeochemistry in the Pacific Arctic Region

Principal Investigator: Karen Frey

Funding Agency: NASA

The Arctic sea ice cover is undergoing tremendous changes. There has been a pronounced decrease in the summer sea ice extent, an overall thinning of the ice, a lengthening of the summer melt season, and a fundamental shift to a primarily seasonal sea ice cover. Some of the greatest changes in the sea ice cover have been observed in the Chukchi and Beaufort seas, where there has been substantial loss of summer ice in recent decades. These changes in the physical system are profoundly affecting biological and biogeochemical systems as well. Results from the NASA-sponsored Impacts of Climate on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) program demonstrated how physical changes in the sea ice impact primary productivity and biogeochemistry by altering sunlight availability. Massive phytoplankton blooms in the water column were found directly beneath a melting, yet fully consolidated, sea ice cover in the central Chukchi Sea in July of 2010 and 2011. Unexpectedly high levels of transmitted sunlight through the ice cover into nutrient rich waters below enabled these blooms to occur. Furthermore, subsequent laboratory experiments have demonstrated that this available sunlight is also sufficient for significant photodegradation of chromophoric dissolved organic matter (CDOM) in the water column beneath the ice, which has important implications for the absorption of sunlight and heat balance of the upper ocean. The overarching goal of this proposed work is to determine the impact of physical changes in the sea ice cover of the Chukchi and Beaufort seas on biological productivity and biogeochemical cycling in waters beneath and associated with this ice cover. We propose an interdisciplinary and multi-methodological approach to address this goal, with integration of field observations, satellite remote sensing, process studies, and large-scale modeling. Our geographic domain is focused in the Chukchi and Beaufort seas of the Pacific Arctic region, where replacement of multiyear sea ice with seasonal sea ice has taken place over recent decades. Because of the interdisciplinary nature of this work, we plan to integrate this research with several ongoing projects including leveraging various observations from previous and ongoing field programs. Furthermore, we plan a strong educational component to this research, which includes the training of two Ph.D. students, multiple undergraduate students, and comprehensive student involvement in research subcomponents at all involved institutions (Clark, Dartmouth, CRREL, University of Washington, and NASA GSFC).

Coastal SEES Collaborative Research: A Cross-site Comparison of Salt Marsh Persistence in Response to Sea-level Rise and Feedbacks from Social Adaptations

Principal Investigator: Robert J. Johnston

Funding Agency: National Science Foundation

Nearly half of the world's population lives within 100 km of the coast, the area ranked as the most vulnerable to climate-driven sea-level rise (SLR). Projected rates of accelerated SLR are expected to cause massive changes that would transform both the ecological and social dynamics of low-lying coastal areas. It is thus essential to improve understanding of the sustainability of coupled coastal human-environment systems in the face of SLR. Salt marshes are intertidal habitats that provide a buffer for coastal communities to SLR and are also valued for many other ecosystem services, including wildlife habitat, nutrient cycling, carbon sequestration, aesthetics, and tourism. They are highly dynamic systems that have kept pace with changes in sea level over millennia. However, projected rates of SLR and increased human modification of coastal watersheds and shorelines may push marshes past a tipping point beyond which they are lost. Developing realistic scenarios of marsh vulnerability demands an integrated approach to understanding the feedbacks between the biophysical and social factors that influence the persistence of marshes and their supporting functions. This project will examine the comparative vulnerability of salt marshes to SLR in three U.S. Atlantic coastal sites that vary with respect to sediment supply, tidal range and human impacts. The research team will also address how feedbacks from potential adaptations influence marsh vulnerability, associated economic benefits and costs, and practical management decisions. Additional broader impacts include incorporating research results into curriculum used at local schools, an on-line cross-disciplinary graduate course, and on-going teacher-training programs, as well as training one postdoctoral researcher, four graduate students, and eight undergraduate researchers. This project is supported as part of the National Science Foundation's Coastal Science, Engineering, and Education for Sustainability program - Coastal SEES.

This project leverages the long-term data, experiments and modeling tools at three Atlantic Coast Long-Term Ecological Research sites (in MA, VA, GA), and addresses the broad interdisciplinary question "How will feedbacks between marsh response to SLR and human adaptation responses to potential marsh loss affect the overall sustainability of the combined socio-ecological systems?" The goals of the project are to understand: 1) how marsh vulnerability to current and projected SLR, with and without adaptation actions, compares across biogeographic provinces and a range of biophysical and social drivers; and 2) which marsh protection actions local stakeholder groups favor, and the broader sustainability and economic value implications of feasible adaptation options. The biophysical research uses historical trends, "point" and spatial models to determine threshold and long-term responses of marshes to SLR. Social responses to marsh vulnerability are integrated with biophysical models through future scenario planning with stakeholders, economic valuation of marsh adaptation options, and focus groups that place the combined project results within a concrete policy planning context to assess how marshes fit into the larger view of coastal socio-ecological sustainability. This integrated approach at multiple sites along gradients of both environmental and human drivers will allow for general conclusions to be made about human-natural system interactions and sustainability that can be broadly applicable to other coastal systems.

Coastal Hazards and Northeast Housing Values: Comparative Implications for Climate Change Adaptation and Community Resilience

Principal Investigator: Robert J. Johnston

Funding Agency: National Oceanic and Atmospheric Administration/Northeast Sea Grant consortium

Chief among the information needed to enhance coastal hazard adaptation are assessments of economic outcomes and policy implications. This project will combine coastal hazards, property value and other data with economic models to answer three questions central to Northeast coastal adaptation: (1) How do property values and tax bases in Northeast communities respond to coastal hazards, and do these responses create incentives to build/rebuild in risk-prone areas or undertake private adaptations? (2) How do property values and tax bases respond to adaptation actions undertaken by states, municipalities or homeowners/developers? (3) What do results imply for future scenarios of property values and tax bases in Northeast communities, under alternative SLR and hazard projections? The project will develop and apply rigorous social science methods that, when integrated with natural science data and projections on coastal vulnerability, will enable stakeholders and policymakers to evaluate property value and tax base impacts of climate change adaptation across Northeast states and communities. The result will be heretofore unavailable information quantifying the economic consequences of coastal vulnerability and adaptation. The project will be implemented in coordination with partners and communities involved in Northeast coastal adaptation including the Wells National Estuarine Research Reserve (NERR), Great Bay NERR, Waquoit Bay NERR, and Nature Conservancy in Connecticut. Beneficiaries of the project include coastal adaptation work groups and government organizations; target communities; project partners seeking to better inform coastal adaptation; and policymakers/stakeholders. Project results will enhance the ability of communities to choose adaptations with intended and desirable economic consequences. First, results will enable policymakers and the public to understand the effects of current hazard vulnerability on property values and the tax base, replacing unsupported claims with reliable empirical evidence. Second, the project will provide information that policymakers can use to forecast property value and tax base implications of alternative adaptation measures. Third, future scenarios mapping will provide information to support community dialogue and visioning. The project builds upon extensive prior work of the investigators coordinating natural/social science data to forecast economic outcomes and using results in partnership with stakeholders and policymakers to inform management.

Targeted Conservation Contracts To Enhance Agricultural Best Management Practices: Incorporating Heterogeneity and Predicting Additionality

Principal Investigator: Robert J. Johnston

Funding Agency: Agriculture and Food Research Initiative Competitive Grant no. 2016-67023-21757 from the USDA National Institute of Food and Agriculture

This project is a coordinated effort involving researchers from Clark University and the University of Delaware, and funded by Agriculture and Food Research Initiative Competitive Grant no. 2016-67023-21757 from the USDA National Institute of Food and Agriculture. The U.S. spends billions on state and federal policies encouraging farmers to implement best management practices (BMPs) through conservation contracts. BMP programs seek agricultural objectives, such as increasing crop prices by reducing production, and environmental objectives, such as providing wildlife habitat. A vibrant area of social science research explains BMP adoption, largely as a function of monetary payments and farmer characteristics. Yet existing research provides little insight on the design of more flexible BMP contracts that capitalize on farmer differences and desires to enhance cost-efficiency and agri-environmental outcomes. The goal of this project is to improve the cost-effectiveness of policies used to promote best management practices on farms in the United States. The research will inform the development of targeted, more cost effective conservation contracts that can be used by governmental agencies to incentivize agricultural best management practices. It will produce information to enable the design of flexible conservation contracts that can be used to optimize environmental benefits, farmer adoption, or acres enrolled. These innovative contracts will help U.S. agriculture remain competitive while balancing production and sustainable agri-environmental benefits.

The targeted conservation contracts will be derived from a specially designed survey of farmer preferences with respect to one best management practice-cover crops-as a case study. A series of surveys and actual planting decisions will be combined to derive a model of farmer participation and preferences. There are six research objectives. First, the researchers will develop revealed/stated preference models of cover crop program flexibility/adoption to provide insight into relationships between program design and farmers' decision-making. Second, the researchers will design and implement innovative preference models to estimate tradeoffs among conservation contract attributes for different types of farmers across multiple regions in two states. Third, the researchers will characterize current cover crop patterns by coordinating cover crop adoption data from government programs, observational data (transect survey), and an adoption survey. Fourth, the researchers will validate (using collected transect survey and linked cover crop adoption data) and apply the revealed/stated preference model to forecast cover crop adoption and land cover change under innovative contract designs. Fifth, the researchers will compare contract fiscal efficiency under various conditions and developing an additionality analysis to control for enrolled land planted in cover crop regardless of contracts. "Additionality" occurs when policy incentivizes adoption that farmers would not otherwise provide. Sixth, the researchers will design targeted cover crop contracts that account for farmers' tradeoffs, nonadditionality, and fiscal inefficiency to inform more optimal and cost-effective conservation contract designs. This project directly responds to USDA goals by focusing research at the nexus of agricultural land use, management, and conservation, and providing methodological advances to inform incentive-based polices and improve agricultural profitability.

Collaborative Research: Spruce Beetle and Wildfire Interactions Under Varying Climate in the Rockies

Principal Investigator: Dominik Kulakowski

Funding Agency: National Science Foundation

This research project will examine relationships between outbreaks of spruce bark beetles and wildfire activity in coniferous forests of the Rocky Mountains. Coincident with warmer temperatures, since the early 1990s synchronous outbreaks of native bark beetles have been occurring throughout coniferous forests of western North America from Alaska to the U.S. Southwest. Extensive tree mortality caused by bark beetle outbreaks is triggering major changes in forest landscapes and their associated ecosystem services. This collaborative research project will address the following questions about interactions between wildfire and spruce beetle outbreaks under varying climate and their consequences for ecosystem services: (1) How does climatic variation affect the initiation and spread of spruce beetle outbreaks across complex landscapes? (2) How does prior disturbance by windstorm, logging, and fire affect the subsequent occurrence and severity of spruce beetle outbreak? (3) In the context of a recently warmed climate, how do spruce beetle outbreaks affect forest structure and composition? (4) How do spruce beetle outbreaks affect fuels and potential wildfire activity under varying climatic conditions? (5) How will climate change and the climate-sensitive disturbances of wildfire and spruce beetle activity affect future ecosystem services in the subalpine zone of the southern Rocky Mountains under varying scenarios of adaptive forest management? The first four questions will be addressed through empirical research, including extensive tree-ring reconstructions of past disturbances, re-measurement of permanent forest plots, field measurements of effects of spruce beetle outbreaks on fuels, fire behavior modeling, and spatiotemporal analyses of the spread of recent spruce beetle outbreaks. The fifth question will be examined through simulation modeling of future forest conditions and their consequences for key selected ecosystem services, including biodiversity, wildlife habitat, and resilience to environmental change.

The project will contribute to understanding of fire-beetle interactions under varying climate conditions and their consequences for ecosystem services. The project will provide new information and insights about climate impacts on bark beetle outbreaks, feedbacks to and from wildfire and other disturbances, and sustaining ecosystem services. The project will provide current science information in support of forest management and decision making needs through evaluation of different adaptive management strategies to maintain biodiversity, wildlife habitat, and ecosystem resilience in the face of climate change. The project will develop pre-collegiate and collegiate-level curriculum material on wildfire and bark beetle interactions. It will create field and laboratory educational and training experiences for graduate and undergraduate students as well as an early-career postdoctoral researcher. To further enhance public education on fire-beetle topics, the project will produce a documentary video as well as a website of frequently asked questions about bark beetles and wildfire in the face of climate change.

Collaborative Research: The Scale of Governance in the Regulation of Land: Community Land Trusts in the Twin Cities

Co-Investigators: Deborah G. Martin, Joseph Pierce, and James DeFilippis

Funding Agency: National Science Foundation

This proposed research examines relationships between individuals and institutions, including multiple levels of government, with regard to land and property through an exploration of Community Land Trusts ("CLTs") in the Twin Cities region of Minnesota. CLTs are private, not-for-profit organizations which own residential land in trust for a community defined by membership and geographical boundaries at varying scales, from the sub-neighborhood to the urban region. They offer long-term renewable leases for the use of that land to members, who in turn own the homes built on that land (Davis 2010). Using voluntary, contractual mechanisms that are compatible with existing legal frameworks, CLTs disrupt the often taken-for-granted direct relationship between individual landowners (whether corporations or citizens), their properties, and regulatory agencies / governments. CLTs offer an institutional structure that allows individuals to "opt out" of certain parts of the land market--reconfiguring the homeowner relationship to property and governments--in exchange for a long-term commitment to participate in an organization which owns and thus possesses many controlling rights to the use of the land around and under individual homes. By examining the legal and social dimensions of CLT-governed common property in a major metropolitan area, the research highlights how the meanings of community and property can be negotiated through public and private institutions at multiple scales. Through a combination of archival research, semi-structured interviews and roving interviews, this research explores the following question: What are the relationships between the geographic scale of a Community Land Trust, its engagements in regional land governance (including interactions with other non-profit and government agencies), and its geographical identity?

The PIE-LTER: Interactions between External Drivers, Humans and Ecosystems in Shaping Ecological Process in a Mosaic of Coastal Landscapes and Estuarine Seascapes

Principal Investigator: R. Gil Pontius

Funding Agency: Subcontract with Marine Biological Laboratory, under NSF Prime Award

This is an integrated research, education and outreach program to understand the long-term interactions between human and natural systems at a land-sea interface. Integration of social science and environmental biology is crucial to understand how multiple stressors affect the sustainability of ecosystems. We study how changes in management decisions and ecological systems influence, and are influenced by, organic matter and nutrient biogeochemistry.

Geographic Analysis of the Territorial Overlap between Extractive Industries and Livelihoods in Honduras

Principal Investigator: John Rogan

Co-Investigator: Nick Cuba

Funding Agency: Oxfam America

Mineral extraction operations and concentration of mining activity in high-elevation areas can exert environmental influence not only on the landscapes in which they are located but also in potentially distant areas, in countries other than that in which the extraction itself occurs and is governed. These pathways of influence are expressed through hydrological connections, where water availability and quality in downstream areas are affected by water demand and concentration of pollutants associated with extraction upstream. Once these potential linkages are modeled as geographic objects, their relative impacts on various resource-based livelihoods can be established. This research will assess the extent to which extractive industry operations in Honduras, El Salvador and Guatemala affect, or have the potential to affect, natural resources and territories that support livelihoods in Honduras. Making these potential effects visible has implications for land use planning and the overall spatial planning of extractive industry activities in Honduras. Because the hydrological linkages may associate distant upstream and downstream areas, their existence and spatial distribution may be less intuitive than the pathways of impact implied by spatial overlap. In particular, exploring the potential cross-border linkages of mines and affected areas sheds light on the degree to which national policies of extractive industry governance and resource management in this region are, or arguably should be, intertwined.

REU: Mapping Beetles, Trees, Neighborhoods, and Policies: A Multi-Scaled, Urban Ecological Assessment of the Asian Longhorned Beetle Invasion in New England (HERO)

Principal Investigator: John Rogan, Deborah Martin and Verna DeLauer

Funding Agency: National Science Foundation

The Asian longhorned beetle (Anoplophora glabripennis) is an invasive wood-boring insect that is a grave threat to urban forests in New England, because it is unique among invasive forest pests for attacking a broad array of tree species. The 2008-present Asian long-horned beetle (ALB) infestation of central Massachusetts poses a greater stress on ecosystem services, as well as response groups ranging from federal/state resource managers to local residents, than any previous ALB outbreak in other localities due to the predominance of favorable host-species and the finely inter-connected nature of urban-rural forests as well as the presence of a competitive interaction at the federal-stakeholder-neighborhood level surrounding how the infestation should be treated and understood. Unanswered questions abound regarding the level of ALB impact at social and ecological levels. This REU Site renewal project is built on 12 years of success engaging undergraduate researchers at Clark University with the Human-Environment Regional Observatory--Massachusetts (HERO-MA) program on land change/vulnerability studies, which followed the REU Site approach (Polsky et al., 2007) since its inception, and as an official REU Site since 2008.

Greater Kilby-Gardner-Hammond Neighborhood Gang Violence Reduction Initiative

Principal Investigators: Laurie Ross, Ellen Foley, and Yelena Ogneva-Himmelberger

Funding Agency: U.S. Department of Justice (Byrne JAG Program)/Main South Community Development Corporation

The Byrne Criminal Justice Innovation Justice Assistance Grant (BCJI - JAG) program was created to develop and implement place-based, community-oriented strategies to transform distressed communities into communities of opportunity. The Greater Kilby-Gardner-Hammond neighborhood of Worcester is perceived to be "gang territory" by area youth. Over 40% of the population is under the age of 24, unemployment is high, and median income is low. Only 13.7% of the population has obtained a college degree and 34.6% have not obtained a high school diploma. The public school system is also met with challenges including language access barriers and low reading levels. In collaboration with the Main South CDC, the Worcester Boys and Girls Club, the Worcester Police Department (WPD), and the City of Worcester, this project will develop, implement, monitor, and evaluate a plan, based on the evidence-based Office of Juvenile Justice and Delinquency Prevention Comprehensive Gang Model, to reduce gang-related criminal activity while addressing the needs of disengaged youth in the Greater Kilby-Gardner-Hammond neighborhood.

Shannon Community Safety Initiative: Worcester Local Action Research Partner

Principal Investigator: Laurie Ross and Ellen Foley

Funding Agency: Massachusetts Executive of Public Safety and Security

The Senator Charles E. Shannon Community Safety Initiative (Shannon CSI) supports regional and multi-disciplinary approaches to combat gang violence through coordinated programs for prevention and intervention. These multi-disciplinary approaches include, but are not limited to, law enforcement initiatives such as anti-gang task forces and targeting of enforcement resources through the use of crime mapping; focused prosecution efforts; programs aimed at successful reintegration of released inmates and youth from juvenile detention; and programs that provide youth with supervised out-of-school activities. Working in partnership with the City of Worcester, the Worcester Police Department, the Boys and Girls Club of Worcester, Straight Ahead Ministries, the Worcester Community Action Council, and the Worcester Youth Center, Ross and Foley serve as the Shannon CSI Local Action Research Partner for Worcester, providing strategic research support and program evaluation of city-wide gang violence prevention and intervention.

Shannon Community Safety Initiative: Massachusetts Statewide Research Partner

Principal Investigators: Laurie Ross and Ellen Foley

Funding Agency: Massachusetts Executive Office of Public Safety and Security

The Charles E. Shannon Community Safety Initiative is a state-wide program designed to reduce youth and gang violence in cities across Massachusetts. The initiative supports regional and multidisciplinary approaches through the implementation of the Comprehensive Gang Model, an evidence-based and intentional integration of prevention, intervention, suppression, organizational change, and community mobilization strategies. This multidisciplinary approach includes law enforcement initiatives such as hot spot analysis and anti-gang task forces, coordinated reentry programs for young adults and juvenile offenders, and education and employment programs for high-risk youth. As the Statewide Youth Violence Research Partner, investigators Ross and Foley: 1) identify emerging best practices in the literature related to youth and gang violence; 2) collaborate with individual Shannon CSI sites; 3) analyze information collected through quarterly reports and produce statewide summary reports and a comprehensive report on the impact of Shannon CSI; and 4) provide training and technical assistance on the Comprehensive Gang Model.

Collaborative Research: Ecological Homogenization of Urban America

Principal Investigator at Clark University: Rinku Roy Chowdhury

Collaborative Principal Investigators: Peter Groffman (Cary Institute of Ecosystem Studies), Morgan Grove (USDA Forest Service), Sarah Hobbie, Jeannine Cavender-Bares, Kristen Nelson (University of Minnesota-Twin Cities), Sharon Hall, Kelli Larson (Arizona State University), James Hefferman, Laura Ogden (Florida International University), Christopher Neill (Marine Biological Laboratory), Diane Pataki (University of California-Irvine), and Colin Polsky (Florida Atlantic University)

Funding Source: National Science Foundation

Urban, suburban and exurban environments are important ecosystems and their extent is increasing in the U.S. The conversion of wild or managed ecosystems to urban ecosystems is resulting in ecosystem homogenization across cities, where neighborhoods in very different parts of the country have similar patterns of roads, residential lots, commercial areas and aquatic features. Funds are provided to test the hypothesis that this homogenization alters ecological structure and functions relevant to ecosystem carbon and nitrogen dynamics, with continental scale implications. The research will provide a framework for understanding the impacts of urban land use change from local to continental scales. The research encompasses datasets ranging from household surveys to regional-scale remote sensing across six metropolitan statistical areas (MSA) that cover the major climatic regions of the US (Phoenix, AZ, Miami, FL, Baltimore, MD, Boston, MA, St. Paul, MN and Los Angeles, CA) to determine how household characteristics correlate with landscaping decisions, land management practices and ecological structure and functions at local, regional and continental scales. This research will transform scientific understanding of an important and increasingly common ecosystem type (?suburbia?) and the consequences to carbon storage and nitrogen pollution at multiple scales. In addition, it will advance understanding of how humans perceive, value and manage their surroundings. The award will leverage an extensive, multi-scale program of education and outreach associated with ongoing LTER and/or ULTRA-EX projects. Activities include K-12 education and outreach to community groups, city/regional planners, natural history museums, state and local agencies and non-governmental organizations. Graduate students will participate in a Distributed Graduate Seminar in Sustainability Science (DGSS) initiated by NCEAS and the University of Minnesota Institute on Environment.

Urban Resilience to Extreme Weather Related Events

Principal Investigator: Rinku Roy Chowdhury

Funding Agency: NSF, subaward from Arizona State University

Urban areas are vulnerable to extreme weather related events given their location, high concentration of people, and increasingly complex and interdependent infrastructure. Impacts of Hurricane Katrina, Superstorm Sandy, and other disasters demonstrate not just failures in built infrastructure, they highlight the inadequacy of institutions, resources, and information systems to prepare for and respond to events of this magnitude. The highly interdisciplinary and geographically dispersed Urban Resilience to Extremes Sustainability Research Network (UREx SRN) team will develop a diverse suite of new methods and tools to assess how infrastructure can be more resilient, provide ecosystem services, improve social well being, and exploit new technologies in ways that benefit all segments of urban populations. The extreme events that this project will focus on include urban flooding, coastal storms, regional droughts, and extreme heat waves. These events are already occurring with shocking frequency in U.S. and global cities. Infrastructure is viewed as an important line of defense against hazards and disasters, yet current urban infrastructure is aging and proving inadequate for protecting city populations. The UREx team will link SRN scientists, students, local practitioners, planners, industry, NGOs, and other stakeholders across >25 institutions and >70 collaborators to co-produce data, models, images, stories, and on-the-ground projects that show how a new resilient infrastructure can be developed. Infrastructure that is flexible, adaptable, safe-to-fail, socially equitable, and ecologically based will enhance urban resilience in the face of a higher incidence of extreme events, more culturally diverse communities, and continued urbanization pressures. Ultimately, the UREx SRN will help accelerate knowledge generation and application to encourage innovative strategies towards urban sustainability.

Albedo Trends Related to Land Cover Change and Disturbance: A Multi-sensor Approach

Co-Principal Investigator at Clark University Christopher A. Williams

Principal Investigator: Jeffrey Masek (NASA GSFC Biospheric Sciences)
Co-Investigator: Feng Gao, Yanmin Shuai (Earth Resources Technology, Inc.)
Co-Is / Institutional PIs: Crystal Schaaf (Boston University Geography); Christopher A. Williams (Clark University Geography)

Funding Agency: NASA,The Science of Terra and Aqua

Numerous papers have highlighted how land-cover change and ecosystem disturbance can alter the surface energy balance through changes in albedo, surface roughness, and evapotranspiration. In some cases, these surface changes may constitute a larger radiative forcing than those arising from related carbon emissions. Past studies on post-disturbance albedo have been limited by the resolution of available MODIS data (500m), which is significantly coarser than the characteristic scales of ecosystem disturbance and human land use. Our project addresses this issue by creating high-resolution (30m) albedo maps through the fusion of Landsat TM/ETM+ directional reflectance with MODIS BRDF/Albedo (MCD43A) data. These maps permit trends in albedo to be evaluated at the characteristic scale of vegetation change (~1 ha).

Two algorithms are proposed to retrieve Landsat-resolution albedo: a "concurrent approach" which depends on overlapping MODIS and Landsat observations from the 2000-2010 period, and an "extended approach", which uses an a priori BRDF table to extend retrievals back to the 1980's. These fused products will be validated using in-situ Baseline Surface Radiation Network (BSRN) data. We will then evaluate the albedo trajectories for characteristic types of land cover conversion and disturbance across the globe. Specifically, we will (i) assemble a regional library of albedo values for IGBP land cover types; (ii) assemble time series of post-disturbance albedo from a latitudinal distribution of typical forest disturbance types (fire, insect damage, harvest); (iii) evaluate decadal trends in landscape albedo for "hotspots" of vegetation change; and (iv) assess the radiative forcing associated with historical (since 1700) and future (scenario-based) global land-cover change.

The outcome of the investigation will be an improved quantification of recent and historical albedo changes associated with land cover change and forest disturbance. Such information is needed to reduce uncertainties present in the current IPCC WG1 radiative forcing budget, and to forecast the effects of land management and land cover conversion on future climate.

Translating Forest Change to Carbon Emissions/Removals Linking Disturbance Products, Biomass Maps, and Carbon Cycle Modeling in a Comprehensive Carbon Monitoring Framework

Principal Investigator: Christopher A. Williams (Clark University)
Co-Principal Investigators: G. James Collatz (NASA GSFC, Biospheric Sciences); Jeffrey G. Masek (NASA GSFC, Biospheric Sciences); Gretchen Moisen (US Forest Service)

Funding Agency: NASA Carbon Monitoring System

Forests are a globally-significant store of carbon, but this store is vulnerable to release from disturbance processes such as harvesting or fires that oxidize forest carbon, releasing it to the atmosphere as CO2 and contributing to global warming. At the same time, intact forests serve as a major offset to rising CO2 concentrations as forest growth becomes stimulated by rising CO2 levels, enabling forests to absorb about one third of annual carbon emissions from fossil fuels and land use change. The balance of these processes is constantly changing and it varies widely from region to region. This project aims to quantify how much carbon is being released and taken up by each process over the entire United States, providing a new method for US reporting to the United Nations Framework Convention on Climate Change.

Historical forest clearing is responsible for about one third of all human-caused carbon emissions to date, with the rest coming from the combustion of fossil fuels. Avoiding further losses and protecting carbon uptake are both critical components of mitigating climate change. National and international policies aimed at protecting forest carbon storage rely heavily on high quality, accurate reporting (called "Tier 3") that earns the greatest financial value of carbon credits and hence incentivizes forest conservation and protection. But methods for Tier 3 Measuring, Reporting, and Verification (MRV) are still in development.

This project will offer a new approach to Tier 3 MRV, involving a combination of direct remote sensing, ground based inventorying, and computer modeling methods to track forest carbon emissions and removals at a 1 km scale across the US. Few existing approaches seek to combine all of these sources of information. Another major advantage of our approach is its specificity about the underlying processes driving carbon flows. This enables the framework to be used as a decision support tool to help test the relative benefits of various land management strategies and to examine how today's carbon sources and sinks will trend over time.

Quantification of the regional impact of terrestrial processes on the carbon cycle using atmospheric inversions

Co-Principal Investigator at Clark University Christopher A. Williams
Principal Investigator: Ken Davis (Penn State Atmospheric Sciences)
Co-Principal Investigators: G. James Collatz (NASA GSFC, Biospheric Sciences); Tristram West (Pacific Northwest National Lab); Stephen Ogle (Colorado State University Natural Resource Ecology Lab); Andrew Schuh (Colorado State University Atmospheric Sciences); Natasha Miles (PSU); Scott Richardson (PSU); Thomas Lauvaux (PSU); Martha Butler (PSU)

Funding Agency: NASA Carbon Cycle Science

This project is examining the carbon balance of the southeastern US by adding new precision measurements of atmospheric CO2 concentrations in a regional network to inform advanced inverse modeling that can infer sinks and sources of carbon dioxide from measured concentrations in the atmosphere. This top-down approach will be combined with measurements and modeling of carbon fluxes from the ground up to examine consistency and explore possible biases in the various data sources.

Forests of the southeastern US are important for the North American carbon balance because the region is highly productive, is vigorously managed with intensive timber harvest, is sensitive to climate change, and is periodically inundated by severe storms that kill trees. The region also contains a pockets of intensive agricultural lands along with a range of urban and suburban hotspots of emissions. By combining a range of measurement and modeling approaches, this project will improve quantification of these carbon sources and sinks.