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ABSTRACT

This modeling effort examines a relevant public health and risk assessment issue: How different is the internal dosimetry of acrylamide and its reactive metabolite, glycidamide for population subgroups that may be expected to differ in factors that affect enzymatic activation and detoxification: genetic polymorphism, early life metabolic immaturity, and enzyme variability due to other factors?  Given widespread exposure to the general public to acrylamide in foods (Konings, et al., 2003; Dybing and Sanner, 2003), it is important for risk assessments to consider the entire distribution of internal doses and especially those doses that may be received by potentially more susceptible sub-populations (Hattis et al., 2004ab).  

This report first describes development of an acrylamide/glycidamide Physiologically-Based Toxicokinetic (PBTK) model based upon the published rat model (Kirman, et al., 2003).  The published model was enhanced by calibration against recently reported acrylamide and glycidamide hemoglobin adduct data in rats (Fennell et al., 2003; Sumner et al., 2003; Fennell and Friedman, 2004).  This model was then adapted to human adults by using cross-species scaling principles, revised estimates of tissue/blood partition coefficients,  and hemoglobin adduct data recently reported in humans (Fennell, et al., 2004; Fennell and Friedman, 2004).   The resulting human model was able to simulate hemoglobin adduct levels and blood half-lives for both parent compound and metabolite.  

The report then describes in more detail the metabolic pathways for acrylamide and glycidamide and how these pathways may vary due to genetic polymorphism (glutathione transferases), due to non-specific variability inherent in the general population (CYP2E1 and epoxide hydrolase) and due to early life immaturities.  Simulation of acrylamide and glycidamide internal dosimetry was accomplished via PBTK/Monte Carlo analysis in which the basic physiological parameters were held constant but the enzymatic processing of parent compound or metabolite was allowed to vary according the input distributions for these enzymes.  Literature sources were used to derive input distributions for CYP2E1, GSTs and epoxide hydrolase in adults and various children’s age groups from the first week of life out to a 1-10 year old group.  PBTK model adaptation for early life stages also involved adjustment of body mass, organ sizes and blood flows to conform to known physiological development in young children (Clewell, et al., 2003; Ginsberg, et al., 2004).  A low, non-saturating dose rate of acrylamide was run across all scenarios to simulate an environmentally relevant exposure.    

Initial model runs showed that the acrylamide “area under the curve” (AUC) of concentration X time is most sensitive to variability in CYP2E1 activity while glycidamide AUC is most sensitive to variability in GST activity.  Monte Carlo results for the interaction of multiple enzyme distributions showed that the impact on AUC variability was generally modest.  For acrylamide AUC in adults, the upper end of the distribution, represented by the 99th percentile, was 1.9 to 2.6 fold greater than the median.  This degree of variability is less than what is sometimes assumed in risk assessments for inter-individual variability in toxicokinetics, one-half log or 3.2 fold (Renwick, 2000).   

The expected effects of enzyme variability on glycidamide AUC in adults were larger than for acrylamide AUC.  This difference arises primarily because of one of the assumptions made in our analysis, that GSTM is the primary GST isoform responsible for acrylamide and glycidamide metabolism, an assumption that has not yet been confirmed.  Consistent with the bimodal distribution of GSTM1 activity in human populations, our analysis projected a bimodal glycidamide AUC distribution; the high AUC mode (corresponding to GSTM1-null individuals) had an approximately 5 to 7 fold greater internal dose of active metabolite than the low AUC mode.   This factor represents a substantial degree of variability and suggests that there might be two distinctly different subpopulations with respect to toxicokinetic susceptibility to acrylamide/glycidamide.  Given that the GSTM1 null genotype occurs in approximately half of the Caucasian and Asian populations and in 20-25% of African-Americans, the higher AUC mode represents a substantial portion of the population.   Note, however, that model runs conducted under the assumption that there might be overlapping substrate specificity for acrylamide and glycidamide by other GST isoforms led to a smaller degree of inter-individual variability.

The GST null genotype is not known to exist in rodents and while rats generally have lower GST conjugating activity than mice, null individuals or strains have not been identified (reviewed in Ginsberg, et al., 2003).    It is reasonable to consider the human non-null condition more like the rat which is relevant to acrylamide risk assessments given that the cancer bioassay results are in rats.  The current finding of 5 to 7 fold greater glycidamide AUC in GSTM1 null individuals implies greater risk in this subpopulation relative to non-null individuals and relative to rats, if it turns out to be the case that GSTM is the major form of glutathione transferase responsible for glycidamide metabolic elimination. 

Our initial analyses, which did not consider human inter-individual variability (Section 3), found that humans would receive on average 1.4 to 1.5 times more glycidamide AUC than rats on a mg/kg body weight basis.  Rats were the test species from which the main cancer bioassay data were derived. Factoring in the human variability described above and considering that the human biomonitoring results likely contain at least some data from GSTM1 null individuals, we calculate an approximately 3 fold greater glycidamide internal exposure in sensitive humans as compared to rats.  This factor could be up to 11 fold if the human volunteers in biomonitoring studies (N=15) under-represented the GSTM1 null population.  

Monte Carlo analysis of early life stages suggests that the ontogeny of metabolizing enzymes produces modest changes in AUC distributions.  This is because both metabolic activation via CYP2E1 and detoxification via GSTs and epoxide hydrolase are immature.   The largest effect of early life variability in enzyme function is on acrylamide AUC where up to a 3.8 fold increase was found.  However, this was in the earliest age group, 0-7 day old neonates.  This age group is not expected to receive the type of dietary exposure to acrylamide that older children and adults might receive.  Given the relatively short half-life and low lipid solubility of acrylamide and glycidamide, these compounds are not expected to be an important contaminant of breast milk.  The children’s age groups which may begin to receive substantial acrylamide exposure in the diet, 91 days to 1 year and 1 to 10 years, had acrylamide AUCs that were 2.2 to 2.4 fold above adults.  This may be an important source of variability to consider in non-cancer risk assessments which focus on such effects as neurotoxicity since this appears to be mediated by the parent compound.  
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1.0 Background and Approach

The principal goal of this project is to use physiologically-based toxicokinetic modeling to elucidate the implications of metabolic polymorphisms and developmental differences for internal dose and risk for a model toxicant of current concern.   Metabolic polymorphisms can have a substantial influence on the proportion of more- vs. less-dangerous metabolites that are produced from environmental agents.  Polymorphisms can also can affect the degree of persistence of reactive metabolites and hence damage to DNA and other macromolecules that mediate toxicity (Ginsberg et al., 2002a).  Similarly, developmental differences, such as the immaturity of several metabolizing enzymes that occurs in the weeks immediately after birth, can substantially delay clearance and increase the vulnerability of the young organism to toxic damage (Ginsberg et al., 2002b; Hattis et al., 2003).   

On the other hand, past experience (e.g., Lipscomb et al., 2003) indicates that large amounts of interindividual variability in particular physiological parameters (such as activating and inactivating enzyme levels) sometimes give rise to less impressive changes in the anticipated internal dose and associated risk. Physiologic or metabolic factors that occur in the whole organism, such as blood flow limitations to metabolizing tissues, can mute the effects of a change in a single pathway (Kedderis, 1997).  The goal of the present research is to assess the size of risk-related differences in internal dose for acrylamide, in relation to genetic and developmental variability in key metabolic activation (CYP2E1) and detoxification (glutathione transferase(s) and epoxide hydrolase).  
Acrylamide has attracted considerable attention in recent years as a possible carcinogenic hazard.  Concern arises in part because of acrylamide’s widespread occurrence as a byproduct of thermal degradation of the amino acid asparagine in a wide variety of cooked carbohydrate foods (Tareke et al, 2002). Current estimates from the U.S. Food and Drug Administration based on extensive sampling and food consumption surveys are that average people (age 2 through adulthood) in the U.S. are exposed to about 0.43 µg/kg-day (90th percentile value = 0.92 µg/kg-day, DiNovi and Howard, 2004).    The exposures of 2-5 year old children in the U.S. are expected to be somewhat larger on a body weight basis--with an average dietary intake of about 1.06 µg/kg-day and a 90th percentile value or 2.31 µg/kg-day.  A persistent mystery in this field, however is that estimates of adult exposure from hemoglobin adduct measurements appear to be about 2-3 times larger than the estimates cited above from direct dietary sampling and food consumption surveys (Tareke et al, 2002; CERHR, 2004; Fennel and Friedman, 2004).

Acrylamide is of special concern because, in addition to being directly reactive, acrylamide is metabolized to a much more genetically active epoxide intermediate—glycidamide (Figure 1-1). Aside from toxicokinetic differences that are the subjects of the current analysis, early-life exposures may be particularly significant for overall population risks for genetically-acting carcinogens due to differences in toxicodynamic susceptibility (Ginsberg, 2003; Hattis et al., 2004ab; USEPA, 2003). Two independent long term bioassay studies in rats have found that acrylamide induces excess incidences of cancer at multiple sites (Johnson et al., 1986; Friedman et al., 1995).

This project builds on an existing physiologically-based toxicokinetic (PBTK) model for acrylamide (Kirman et al., 2003) to elucidate the implications of metabolic polymorphisms and developmental changes for internal doses and likely cancer risks. The basic assumption underlying the use of a PBTK model for a genetically-acting carcinogen is that lifetime risks across species will be similar, on average, if the lifetime average internal dose of the DNA-reactive agent is similar.  

For acrylamide the leading candidate for the causally relevant DNA-reactive agent is glycidamide.  This has been demonstrated in in vitro mutagenicity test systems in which glycidamide was more mutagenic than parent compound in Salmonella typhimurium strains and in human lung epithelial cells (Hashimoto and Tanii, 1985; Besaratinia and Pfeifer, 2004).   In vivo evidence for the importance of glycidamide comes from CYP2E1-null mice treated with acrylamide (Ghanayem, et al., 2004).   In contrast to wild type mice, acrylamide failed to induce germ cell mutagenicity in CYP2E1- null mice which is evidence for the need for CYP2E1-mediated conversion of acrylamide to glycidamide for genetic activity in vivo.   This conclusion is supported by observations of the genotoxic effects produced by glycidamide treatment in male mouse germ cells (Generoso, et al., 1996).  Comparative studies of acrylamide and glycidamide potency to produce neurotoxicity support the major effect from parent compound, while anti-fertility effects in male rats appears to be mediated primarily by glycidamide (Costa, et al., 1992).  

 The approach to modeling acrylamide and glycidamide dosimetry was to first implement the Kirman et al. (2003) rat model in an Excel spreadsheet system that is convenient for exploring inter-subject variability via Monte Carlo analyses.   This model was tested and recalibrated with recent hemoglobin adduct measurements in rats of internal dose for both acrylamide and the active metabolite glycidamide (Fennell et al., 2003; Sumner et al., 2003; Fennell and Friedman, 2004).  The formation of hemoglobin adducts is a direct function of the blood concentration of the reactive agents over the time that the red cells were exposed in vivo.  Thus, they provide a direct measure of the integral of concentration X time, otherwise known as “area under the curve” (AUC) for acrylamide and glycidamide. Assuming that the amount of reactive toxicant in blood indicates the amount available to bind to tissue DNA, this approach provides a measure that is highly relevant for risk assessment for carcinogenesis and other forms of acrylamide-induced toxicity.

 The rat model was then converted to an adult human model and recalibrated to acrylamide and glycidamide hemoglobin adduct data collected at reasonably low external exposure levels in a limited number of adult male subjects given a clinical oral exposure. The first runs of this calibration exercise led to predictions of unreasonably long half lives for acrylamide and glycidamide in humans.  Attempts to correct this problem led to an iterative modeling approach in which the partition coefficients used in the Kirman rat model were re-estimated in the light of human partition coefficient data for other compounds, and information on the octanol/water partition coefficients of acrylamide and the other compounds.  Once recalibrated to fit human hemoglobin adduct data and provide reasonable blood half-lives, the revised human model was then used to elucidate comparative internal doses across the human population in light of likely metabolism variations due to genetic and developmental factors, and other sources of variability.  Finally, for completeness, a rat model is created based on similarly revised rat tissue/blood partition coefficients, and rat cancer bioassay AUC doses are re-estimated.

Figure 1-1

Chemical Structures of Acrylamide and Glycidamide
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2.0 Implementation of the Kirman Rat Model and Calibration with Hemoglobin Adduct Information

2.1 Basic Structure and Original Calibration of the Kirman Model

Among PBTK models, the Kirman et al. (2003) model is unusually simple in some ways, and unusually detailed in others.  Its simplicity is that in contrast to the four or five tissue compartments that are standard in PBTK models, the Kirman model only has two tissue compartments—one for the liver, where all enzyme-mediated metabolism is assumed to occur; and one for the rest of the body.  (There are two additional compartments for blood—one for arterial blood and one for venous blood.)  On the other hand, the Kirman model is unusually detailed in accounting for a wide variety of  metabolic routes and passive tissue reactions in blood, liver and other tissues.  The basic parameter values used in the original Kirman model are shown in Table 2-1.  The model structure is illustrated in Figure 2-1.

Initial attempts to implement the Kirman model required two adaptations that are not explicitly discussed in the original paper (Kirman et al. 2003).  First, when we initially set up the model for 0.18 kg rats to match the body weight reported in one of the papers (Miller, et al., 1982) used by Kirman et al. for calibration, we found that hepatic glutathione (GSH) production and loss did not balance at the starting GSH concentration of 7 mmol/L.  Examination of the original source paper for GSH production and loss rates (D’Souza et al., 1988) revealed that the reported  GSH production rate is for rats weighing 0.25 kg; the model will only balance at the stated liver GSH concentration if its production is scaled from 0.25 kg in proportion to the body weight of the rats used in a particular experiment.  Therefore we built in to the rat model a direct dependency of GSH production rate on body weight. 

Second, it can be seen in Table 2-1 that in a few places parameters are given an abbreviation with a “C” suffix, as in alveolar ventilation (QCC), the total flow of blood from the heart known as cardiac output (QPC), and the maximum velocity of major enzyme reactions governed by Michaelis-Menten enzyme kinetics (VmaxC1, and VmaxC2).  The “C” suffix in these cases signifies a parameter that has some power-law scaling to body weight, but the Kirman et al. paper does not explain this, and instead gives the units for these parameters as simple functions of body weight without mentioning the exponent used for body weight scaling.  We are grateful to these authors for providing us with the raw computer code for the published version of the model when queried about this.  This facilitated our use of  the correct body weight scaling factor to adapt Vmax and other parameters with a “C” suffix in Table 2-1.  Having access to the model code also improved confidence in our ability to reproduce the original Kirman et al. (2003) model accurately.

2.2 Implementation and Adaptation in Excel

Our implementation of the model takes the form of an Excel spreadsheet in which each model compartment is represented by a column, and the contents of each compartment in successive time-steps are calculated in successive rows in difference equations of the following form:

Content at time (T + delta T) = Content at time T + inputs during delta T – losses during delta T

Additional columns of the spreadsheet keep track of how much acrylamide and glycidamide have been disposed of via various routes, and provide tests of mass balance to assure the accuracy of the integration calculations between successive time steps. For the rat model, the time step was 0.002 hours; for the human model, with slower turnover of the blood compartments, we found it possible to raise this to 0.005 hours without incurring substantial error or loss of mass balance.  The rat and human model spreadsheets will be made available on request to interested readers
.

2.3 Calibration Runs of the Rat Model 

As indicated in Table 2-1, Kirman et al. (2003) chose to calibrate the key metabolic rates in their model based on information from four papers (Raymer et al. 1993; Miller et al., 1982; Ramsey et al. 1984; and Sumner et al., 1992).  As it happens these papers do not contain hemoglobin adduct information—which is our preferred direct measure of internal dose of acrylamide and glycidamide.
  Instead, calibration of model parameters that relate to the balance between different routes of metabolism is largely based on measures of urinary metabolite outputs [from Sumner et al. (1992).  The overall rate of processing of acrylamide in the model is also influenced by some direct measurements of blood and nervous tissue concentrations of acrylamide in the Raymer et al. (1993) and for total radioactivity in the Ramsey et al (1984) and Miller et al. (1982) papers].  

The basic assumption in using ratios of urinary metabolites that are produced by different metabolic pathways (e.g. those via glycidamide vs. those involving direct reaction of acrylamide with GSH) is that the fraction of acrylamide urinary metabolites resulting from a particular pathway will reflect the overall fraction of acrylamide that is processed by that pathway.  Unfortunately, the fractional recovery of metabolites in urine in these experiments is typically far less than 100%.
  Therefore, some uncertainty remains about whether the fraction of original acrylamide that is disposed of as macromolecular reactions in tissues and other possible unmeasured pathways (e.g. complete metabolism to exhaled carbon dioxide) will be accurately reflected in the urinary metabolite ratios.  Moreover, although there are some useful measurements of parent acrylamide at a few time points in blood and other tissues from the work of Miller et al. (1982), the model as currently calibrated appears to under-predict the observed concentrations in blood and muscle by about 2-4 fold at time points greater than 2 hours, suggesting that the half-life of acrylamide might be somewhat longer than the Kirman  model would predict.  

A final difficulty is that the assembled data do not include direct measurements of the blood or tissue concentrations of glycidamide—the chemical of most direct interest for cancer risk projections.  The model contains one parameter that strongly influences the distribution of glycidamide between blood and tissues, but this parameter is particularly uncertain.  .  This is the partition coefficient multiplier, used to convert estimated tissue/blood partition coefficients for acrylamide into corresponding tissue/blood partition coefficients for glycidamide.  This is set at 3.2, by analogy with prior modeling by Kedderis et al (1996) for the epoxide of acrylonitrile in relation to acrylonitrile itself.  

In conclusion, the parameters that are the best candidates for adjustment in response to departures of model predictions from hemoglobin adduct observations are: 

(1) The tissue/blood partition coefficient multiplier of 3.2 for glycidamide; 

(2) The balance between P450 vs. GSH and other non-P450 metabolic routes for acrylamide, on the basis that the urinary metabolite profile observed at 24 hours may not fully represent the complete metabolic fate of acrylamide; i.e., the fraction that does not appear in urine but is irreversibly bound to tissues, or completely metabolized to building blocks that are incorporated into tissue constituents or exhaled; and 

(3) The tissue/blood partition coefficients for acrylamide, which were based on statistical model projections (based on Poulin and Krishnan 1995; 1996a; 1996b) rather than direct measurements.  In fitting the human models in Section 3, we found it necessary to revise the acrylamide tissue/blood partition coefficients downward using our own model and database of human tissue/blood partition coefficients (previously used in modeling for the hydrophilic compounds caffeine and theophylline (Ginsberg et al. 2003.) and described in earlier work (Ginsberg et al., 1996, 1999).  The basic regression model used is patterned after methodology and reasoning first described by Patterson and Mackay (1989).  For completeness, we will add below (in Section 2.6) an alternative rat model based on a similar set of revised calculations of tissue/blood partition coefficients for acrylamide based on our own database of rat tissue/blood partition coefficients for other chemicals and the same fitting procedure patterned after Patterson and Mackay (1989).

2.4   Hemoglobin Adduct Data Available for a Revised Calibration of the Kirman et al. (2003) Model

Table 2-2 summarizes available rat hemoglobin adduct measurements that are available to test and, as needed, recalibrate the Kirman et al. (2003) rat model.  [Not included in this listing are some additional potentially useful older measurements of acrylamide cysteine adducts by Bailey et al. (1986).]  The basic adduct measurements are translated into units of AUC of internal concentration X time (µmoles/liter-hour) in blood with the aid of second-order rate constants for the reactions of hemoglobin with acrylamide and glycidamide measured in vitro:

Hemoglobin adducts on the terminal valine, as measured by the Fennell /Sumner group (Fennell and Friedman, 2004):

	Reaction rate constants L/g-hr

	
	AAVal
	GAVal

	Rat
	3.82E-06
	4.96E-06

	Human
	4.27E-06
	6.72E-06


Adducts on the free cysteine of rat hemoglobin as measured by Bergmark et al. (1991):

	Reaction rate constants L/g-hr

	
	AACys
	GACys

	Rat
	1.8E-03
	0.92E-03


For short-term measurements (e.g. those done 24 hours following a single exposure) adduct concentrations expressed in femptomoles/mg Hb are simply converted into AUC units:
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For adduct measurements that are done following repeated exposures over many days, one must take into account the normal loss of red cells (lifespan of about 61 days in rats—Derelanko, 1987) and effective dilution of the adducted red cells via growth of the animal (and consequent growth of the blood).  Calleman et al. (1996) utilize the following equation for repeated treatments over time:
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where "a" is the accumulation on each day based on 1-day experiments; 61 is the lifetime of erythrocytes; and bt is a coefficient that corrects for the growth in blood volume from the start of exposure to day t.

It can be seen in Table 2-2 that the adduct-derived AUC observations fall into two distinct groups—(1) recent measurements of Hb-terminal valine adducts done by the Fennell and Sumner groups in Fischer-344 rats and humans (Fennell et al., 2003, 2004; 2005; Fennell and Friedman, 2004; Sumner et al. 2003); and (2) older measurements of Hb-cysteine adducts by Bergmark and colleagues in Sprague-Dawley rats.  The Fennell and Sumner measurements seem to indicate several fold higher internal glycidamide AUC exposures per unit of acrylamide external dose than are implied by the Bergmark et al. (1991) data.  This will eventually lead to relatively smaller estimates of human potency and risks in humans in relation to internal glycidamide dose.   (This is because higher estimates of the glycidamide AUC that was present in the tested rats will yield lower estimates of the cancer potency when expressed as cancer  transformations per unit of internal glycidamide dose.  These lower estimates of potency will then translate into lower estimates of cancer risk in people per unit of human internal glycidamide dose when the human glycidamide AUC is estimated from direct measurements of human acrylamide and glycidamide adduct levels, as in Section 3 below.)

On first principles, the former measurements (Fennel and Sumner) are more desirable for primary calibration of acrylamide toxicokinetics for our carcinogenic risk projections.  The Fennell and Sumner groups used the same strain of animals as was used for the two chronic rat cancer bioassay studies.  Moreover, the terminal valine adducts measured seem to be preferred over cysteine adducts in the most recent papers reporting Hb adducts.  Finally, it is desirable to use the Fennell and Sumner terminal valine measurements for calibration of the rat model because they are parallel to the measurements made in humans that we will use for calibration of the human version of the PBTK model.

One modest caveat on the other side of this choice is that all of the Fennell and Sumner measurements are for single exposures.  The Fennell/Sumner measurements therefore neglect any possible effects of enzyme induction that might be present in the chronic cancer bioassay studies—effects that may be reflected in the two sets of measurements by Bergmark et al. (1991) for 10- and 33-day repeated exposures.

2.5 Comparisons of Predicted and Observed AUCs for Both Acrylamide and Glycidamide Based on Hemoglobin Adduct Data--Implications for Model Parameter Adjustments and Model Behavior, Using the Original Kirman et al. (2003) Set of Partition Coefficients

The basic dose response behavior of a variety of parameters in 24 hour simulations of the original Kirman et al. model is shown in Table 2-3.  It can be seen that this base model predicts that at low doses about 38% of the acrylamide is transformed to glycidamide.  As doses are increased, metabolic saturation is approached and the percent conversion to glycidamide declines to about 23% at 50 mg/kg—less than the 32.6% fraction observed in the urinary metabolite output in the Sumner et al. (1992).  Also, the original Kirman et al. (2003) model predicts that the low dose half lives for acrylamide and glycidamide are about 1.35 and slightly over 2 hours, respectively.  The last column of Table 2-3 also indicates that there is a modest degree of nonlinearity in the ratio of internal glycidamide AUC/external acrylamide dose in the 0.5 – 3 mg/kg dose range used for the chronic rat bioassay experiments.

Table 2-4 compares the expectations under the original Kirman et al. (2003) model with the adduct-based AUC observations presented in Table 2-2.  It can be seen that although the model conforms reasonably to the Bergmark et al. (1991) observations for the acrylamide AUC, there is an approximately 2-fold under prediction of the acrylamide AUCs derived from the Fennell and Sumner hemoglobin-valine adduct observations.  The discrepancies between predictions and observations for the adduct-based glycidamide AUCs are much more profound. The under- predictions of glycidamide AUCs are 3-7 fold for the Bergmark et al. (1991) adduct observations, and on the order of 10-fold or slightly more for the observations of Fennell and Sumner at low doses.  

We adjusted the model in a series of steps.  We will describe the steps and associated reasoning, but we will not document all of the intermediate results here for the sake of brevity.  

· First, we removed the multiplier of 3.2 from the calculation of partition coefficients for glycidamide; substituting 1.  This directly increased the ratio of glycidamide in the blood relative to the tissues; and hence increased the AUC of glycidamide while making relatively modest changes in other aspects of model behavior.

· The under prediction of acrylamide AUC by the model could only be rectified by reducing the rate of processing of acrylamide by the model.  The principal way we found to accommodate this without exacerbating the under prediction of glycidamide AUC was to reduce the rates of all non-P450 modes of acrylamide destruction—e.g. the glutathione transferase reaction and all the nonspecific reactions of acrylamide in the tissues.  In the final calibrated model (Table 2-5; presented in the same format as was used for the original model in Table 2-1), these non-P450 rates of reaction of acrylamide are reduced to approximately one quarter of their baseline values in the original Kirman et al. model.  This has the effect of increasing the proportion of acrylamide that is processed to glycidamide via P450 oxidation.

· A more modest downward adjustment of 0.7 fold was made to both the Vmax and the Km for the P450-mediated metabolism of acrylamide to reduce the apparent dose dependence of the departures of predicted vs. observed acrylamide AUCs.  Changing both Vmax and Km  in parallel has the effect of decreasing the metabolism of acrylamide at high doses while leaving metabolism rates relatively unchanged at low doses.

· Finally, to bring the model-“predicted” glycidamide AUCs into alignment with the observations, the rates of glycidamide metabolism by all routes were reduced to half their baseline values; increasing the glycidamide half-life.

The combined results of these changes for the dose response behavior various model parameters are shown in Table 2-6 (which is parallel to Table 2-3).   It can be seen that the low dose 1-2 hour half life of acrylamide has been increased from 1.35 to 2.46 hours (this slightly overstates the half life at later time points); the low dose half life of glycidamide has been increased  from about 2.1 hours to 3.8 hours and the low dose fraction of acrylamide processed via the glycidamide pathway has been increased from 39% to about 72%.  At 50 ppm, where the urinary metabolite data of Sumner et al. (1992) indicate a minimum of 34% must be processed by non-P450 pathways to soluble glutathione-derived metabolites, the model results show an expectation that 32.7% is processed by direct reaction with glutathione.  

Alternative model calibrations are probably possible that would reduce the fraction of acrylamide that is processed by the P450 pathway at low doses.  However in order to achieve compatibility with the glycidamide adduct data, such recalibrations would require further reduction in the metabolism rate of glycidamide—lengthening the internal half life of glycidamide in the system.  Choosing the calibration we have makes the smallest feasible modifications to the Kirman et al. rate constants for glycidamide metabolism.  This probably does not greatly affect the ultimate balance of metabolic processing derived for our human model.  As described in Section 3 below, the human model requires further reductions in the non-P450 rates of metabolism of acrylamide in order to both conform to the observation of relatively higher acrylamide AUC per external dose in humans compared to rats, while still generating sufficient amounts of glycidamide to produce the amounts of glycidamide adducts per unit dose that were observed in the human subjects.

The resulting fits to the Fennel/Sumner adduct based rat AUC data are reasonable although not ideal (Table 2-7) Except for the modest under prediction of the acrylamide AUC at the lowest dose used in the Fennell and Friedman (2004) dataset,  the remaining estimates do not depart by more than might be expected from the inherent variability of experimental results of this type. 

2.6 Recalibration of the Rat Model Based  on Revised Estimates of Tissue/Blood Partition Coefficients

2.6.1 Methodology and Data for Derivation of Revised Estimates of Tissue/Blood Partition Coefficients

Basic methodology for the estimation of tissue/blood partition coefficients from information on octanol/water partition coefficients has been described previously (Ginsberg et al., 1996, 1999), patterned after methodology and reasoning first described by Patterson and Mackay (1989).  


From data on blood solubilities and octanol water partition coefficients of relatively hydrophilic compounds Patterson and Mackay (1989) derive the relationship:

SB = CW*(1 + 0.0035 KOW)

Where SB and CW are the solubility of the chemical in blood and water under some standard conditions, KOW is the octanol-water partition coefficient and 0.0035 represented their estimate of the effective octanol-equivalent fat content of blood.  Similarly, solubilities in various tissues are represented as:

ST =  a*CW + b*SO
From these two, it follows that those tissue/blood partition coefficients, ST/SB, should be given by:
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or, taking the denominator’s CW into the numerator, and noting that SO/CW = KOW
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or, more generally,
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Where “a” is related to the effective water content of the tissue, “b” is related to the effective lipid content of the tissue, and “c” depends on the effective lipid content of blood. 

The central estimates of the fitted constants for rat tissue/blood partition coefficients from this modeling for 50 chemicals (for different tissues) are shown in Table 2-8a.  Table 2-8b shows the number of data-chemical comparisons available from our data base for each tissue and the standard deviation of the log(observed/model predicted partition coefficients).  The model parameters shown in Table 2-8a result from minimizing the sum of squares of the log ratios (observed/predicted) across all observations.  The fit was evaluated based upon the deviation of individual data points from the sum of squares best fit relationship, which yields an overall standard deviation of 0.148 for all tissues.  This means that 95% of the partition coefficients in the dataset are within 10(0.173*1.96) = 2.18, or a little more than 2 fold from the best fit line. 

When combined with the octanol/water partition coefficient for acrylamide, 0.069 [geometric mean of log10 values of -0.067 and –1.16 given by the Center for the Evaluation of Risks to Human Reproduction (CERHR), 2004], the model coefficients in Table 2-8a resulted in estimated tissue/blood partition coefficients as shown in the third column of Table 2-8c.  The original Kirman et al. (2003) partition coefficient estimates are shown in the second column of this table for comparison.  It can be seen that our expected partition coefficient for the broad non-liver tissue group is very much less than the corresponding value estimated by Kirman et al. (2003). This leads to a lower estimated volume of distribution per unit dose and, after calibration, smaller estimates of the internal half lives for acrylamide and glycidamide (partition coefficients for glycidamide were assumed to be the same as those for acrylamide). 

2.6.2 Consequences of Revised Model Calibrations to the Hemoglobin Adduct Data for Fischer-344 Rats

Table 2-9 shows the parameters derived for model coefficients using the revised partition coefficients in the same format that was previously used for Tables 2-1 and 2-5.

Table 2-10 shows the calibrating fits to the hemoglobin adduct data.  As before, we have chosen the metabolism parameters to achieve as close as possible correspondence to the glycidamide and acrylamide adduct-based AUC levels at low doses that are close to the bioassay doses, while tolerating larger departures at higher doses.  This is because (a) the models in their current form may well be missing phenomena such as enhanced synthesis of glutathione in response to glutathione depletion (D’Souza et al., 1988; Sweeney et al., 1997), which would preferentially affect comparisons in the direction of the observed deviations at high doses, and (b) the lower doses reflect more closely correspond to the rat bioassay doses that are relevant for risk low dose risk assessment.  

Comparing the metabolism parameters in Table 2-9 to those in Table 2-5, it can be seen that the recalibrated model with revised partition coefficients has larger values for both the P450 Vmax and Km--with the Vmax rising somewhat less (about 3-fold) than the Km (nearly 4-fold).  The consequence of the increased Km is that there is an even smaller amount of departure from low dose linearity in the 1 – 3 mg/kg-day dose region (see Table 2-11).  

Table 2-11 shows the consequences of the revised partition coefficients for the dose response relationships for model parameters in the same form as was used for Table 2-6.  It can be seen in Table 2-11 that the revised partition coefficients lead to considerably smaller blood half lives for acrylamide and glycidamide (1.6 and 2.0 hours, respectively; compared to the 2.5 and 3.8 hour values derived in the model derived using the original partition coefficients).  The acrylamide half-life of 1.6 hours in Table 2-11 is more compatible with the 1.7 hour figure derived from acrylamide blood disappearance observations by Miller et al. (1982).  

On the other hand, model projections of acrylamide AUC using the revised partition coefficient approach are less consistent with actual AUC data (Table 2-12)    As mentioned earlier, the revised estimates of model partition coefficients lead to a smaller effective volume of distribution for acrylamide, and therefore a larger expected concentration in blood at short times after dosing.  Table 2-12 show compares model expectations for acrylamide blood concentrations with observations of Raymer et al. (1993) at various times following 75 mg/kg intraperitoneal doses.  It can be seen in the upper (A) panel of Table 2-12 that the original Kirman model partition coefficients for acrylamide lead to expectations that are modestly (10-20%) larger than the observations in the first half hour after dosing.  In comparison, the predictions of the model based on our revised estimates of partition coefficients exceeds the observations by about two-fold.  Both models make predictions that fail to reproduce the relatively rapid fall in acrylamide serum levels observed by Raymer et al. (1993) at later time points, indicating that these Long-Evans hooded rats appear to metabolize acrylamide much faster than the animals used for the model metabolism calibration. A similar result was reported in the Kirman et al. (2003) paper in which the authors used their own model calibration.  

In the light of these contrasting results from comparisons between the models’ predictions and half-life vs. blood concentration observations, we elect to retain both models to make alternative predictions of rat internal AUC doses following the chronic drinking-water exposures done in the available cancer bioassays.

2.7 Preliminary Conclusions from the Recalibrated Rat Models:  Internal Time-Integrated Doses of Glycidamide and Acrylamide Under the Conditions Used for the Animal Cancer Bioassays

The animal cancer bioassays of Johnson et al. (1986) and Friedman et al. (1995) were both conducted by administering acrylamide to Fischer 344 rats in drinking water.  Dosage was therefore not instantaneous, but effectively given over an extended period.  To represent this mode of dosing we have chosen to provide acrylamide to the model over a twelve hour period (to represent the concentration of drinking water consumption by rodents when they are most active during periods of darkness) and then to project AUCs for glycidamide out to infinite time to account for the small portion of acrylamide and glycidamide that are not metabolized by the end of hour 24 (12 hours after the end of the drinking water exposure).  Assuming that the decline in glycidamide blood concentrations is adequately described as a simple exponential function 

C = C24hre-kt

the infinite blood concentration X time integral is given by:

AUCinfinite = AUC0-24 hr + C24/k

Where k is conveniently calculated for the period between hour 23 and hour 24.

Another minor complication is that in the case of the Johnson et al. (1986) cancer bioassay experiments, data in the paper indicate specific (although modest) departures of the actual administered doses from the nominal doses that were intended in the original experimental protocol:

	Targeted dose (mg/kg-day)
	Measured Dose for Males (± Standard Error)
	Measured Dose for Females (± Standard Error)

	0.01
	0.0094 ± 0.0001
	0.0095 ± 0.0001

	0.1
	0.096 ± 0.001
	0.095 ± 0.001

	0.5
	0.480 ± 0.005
	0.525 ± 0.009

	2
	1.92 ± 0.03
	2 ± 0.03


There is no comparable information about the difference between actual and nominal doses in the bioassay reported by Friedman et al. (1995).  The nominal doses for the latter study were 0.0, 0.1, 0.5 and 2.0 mg/kg for males; and 0.0, 1.0 and 3.0 mg/kg for females.  

For these nominal and measured 12-hour drinking water doses, Tables 2-13 and 2-14 show model-predicted AUCs for acrylamide and glycidamide, and some other intermediate parameters of interest, for the models based on the original Kirman et al. (2003) model and revised acrylamide tissue/blood partition coefficients, respectively.  The AUCs shown here, particularly for glycidamide, are the relevant inputs for cancer dose-response modeling using the existing rat bioassay results for different tumor sites.  It can be seen in the final columns of these tables that there is only a modest (1% or less, depending on dose) difference between them in the expected ratios of glycidamide AUC per dose for the dose range used in the rat cancer bioassays.  Differences in the trend with dose of the glycidamide AUC/dose ratios are attributable to the reduced saturation of P450 acrylamide metabolism at moderate doses in the model based on the revised partition coefficients. For acrylamide AUC the difference between the predictions of the two models is about 20% or a little less. The correspondence between the predictions of the two model variants results from the fact that they were calibrated to the same hemoglobin adduct benchmarks at relatively low doses.

Table 2-1

Original Kirman et al. (2003) Acrylamide PBTK Model Parameters
	Parameter group
	Parameter
	Symbol (units)
	Value


	Reference/Source (from Kirman et al. 2003)

	Basic physiology
	Body weight
	BW (kg)
	
	0.25 for most runs

	
	Alveolar ventilation


	QCC (L/h-kg0.74)
	14
	Kedderis et al. (1996)

	
	Cardiac output (total body blood flow)
	QPC (L/h-kg0.74)
	14
	

	
	Liver blood flow 
	QLC (fraction QCC)
	0.25
	

	
	Tissue blood flow
	QTC (fraction QCC)
	0.75
	Calculated (1- QLC)

	Compartment Volumes
	Volume blood
	VBC (fraction BW)
	0.06
	Brown et al. (1997)

	
	Fraction arterial/total blood
	FABC (fraction VB)
	0.35
	

	
	Fraction venous/total blood
	FVBC (fraction VB)
	0.65
	

	
	Liver volume
	VLC (fraction BW)
	0.04
	Brown et al. (1997)

	
	Tissue volume
	VTC (fraction BW)
	0.87
	Calculated (0.91-VLC)

	
	Fraction blood cells/blood


	FBC (fraction VB)
	0.44
	Kedderis et al. (1996)

	
	Fraction blood serum/blood
	FBS (fraction VB)
	0.56
	Kedderis et al. (1996)

	Absorption
	Absorption rate from gastrointestinal tract (oral dose) or intraperitoneal cavity (ip dose)
	KA(/h)
	5

	Model simulations fit to:

Raymer et al. (1993),

Miller et al. (1982),

Ramsey et al. (1984)

	Partition coefficients 
	Blood:air, AMD
	PB1 (unitless)
	3.1E7
	Estimated (Poulin & Krishnan, 1995, 1996a, 1996b)

	(equilibrium concentration ratios)
	Liver: blood, AMD
	PL1 (unitless)


	0.83
	

	
	Tissue: blood, AMD
	PT1 (unitless)
	0.95
	

	
	Blood:air, GLY
	PB2 (unitless)


	9.8E7
	

	
	Liver: blood, GLY
	PL2 (unitless)
	2.7
	3.2 times corresponding AMD value, by analogy with acrylonitrile epoxide

	
	Tissue: blood, GLY
	PT2 (unitless)
	3.0
	3.2 times corresponding AMD value


Table 2-1, Continued

Original Kirman et al. (2003) Acrylamide PBTK Model Parameters

	Parameter group
	Parameter
	Symbol (units)
	Value


	Reference/Source (from Kirman et al. 2003)

	Metabolism
	Cytochrome P-450 oxidation rate, AMD
	VMAXC1 (mg/h-kg0.7)
	1.6
	Model simulations fit to Raymer et al. (1993); Miller et al. (1982); Sumner et al. (1992)

	
	Cytochrome P-450 Michaelis-Menten constant, AMD
	KMC1 (mg/L)
	10
	

	
	Epoxide hydrolase hydrolysis rate, GLY
	VMAXC2 (mg/h-kg0.7)
	1.9
	

	
	Epoxide hydrolase Michaelis-Menten constant, GLY
	KMC2 (mg/L)
	100
	

	
	Reaction with glutathione, AMD
	KGSTC1 [L/(mmolGSH-kg0.3 -h)]
	0.55
	

	
	Reaction with glutathione, GLY
	KGSTC2 [L/(mmolGSH-kg0.3 -h)]
	0.8
	

	Tissue binding
	Binding to hemoglobin, AMD
	KHGB1 (L/gHGB-h)
	0.5
	Model simulations fit to

Miller et al. (1982)), 

Ramsey et al. (1984)

	
	Binding to hemoglobin, GLY
	KHGB2 (l/gHGB-h)
	0.25
	

	
	Binding to liver macromolecules, acrylamide
	KFEEL1 (/h)
	0.2
	

	
	Binding to liver macromolecules, GLY
	KFEEL2 (/h)
	0.1
	

	
	Binding to tissue macromolecules, AMD
	KFEET1 (/h)
	0.08
	

	
	Binding to tissue macromolecules, GLY
	KFEET2 (/h)
	0.04
	

	
	Binding to blood macromolecules, AMD
	KFEEB1 (/h)
	0.01
	

	
	Binding to blood macromolecules, GLY
	KFEEB2 (/h)
	0.005
	

	
	Protein turnover
	KPT (/h)
	0.008
	

	Glutathione
	GSH production rate (Based on a 0.25 Kg rat)
	KGSHP (mmol/h)
	0.025
	D’Souza et al. (1998)

	
	GSH loss rate
	KGSHL (/h)
	0.35
	

	
	Initial GSH concentration in liver
	GHSL0 (mmol/L)
	7.0
	


Table 2-2

Acrylamide and Glycidamide AUC Observations Derived from Hemoglobin Adduct Data

	Reference Source, Route and Chemical Administered
	Rat Strain
	Type of Adducts Measured
	Acrylamide or Glycidamide Dose mg/kg
	Acrylamide AUC µM-hr
	Acrylamide AUC Std Error
	Glycidamide AUC µM-hr
	Glycidamide AUC Std Error
	Observed Acrylamide AUC/dose µM-hr/(mg/kg AA)
	Observed Glycidamide AUC/dose µM-hr/(mg/kg AA)

	Fennell (2004) oral
	Male Fischer-344
	terminal valine
	3
	237
	Not Available
	156
	Not Available
	79
	52

	Sumner (2003) Inhalation 
	Male Fischer-344
	terminal valine
	6.5 (retained at 6 hr)
	363
	17
	322
	21
	56
	50

	Sumner (2003) IP
	Male Fischer-344
	terminal valine
	46.5
	3395
	85
	1861
	47
	73
	40

	Fennell (2003) Observations (oral)
	Male Fischer-344
	terminal valine
	59.5
	5457
	219
	1588
	76
	92
	27

	
	
	
	
	
	
	
	
	
	

	Bergmark 91 IP acrylamide 30 d
	Sprague-Dawley
	cysteine
	3.3
	109
	7
	45
	2
	33
	14

	Bergmark 91 IP acrylamide 10 d
	Sprague-Dawley
	cysteine
	10
	366
	32
	124
	11
	37
	12

	Bergmark 91 IP acrylamide
	Sprague-Dawley
	cysteine
	10
	Not Available
	Not Available
	137
	17
	
	

	Bergmark 91 IP acrylamide
	Sprague-Dawley
	cysteine
	50
	2617
	167
	400
	35
	52
	8

	Bergmark 91 IP acrylamide
	Sprague-Dawley
	cysteine
	100
	4789
	164
	407
	28
	48
	4

	
	
	
	
	
	
	
	
	
	

	Bergmark 91 IP glycidamide
	Sprague-Dawley
	cysteine
	10
	
	
	267
	Not Available
	
	

	Bergmark 91 IP glycidamide
	Sprague-Dawley
	cysteine
	50
	
	
	1185
	73
	
	

	Bergmark 91 IP glycidamide
	Sprague-Dawley
	cysteine
	100
	
	
	2543
	54
	
	


Table 2-3

Dose Response Behavior of Some Important Parameters for the Original Kirman et al. (2003) Model

	mg/kg IP
	Cum 24 hr µM-hr AMD in blood
	Cum 24 h µM-hr GLY in blood
	% acryl converted to Glya
	% acryl directly reacted with GSH a 
	% GLY eliminated via GSH reaction a
	% GLY eliminated via epoxide hydrolase a 
	Minimum GSH conc in liver (mmol/L)
	T1/2 Acrylamide 1-2 hr after dosing
	T1/2 Glycidamide 23-24 hr after dosing
	AUC GA/mg/kg dose
	Fraction AUC GA/dose at 0.001 mg/kg

	0.001
	2.65E-02
	4.72E-03
	39.29
	38.13
	80.99
	6.78
	7
	1.354
	2.094
	4.72E+00
	1

	0.01
	2.65E-01
	4.72E-02
	39.28
	38.13
	80.99
	6.78
	7
	1.354
	2.094
	4.72E+00
	1

	0.1
	2.66E+00
	4.71E-01
	39.2
	38.17
	80.98
	6.79
	7
	1.356
	2.094
	4.71E+00
	0.998

	0.5
	1.34E+01
	2.34E+00
	38.85
	38.35
	80.93
	6.8
	7
	1.365
	2.094
	4.68E+00
	0.992

	1
	2.70E+01
	4.65E+00
	38.42
	38.56
	80.87
	6.82
	6.98
	1.377
	2.095
	4.65E+00
	0.985

	2
	5.50E+01
	9.16E+00
	37.6
	38.96
	80.74
	6.86
	6.91
	1.4
	2.095
	4.58E+00
	0.971

	3
	8.40E+01
	1.36E+01
	36.84
	39.31
	80.61
	6.9
	6.83
	1.422
	2.096
	4.52E+00
	0.958

	5
	1.44E+02
	2.21E+01
	35.46
	39.93
	80.36
	6.98
	6.67
	1.468
	2.097
	4.41E+00
	0.934

	6.5
	1.92E+02
	2.82E+01
	34.53
	40.33
	80.17
	7.05
	6.55
	1.501
	2.097
	4.34E+00
	0.919

	10
	3.09E+02
	4.20E+01
	32.65
	41.05
	79.72
	7.19
	6.29
	1.577
	2.099
	4.20E+00
	0.889

	15
	4.90E+02
	6.06E+01
	30.48
	41.72
	79.11
	7.39
	5.94
	1.68
	2.101
	4.04E+00
	0.857

	25
	8.93E+02
	9.60E+01
	27.32
	42.26
	77.92
	7.79
	5.31
	1.868
	2.106
	3.84E+00
	0.813

	46.5
	1.92E+03
	1.68E+02
	23.21
	41.64
	75.61
	8.55
	4.23
	2.217
	2.118
	3.62E+00
	0.766

	50
	2.10E+03
	1.80E+02
	22.72
	41.43
	75.26
	8.66
	4.09
	2.269
	2.12
	3.59E+00
	0.761

	59.5
	2.63E+03
	2.10E+02
	21.57
	40.77
	74.38
	8.96
	3.72
	2.405
	2.126
	3.54E+00
	0.749

	75
	3.56E+03
	2.59E+02
	20.03
	39.54
	73.06
	9.38
	3.23
	2.614
	2.138
	3.46E+00
	0.733

	100
	5.21E+03
	3.35E+02
	18.14
	37.45
	71.24
	9.97
	2.62
	2.92
	2.159
	3.35E+00
	0.71

	125
	7.02E+03
	4.06E+02
	16.68
	35.44
	69.69
	10.47
	2.17
	3.193
	2.185
	3.25E+00
	0.688


Table 2-4

Comparison of AUC Predictions from the Original Kirman Model with AUCs Derived from Hemoglobin Adduct Observations

	
	Acrylamide AUC Comparisons
	
	        Glycidamide AUC Comparisons

	Data Source and Route of Admin
	mg/kg Acrylamide dose
	Obs AMD AUC µM-hr
	Model pred. AMD AUC µM-hr
	Ratio--Model Predicted/Obs.
	
	Obs GLY AUC µM-hr
	Model pred. GLY AUC µM-hr
	Ratio—Model Predicted/Obs

	Fennell (2004) oral
	3
	237
	84
	0.354
	
	156
	14
	0.087

	Sumner (2003) Inhalation
	6.5
	363
	192
	0.529
	
	322
	28
	0.088

	Sumner (2003) IP
	46.5
	3395
	1919
	0.565
	
	1861
	168
	0.090

	Fennell (2003) Observations (oral)
	59.5
	5457
	2631
	0.482
	
	1588
	210
	0.133

	Bergmark 91 IP acrylamide 30 d
	3.3
	109
	93
	0.852
	
	45
	15
	0.328

	Bergmark 91 IP acrylamide 10 d
	10
	366
	309
	0.844
	
	124
	42
	0.339

	Bergmark 91 IP acrylamide
	10
	
	
	
	
	267
	42
	0.157

	Bergmark 91 IP acrylamide
	50
	2617
	2104
	0.804
	
	1185
	180
	0.152

	Bergmark 91 IP acrylamide
	100
	4789
	5212
	1.088
	
	2543
	335
	0.132


Table 2-5

Acrylamide Rat PBTK Model Parameters After Recalibration to Fit AUCs Derived From the Fennell/Sumner Hemoglobin Adduct Data [Bolded Values Are Altered from Those in the Original Model of Kirman et al. (2003)a]—Based  on the Original Kirman et al. (2003) Tissue Blood Partition Coefficients

	Parameter group
	Parameter
	Symbol (units)
	Value



	Basic physiology
	Body weight
	BW (kg)
	0.25

	
	Alveolar ventilation


	QCC (L/h-kg0.74)
	14

	
	Cardiac output (total body blood flow)
	QPC (L/h-kg0.74)
	14

	
	Liver blood flow 
	QLC (fraction QCC)
	0.25

	
	Tissue blood flow
	QTC (fraction QCC)
	0.75

	Compartment Volumes
	Volume blood
	VBC (fraction BW)
	0.06

	
	Fraction arterial/total blood
	FABC (fraction VB)
	0.35

	
	Fraction venous/total blood
	FVBC (fraction VB)
	0.65

	
	Liver volume
	VLC (fraction BW)
	0.04

	
	Tissue volume
	VTC (fraction BW)
	0.87

	
	Fraction blood cells/blood


	FBC (fraction VB)
	0.44

	
	Fraction blood serum/blood
	FBS (fraction VB)
	0.56

	Absorption
	Absorption rate from gastrointestinal tract (oral dose) or intraperitoneal cavity (ip dose)
	KA(/h)
	5

	Partition coefficients 
	Blood:air, AMD
	PB1 (unitless)
	3.1E7

	(equilibrium concentration ratios)
	Liver: blood, AMD
	PL1 (unitless)


	0.83

	
	Tissue: blood, AMD
	PT1 (unitless)
	0.95

	
	Blood:air, GLY
	PB2 (unitless)


	9.8E7

	
	Liver: blood, GLY
	PL2 (unitless)
	0.83

	
	Tissue: blood, GLY
	PT2 (unitless)
	0.95


Table 2-5, Continued

Acrylamide PBTK Model Parameters After Recalibration to Fit AUCs Derived From the Fennell/Sumner Hemoglobin Adduct Data]—Based  on the Original Kirman et al. (2003) Tissue Blood Partition Coefficients [Bolded Values Are Altered from Those in the Original Model of Kirman et al. (2003)]

	Parameter group
	Parameter
	Symbol (units)
	Value



	Metabolism
	Cytochrome P-450 oxidation rate, AMD
	VMAXC1 (mg/h-kg0.7)
	1.12

	
	Cytochrome P-450 Michaelis-Menten constant, AMD
	KMC1 (mg/L)
	7

	
	Epoxide hydrolase hydrolysis rate, GLY
	VMAXC2 (mg/h-kg0.7)
	0.95

	
	Epoxide hydrolase Michaelis-Menten constant, GLY
	KMC2 (mg/L)
	100

	
	Reaction with glutathione, AMD
	KGSTC1 [L/(mmolGSH-kg0.3 -h)]
	0.1375

	
	Reaction with glutathione, GLY
	KGSTC2 [L/(mmolGSH-kg0.3 -h)]
	0.4

	Tissue binding
	Binding to hemoglobin, AMD
	KHGB1 (L/gHGB-h)
	0.125

	
	Binding to hemoglobin, GLY
	KHGB2 (l/gHGB-h)
	0.125

	
	Binding to liver macromolecules, AMD
	KFEEL1 (/h)
	0.05

	
	Binding to liver macromolecules, GLY
	KFEEL2 (/h)
	0.05

	
	Binding to tissue macromolecules, AMD
	KFEET1 (/h)
	0.02

	
	Binding to tissue macromolecules, GLY
	KFEET2 (/h)
	0.02

	
	Binding to blood macromolecules other than hemoglobin, AMD
	KFEEB1 (/h)
	0.0025

	
	Binding to blood macromolecules other than hemoglobin, GLY
	KFEEB2 (/h)
	0.0025

	
	Protein turnover
	KPT (/h)
	0.008

	Glutathione
	GSH production rate (Based on a 0.25 Kg rat)
	KGSHP (mmol/h)
	0.025

	
	GSH loss rate
	KGSHL (/h)
	0.35

	
	Initial GSH concentration in liver
	GHSL0 (mmol/L)
	7.0


Table 2-6

Dose Response Behavior of Some Important Parameters for the Acrylamide PBTK Model Recalibrated with AUC Data Derived from the Fennell-Sumner Hemoglobin Adduct Observations]—Based  on the Original Kirman et al. (2003) Tissue Blood Partition Coefficients
	mg/kg IP
	Cum 24 hr µM-hr AMD in blood
	Cum 24 h µM-hr GLY in blood
	% acryl converted to Glya
	% acryl directly reacted with GSH a 
	% GLY eliminated via GSH reaction a
	% GLY eliminated via epoxide hydrolase a 
	Minimum GSH conc in liver (mmol/L)
	T1/2 Acrylamide 1-2 hr after dosing
	T1/2 Glycidamide 23-24 hr after dosing
	AUC GLY /mg/kg dose
	Fraction AUC GLY /dose at 0.001 mg/kg

	0.001
	4.93E-02
	5.24E-02
	71.97
	17.51
	76.69
	6.40
	7.00
	2.460
	3.774
	5.24E+01
	1.000E+00

	0.01
	4.93E-01
	5.24E-01
	71.96
	17.52
	76.69
	6.40
	7.00
	2.462
	3.774
	5.24E+01
	9.999E-01

	0.1
	4.95E+00
	5.23E+00
	71.85
	17.58
	76.68
	6.40
	7.00
	2.474
	3.775
	5.23E+01
	9.986E-01

	0.5
	2.52E+01
	2.60E+01
	71.38
	17.87
	76.65
	6.40
	7.00
	2.527
	3.781
	5.20E+01
	9.932E-01

	1
	5.15E+01
	5.17E+01
	70.80
	18.21
	76.62
	6.41
	7.00
	2.595
	3.788
	5.17E+01
	9.865E-01

	2
	1.07E+02
	1.02E+02
	69.68
	18.88
	76.54
	6.42
	7.00
	2.731
	3.803
	5.10E+01
	9.734E-01

	3
	1.67E+02
	1.51E+02
	68.61
	19.51
	76.47
	6.44
	6.97
	2.868
	3.818
	5.03E+01
	9.609E-01

	5
	2.97E+02
	2.45E+02
	66.61
	20.69
	76.33
	6.47
	6.88
	3.137
	3.851
	4.91E+01
	9.371E-01

	6.5
	4.04E+02
	3.13E+02
	65.21
	21.50
	76.23
	6.49
	6.81
	3.332
	3.876
	4.82E+01
	9.203E-01

	10
	6.80E+02
	4.63E+02
	62.26
	23.20
	75.99
	6.54
	6.67
	3.759
	3.942
	4.63E+01
	8.841E-01

	15
	1.13E+03
	6.59E+02
	58.66
	25.21
	75.65
	6.61
	6.48
	4.298
	4.049
	4.39E+01
	8.386E-01

	25
	2.19E+03
	9.99E+02
	52.97
	28.25
	74.98
	6.74
	6.16
	5.161
	4.322
	4.00E+01
	7.628E-01

	46.5
	4.98E+03
	1.56E+03
	44.62
	32.23
	73.53
	6.99
	5.58
	6.427
	5.289
	3.36E+01
	6.409E-01

	50
	5.49E+03
	1.64E+03
	43.56
	32.69
	73.30
	7.03
	5.50
	6.588
	5.513
	3.27E+01
	6.244E-01

	59.5
	6.91E+03
	1.82E+03
	40.96
	33.75
	72.67
	7.13
	5.29
	6.983
	6.242
	3.06E+01
	5.834E-01

	75
	9.40E+03
	2.06E+03
	37.33
	35.07
	71.66
	7.30
	4.97
	7.535
	7.877
	2.75E+01
	5.256E-01

	100
	1.37E+04
	2.36E+03
	32.58
	36.50
	70.11
	7.58
	4.51
	8.274
	11.817
	2.36E+01
	4.513E-01

	125
	1.83E+04
	2.58E+03
	28.80
	37.33
	68.64
	7.86
	4.13
	8.905
	17.231
	2.07E+01
	3.948E-01


Table 2-7

Comparison of AUC “Predictions” from the Fennell-Sumner Recalibrated Acrylamide PBTK Model with AUCs Derived from Hemoglobin Adduct Observations]—Based  on the Original Kirman et al. (2003) Tissue Blood Partition Coefficients
	
	
	Acrylamide AUC Comparisons
	
	Glycidamide AUC Comparisons

	Data Source and Route of Admin
	mg/kg Acrylamide dose
	Obs AMD AUC µM-hr
	Model pred. AMD AUC µM-hr
	Ratio--Model Predicted/Obs.
	
	Obs GLY AUC µM-hr
	Model pred. GLY AUC µM-hr
	Ratio—Model Predicted/Obs

	Fennell (2004) oral
	3
	237
	167
	0.703
	
	156
	151
	0.968

	Sumner (2003) Inhalation
	6.5
	363
	404
	1.115
	
	322
	313
	0.973

	Sumner (2003) IP
	46.5
	3395
	4980
	1.467
	
	1861
	1561
	0.839

	Fennell (2003) Observations (oral)
	59.5
	5457
	6913
	1.267
	
	1588
	1818
	1.145

	Bergmark 91 IP acrylamide 30 d
	3.3
	109
	186
	1.703
	
	45
	165
	3.648

	Bergmark 91 IP acrylamide 10 d
	10
	366
	680
	1.859
	
	124
	463
	3.735

	Bergmark 91 IP acrylamide
	10
	
	
	
	
	267
	463
	1.732

	Bergmark 91 IP acrylamide
	50
	2617
	5485
	2.096
	
	1185
	1635
	1.380

	Bergmark 91 IP acrylamide
	100
	4789
	13720
	2.865
	
	2543
	2364
	0.929


 Table 2-8 a,b,c

Derivation of Partition Coefficients for Acrylamide in Rat Tissues  

A.  Fitted Rat Tissue Constants for Partition Coefficient Equation1
	Equation Input
	             Rat Parameter Value

	Common "c"
	0.00465

	Liver a
	0.797

	Liver b
	0.01092

	Fat a
	0.442

	Fat b
	0.3035

	Muscle a
	0.485

	Muscle b
	0.0043


1Parameter values are shown to more significant figures than are warranted by the statistical uncertainty of the estimates in order to allow more precise reproduction of the calculations.
B. Fit of the Data to the Model for 49-50 Chemicals

	
	Liver
	Fat
	Muscle
	All tissues

	Number of observed vs. predicted comparisons
	50
	50
	49
	149

	Standard deviation log(observed/model "predicted")
	0.180
	0.174
	0.167
	0.173


C. Model-Derived Partition Coefficients

	Tissue
	Original Kirman et al. (2003) Values
	Our Revised Model-Based Estimates

	Liver
	0.83
	0.80

	Fat
	Not specified
	0.463

	Muscle
	Not specified
	0.485

	“Tissue” (weighted average of 0.09 fat: 0.71 muscle, based on Sweeney et al., 1997)
	0.95
	0.48


Table 2-9

Acrylamide Rat PBTK Model Parameters After Recalibration to Fit AUCs Derived From the Fennell/Sumner Hemoglobin Adduct Data ]— After Changing Partition Coefficients to the Alternative Set Calculated Using Our Methodology and Rat Tissue/Blood Data Base [Bolded Values Are Altered from Those in Table 2-5 Derived Using the Original 

Kirman et al (2003) Partition Coefficients
	Parameter group
	Parameter
	Symbol (units)
	Value



	Basic physiology
	Body weight
	BW (kg)
	0.25

	
	Alveolar ventilation


	QCC (L/h-kg0.74)
	14

	
	Cardiac output (total body blood flow)
	QPC (L/h-kg0.74)
	14

	
	Liver blood flow 
	QLC (fraction QCC)
	0.25

	
	Tissue blood flow
	QTC (fraction QCC)
	0.75

	Compartment Volumes
	Volume blood
	VBC (fraction BW)
	0.06

	
	Fraction arterial/total blood
	FABC (fraction VB)
	0.35

	
	Fraction venous/total blood
	FVBC (fraction VB)
	0.65

	
	Liver volume
	VLC (fraction BW)
	0.04

	
	Tissue volume
	VTC (fraction BW)
	0.87

	
	Fraction blood cells/blood


	FBC (fraction VB)
	0.44

	
	Fraction blood serum/blood
	FBS (fraction VB)
	0.56

	Absorption
	Absorption rate from gastrointestinal tract (oral dose) or intraperitoneal cavity (ip dose)
	KA(/h)
	5

	Partition coefficients 
	Blood:air, AMD
	PB1 (unitless)
	3.1E7

	(equilibrium concentration ratios)
	Liver: blood, AMD
	PL1 (unitless)


	0.8

	
	Tissue: blood, AMD
	PT1 (unitless)
	0.48

	
	Blood:air, GLY
	PB2 (unitless)


	9.8E7

	
	Liver: blood, GLY
	PL2 (unitless)
	0.8

	
	Tissue: blood, GLY
	PT2 (unitless)
	0.48


Table 2-9, Continued

Acrylamide PBTK Model Parameters After Recalibration to Fit AUCs Derived From the Fennell/Sumner Hemoglobin Adduct Data]— After Changing Partition Coefficients to the Alternative Set Calculated Using Our Methodology and Rat Tissue/Blood Data Base [Bolded Values Are Altered from Those in Table 2-5 Derived Using the Original

 Kirman et al (2003) Partition Coefficients

	Parameter group
	Parameter
	Symbol (units)
	Value



	Metabolism
	Cytochrome P-450 oxidation rate, AMD
	VMAXC1 (mg/h-kg0.7)
	3.52

	
	Cytochrome P-450 Michaelis-Menten constant, AMD
	KMC1 (mg/L)
	27

	
	Epoxide hydrolase hydrolysis rate, GLY
	VMAXC2 (mg/h-kg0.7)
	1.045

	
	Epoxide hydrolase Michaelis-Menten constant, GLY
	KMC2 (mg/L)
	100

	
	Reaction with glutathione, AMD
	KGSTC1 [L/(mmolGSH-kg0.3 -h)]
	0.1485

	
	Reaction with glutathione, GLY
	KGSTC2 [L/(mmolGSH-kg0.3 -h)]
	0.44

	Tissue binding
	Binding to hemoglobin, AMD
	KHGB1 (L/gHGB-h)
	0.135

	
	Binding to hemoglobin, GLY
	KHGB2 (l/gHGB-h)
	0.1375

	
	Binding to liver macromolecules, AMD
	KFEEL1 (/h)
	0.054

	
	Binding to liver macromolecules, GLY
	KFEEL2 (/h)
	0.055

	
	Binding to tissue macromolecules, AMD
	KFEET1 (/h)
	0.0216

	
	Binding to tissue macromolecules, GLY
	KFEET2 (/h)
	0.022

	
	Binding to blood macromolecules other than hemoglobin, AMD
	KFEEB1 (/h)
	0.0027

	
	Binding to blood macromolecules other than hemoglobin, GLY
	KFEEB2 (/h)
	0.00275

	
	Protein turnover
	KPT (/h)
	0.008

	Glutathione
	GSH production rate (Based on a 0.25 Kg rat)
	KGSHP (mmol/h)
	0.025

	
	GSH loss rate
	KGSHL (/h)
	0.35

	
	Initial GSH concentration in liver
	GHSL0 (mmol/L)
	7.0


Table 2-10

Comparison of AUC “Predictions” from the Fennell-Sumner Recalibrated Acrylamide PBTK Model with AUCs Derived from Hemoglobin Adduct Observations After Changing Partition Coefficients to the Alternative Set Calculated Using Our Methodology and Rat Tissue/Blood Data Base

	
	
	Acrylamide AUC Comparisons
	
	Glycidamide AUC Comparisons

	Data Source and Route of Admin
	mg/kg Acrylamide dose
	Obs AMD AUC 

µM-hr
	Model pred. AMD AUC µM-hr
	Ratio--Model Predicted/Obs.
	
	Obs GLY AUC 

µM-hr
	Model pred. GLY AUC 

µM-hr
	Ratio—Model Predicted/Obs

	Fennell (2004) oral
	3
	237
	189
	0.796
	
	156
	150
	0.964

	Sumner (2003) Inhalation
	6.5
	363
	434
	1.198
	
	322
	326
	1.013

	Sumner (2003) IP
	46.5
	3395
	4778
	1.407
	
	1861
	2398
	1.289

	Fennell (2003) Observations (oral)
	59.5
	5457
	6695
	1.227
	
	1588
	3101
	1.953

	Bergmark 91 IP acrylamide 30 d
	3.3
	109
	209
	1.918
	
	45
	165
	3.648

	Bergmark 91 IP acrylamide 10 d
	10
	366
	705
	1.926
	
	124
	502
	4.050

	Bergmark 91 IP acrylamide
	10
	
	
	
	
	267
	502
	1.878

	Bergmark 91 IP acrylamide
	50
	2617
	5535
	2.115
	
	1185
	2451
	2.069

	Bergmark 91 IP acrylamide
	100
	4789
	13969
	2.917
	
	2543
	5324
	2.093


Table 2-11

Dose Response Behavior of Some Important Parameters for the Acrylamide PBTK Model Recalibrated with AUC Data Derived from the Fennell-Sumner Hemoglobin Adduct Observations After Changing Partition Coefficients to the Alternative Set Calculated Using Our Methodology and Rat Tissue/Blood Data Base

	mg/kg IP
	Cum 24 hr µM-hr AMD in blood
	Cum 24 h µM-hr GLY in blood
	% acryl converted to Glya
	% acryl directly reacted with GSH a 
	% GLY eliminated via GSH reaction a
	% GLY eliminated via epoxide hydrolase a 
	Minimum GSH conc in liver (mmol/L)
	T1/2 Acrylamide 1-2 hr after dosing
	T1/2 Glycidamide 23-24 hr after dosing
	AUC GLY /mg/kg dose
	Fraction AUC GLY /dose at .001 mg/kg

	0.001
	5.96E-02
	5.01E-02
	68.16
	21.94
	79.62
	6.66
	7.00
	1.621
	2.016
	5.01E+01
	1.000E+00

	0.01
	5.96E-01
	5.01E-01
	68.15
	21.94
	79.62
	6.66
	7.00
	1.621
	2.016
	5.01E+01
	1.000E+00

	0.1
	5.97E+00
	5.01E+00
	68.11
	21.97
	79.61
	6.66
	7.00
	1.624
	2.016
	5.01E+01
	1.995E-03

	0.5
	3.01E+01
	2.51E+01
	67.92
	22.08
	79.56
	6.67
	7.00
	1.638
	2.016
	5.01E+01
	1.000E+00

	1
	6.07E+01
	5.01E+01
	67.68
	22.22
	79.51
	6.68
	7.00
	1.655
	2.017
	5.01E+01
	9.999E-01

	2
	1.24E+02
	1.00E+02
	67.22
	22.49
	79.39
	6.70
	6.95
	1.690
	2.017
	5.01E+01
	9.999E-01

	3
	1.89E+02
	1.50E+02
	66.77
	22.76
	79.28
	6.73
	6.87
	1.726
	2.018
	5.01E+01
	9.999E-01

	5
	3.26E+02
	2.51E+02
	65.90
	23.26
	79.06
	6.77
	6.73
	1.798
	2.020
	5.01E+01
	1.000E+00

	6.5
	4.34E+02
	3.26E+02
	65.28
	23.61
	78.89
	6.81
	6.62
	1.852
	2.021
	5.02E+01
	1.000E+00

	10
	7.05E+02
	5.02E+02
	63.91
	24.37
	78.51
	6.90
	6.39
	1.980
	2.025
	5.02E+01
	1.001E+00

	15
	1.13E+03
	7.55E+02
	62.13
	25.31
	77.98
	7.02
	6.08
	2.162
	2.030
	5.03E+01
	1.004E+00

	25
	2.12E+03
	1.27E+03
	59.13
	26.75
	76.98
	7.27
	5.54
	2.512
	2.043
	5.07E+01
	1.011E+00

	46.5
	4.78E+03
	2.40E+03
	54.37
	28.55
	75.01
	7.75
	4.65
	3.182
	2.082
	5.16E+01
	1.029E+00

	50
	5.54E+03
	2.45E+03
	51.36
	30.23
	74.85
	7.83
	4.57
	3.432
	2.145
	4.90E+01
	9.779E-01

	59.5
	6.69E+03
	3.10E+03
	52.20
	29.09
	73.92
	8.01
	4.24
	3.540
	2.115
	5.21E+01
	1.040E+00

	75
	9.26E+03
	3.95E+03
	50.04
	29.43
	72.71
	8.28
	3.83
	3.933
	2.166
	5.27E+01
	1.050E+00

	100
	1.40E+04
	5.32E+03
	47.22
	29.54
	70.89
	8.65
	3.32
	4.513
	2.282
	5.32E+01
	1.062E+00

	125
	1.93E+04
	6.68E+03
	44.92
	29.34
	69.19
	8.97
	2.92
	5.047
	2.451
	5.34E+01
	1.066E+00


Table 2-12

Check for Inaccuracy In Volume of Distribution Estimates Based on the Kirman et al. (2003) Acrylamide Tissue/Blood Partition Coefficients—Comparison of Acrylamide Blood Concentrations Observed by Raymer et al. (1993) for Early Time Points Following Intraperitoneal Dosing of Long-Evans Hooded Rats at 75 mg/kg

A.  Rat Model Calibrated to the Hemoglobin Adduct Data, But Using the Original Tissue/Blood Partition Coefficients for Acrylamide

	Time after dosing (hr)
	Model-Predicted Acrylamide Conc (in blood) (µmoles/L)
	Observed by Raymer et al. (1993)
	Model Prediction/Observation

	0.25
	854.81
	762.96
	1.12

	0.5
	1005.24
	832.32
	1.21

	1
	1018.08
	721.35
	1.41

	2
	928.61
	541.01
	1.72

	3
	842.97
	
	

	4
	764.58
	249.70
	3.06

	6
	625.19
	
	

	8
	505.05
	41.62
	12.14


B.  Rat Model  Calibrated to the Hemoglobin Adduct Data, But Using out Re-Estimated Tissue/Blood Partition Coefficients for Acrylamide

	Time after dosing (hr)
	Model-Predicted Acrylamide Conc (in blood) (µmoles/L)
	Observed by Raymer et al. (1993)
	Model Prediction/Observation

	0.25
	1436.12
	762.96
	1.88

	0.5
	1727.40
	832.32
	2.08

	1
	1699.23
	721.35
	2.36

	2
	1424.68
	541.01
	2.63

	3
	1183.63
	
	

	4
	975.43
	249.70
	3.91

	6
	637.08
	
	

	8
	387.98
	41.62
	9.32


 Table 2-13

Expected  Internal AUC Acrylamide and Glycidamide Doses Estimated to be Produced by Various Drinking Water Intakes 

	mg/kg DW
	Cum 24 hr µM-hr AA in blood
	AMD Blood Conc at 23 hr--µM
	AMD Blood Conc at 24 hr--µM
	23-24 hr Half Life for AMD decline (hr)
	Infinite AUC for AA µM-hr
	Cum 24 h µM-hr GLY in blood
	GLY Blood Conc at 23 hr--µM
	GLY Blood Conc at 24 hr--µM
	23-24 hr Half Life for GLY decline (hr)
	Infinite AUC for GLY 

µM-hr
	GLY AUC µM-hr/mg/kg AMD Dose

	0.001
	4.882E-02
	1.73E-04
	1.30E-04
	2.40
	4.927E-02
	4.851E-02
	1.07E-03
	9.05E-04
	4.21
	5.400E-02
	5.400E+01

	0.0094
	4.590E-01
	1.63E-03
	1.22E-03
	2.40
	4.632E-01
	4.560E-01
	1.00E-02
	8.50E-03
	4.21
	5.076E-01
	5.399E+01

	0.0095
	4.639E-01
	1.65E-03
	1.23E-03
	2.40
	4.682E-01
	4.608E-01
	1.01E-02
	8.59E-03
	4.21
	5.130E-01
	5.399E+01

	0.01
	4.883E-01
	1.73E-03
	1.30E-03
	2.40
	4.928E-01
	4.851E-01
	1.07E-02
	9.05E-03
	4.21
	5.399E-01
	5.399E+01

	0.095
	4.646E+00
	1.65E-02
	1.24E-02
	2.40
	4.689E+00
	4.606E+00
	1.01E-01
	8.61E-02
	4.21
	5.128E+00
	5.398E+01

	0.096
	4.695E+00
	1.67E-02
	1.25E-02
	2.40
	4.739E+00
	4.654E+00
	1.03E-01
	8.70E-02
	4.21
	5.182E+00
	5.398E+01

	0.1
	4.891E+00
	1.74E-02
	1.30E-02
	2.40
	4.936E+00
	4.848E+00
	1.07E-01
	9.06E-02
	4.21
	5.398E+00
	5.398E+01

	0.48
	2.365E+01
	8.50E-02
	6.37E-02
	2.40
	2.387E+01
	2.322E+01
	5.16E-01
	4.38E-01
	4.22
	2.589E+01
	5.393E+01

	0.5
	2.464E+01
	8.86E-02
	6.64E-02
	2.40
	2.487E+01
	2.419E+01
	5.37E-01
	4.56E-01
	4.22
	2.696E+01
	5.393E+01

	0.525
	2.588E+01
	9.32E-02
	6.98E-02
	2.40
	2.613E+01
	2.539E+01
	5.65E-01
	4.79E-01
	4.22
	2.831E+01
	5.392E+01

	1
	4.974E+01
	1.81E-01
	1.36E-01
	2.40
	5.021E+01
	4.824E+01
	1.08E+00
	9.20E-01
	4.24
	5.386E+01
	5.386E+01

	1.92
	9.714E+01
	3.63E-01
	2.72E-01
	2.40
	9.809E+01
	9.212E+01
	2.11E+00
	1.79E+00
	4.27
	1.032E+02
	5.373E+01

	2
	1.013E+02
	3.79E-01
	2.84E-01
	2.40
	1.023E+02
	9.591E+01
	2.20E+00
	1.87E+00
	4.27
	1.074E+02
	5.372E+01

	3
	1.548E+02
	5.95E-01
	4.46E-01
	2.41
	1.564E+02
	1.430E+02
	3.35E+00
	2.85E+00
	4.30
	1.607E+02
	5.357E+01


Table 2-14

Expected  Internal AUC Acrylamide and Glycidamide Doses Estimated to be Produced by Various Drinking Water Intakes After Changing Partition Coefficients to the Alternative Set Calculated Using Our Methodology and 

Rat Tissue/Blood Data Base

	mg/kg DW
	Cum 24 hr µM-hr AA in blood
	AMD Blood Conc at

 23 hr

µM
	AMD Blood Conc at 24 hr

µM
	23-24 hr Half Life for AMD decline (hr)
	Infinite AUC for AA µM-hr
	Cum 24 h µM-hr GLY in blood
	GLY Blood Conc at 23 hr--µM
	GLY Blood Conc at 24 hr--µM
	23-24 hr Half Life for GLY decline (hr)
	Infinite AUC for GLY µM-hr
	GLY AUC µM-hr/mg/kg AMD Dose

	0.001
	5.939E-02
	4.33E-05
	2.79E-05
	1.58
	5.945E-02
	4.926E-02
	2.94E-04
	2.14E-04
	2.17
	4.993E-02
	4.993E+01

	0.0094
	5.583E-01
	4.07E-04
	2.63E-04
	1.58
	5.589E-01
	4.631E-01
	2.76E-03
	2.01E-03
	2.17
	4.694E-01
	4.994E+01

	0.0095
	5.642E-01
	4.12E-04
	2.66E-04
	1.58
	5.649E-01
	4.680E-01
	2.79E-03
	2.03E-03
	2.17
	4.744E-01
	4.994E+01

	0.01
	5.939E-01
	4.33E-04
	2.80E-04
	1.58
	5.946E-01
	4.926E-01
	2.94E-03
	2.14E-03
	2.17
	4.994E-01
	4.994E+01

	0.095
	5.646E+00
	4.12E-03
	2.66E-03
	1.58
	5.652E+00
	4.681E+00
	2.80E-02
	2.03E-02
	2.17
	4.745E+00
	4.995E+01

	0.096
	5.705E+00
	4.17E-03
	2.69E-03
	1.58
	5.711E+00
	4.731E+00
	2.83E-02
	2.06E-02
	2.17
	4.795E+00
	4.995E+01

	0.1
	5.943E+00
	4.34E-03
	2.80E-03
	1.58
	5.950E+00
	4.928E+00
	2.95E-02
	2.14E-02
	2.17
	4.995E+00
	4.995E+01

	0.48
	2.860E+01
	2.10E-02
	1.35E-02
	1.58
	2.863E+01
	2.368E+01
	1.42E-01
	1.04E-01
	2.18
	2.400E+01
	5.001E+01

	0.5
	2.980E+01
	2.19E-02
	1.41E-02
	1.58
	2.983E+01
	2.467E+01
	1.48E-01
	1.08E-01
	2.18
	2.501E+01
	5.001E+01

	0.525
	3.129E+01
	2.30E-02
	1.48E-02
	1.58
	3.133E+01
	2.590E+01
	1.56E-01
	1.13E-01
	2.18
	2.626E+01
	5.001E+01

	1
	5.981E+01
	4.42E-02
	2.85E-02
	1.58
	5.987E+01
	4.940E+01
	3.00E-01
	2.18E-01
	2.18
	5.009E+01
	5.009E+01

	1.92
	1.156E+02
	8.63E-02
	5.57E-02
	1.58
	1.157E+02
	9.510E+01
	5.85E-01
	4.26E-01
	2.18
	9.644E+01
	5.023E+01

	2
	1.205E+02
	9.01E-02
	5.82E-02
	1.58
	1.206E+02
	9.908E+01
	6.11E-01
	4.44E-01
	2.18
	1.005E+02
	5.024E+01

	3
	1.819E+02
	1.38E-01
	8.90E-02
	1.58
	1.821E+02
	1.490E+02
	9.34E-01
	6.80E-01
	2.18
	1.512E+02
	5.039E+01
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Basic Structure of the Kirman et al. (2003) Acrylamide Model 




3.0 Development and Calibration of the Basic Human Adult PBTK Model for Acrylamide

3.1 Hemoglobin Adduct Data from Clinical Exposures of Human Subjects, and Derivation of Human AUCs as of 24 Hours After Exposure

We are fortunate to have available the results of a human clinical study in which 13C-labeled acrylamide was administered orally to 15 sterile male volunteers, and hemoglobin adducts were measured after 24 hours.  The results of this study were recently presented in a Society of Toxicology meeting abstract, and a special session at the JIFSAN (Joint Institute for Food Safety and Applied Nutrition) acrylamide meeting in Chicago (Fennell et al., 2004; Fennell and Friedman, 2004).  The use of 13C-labeled acrylamide is important for interpretation because it would seem to preclude the necessity to make any correction to the resulting observations for background hemoglobin adducts.  Parallel dermal exposure experiments were also conducted, but will not be reviewed in detail here. 

The principal raw hemoglobin adduct findings and corresponding AUCs are summarized in Table 3-1.  As before the hemoglobin adducts are converted to AUCs (in µM-hr) by dividing by second order rate constants for the reactions between human hemoglobin and acrylamide and glycidamide.  Those rate constants were given above in Section 2.4, just below the corresponding constants for rat hemoglobin.

In this experiment, only 34% of the administered dose was recovered as urinary metabolites by the 24-hour sampling time; however of the urinary metabolites recovered in that period, 75% were derived from conjugation of acrylamide with glutathione.

3.1.1 Unexpected Difficulty in the Initial Calibration of the Human Model Using the Available Human Adduct Information for Acrylamide

The most prominent available estimate of the half life of acrylamide in humans, from an attempted suicide patient, is 4.6 hours (Calleman, 1996), corresponding to a residence time (see definition below) of about 6.7 hours.  More recently, observations of the decline in the output of acrylamide urinary metabolites in two subjects have been interpreted by Sorgel (2002) as indicating half lives of 2.2 and 7 hours.   However we found that the acrylamide hemoglobin adduct measurements for humans together with the partition coefficients estimated by Kirman et al. (2003) for rats led to expectations of an unreasonably large (approximately 18-20 hour) half life for acrylamide in humans.  A short digression is in order here to show how this conclusion arose.  

Comparing the second to the last column of Table 3-1 with data from the second and third columns of Table 2-7 above, it can be seen that where humans show about 249 µM-hr/(mg/kg dose), the rat observations indicate only 237 µM-hr/3 mg/kg = 79 µM-hr/(mg/kg dose)—less than a third of the human value.  Assuming comparable (100%) absorption in both cases, and a comparable fraction of acrylamide content in the blood (compared to the rest of the body), this can only mean a much longer residence time for acrylamide in people, compared to rats.  

The “residence time” is just the average amount of time that molecules of the compound under study spend in the relevant compartment (blood, in this case), neglecting equal exchanges of “blood” acrylamide molecules for molecules residing elsewhere in the body.  This is a useful concept because the infinite-time AUC should just be the product of this residence time and the initial concentration of acrylamide in the relevant blood compartment (at least after initial equilibration of all tissues with blood).  Mathematically, after absorption and initial steady state distribution among the tissues is essentially complete, the residence time is the reciprocal of the rate constant k for exponential decline:

C = C0  e-kT

For the rats, using the Kirman et al. partition coefficients, the total volume of distribution of acrylamide is expected to be about 92% of the body weight: 

	Compartment
	Fraction of Body Volume or Weight
	Tissue/Blood partition coefficients
	Contribution to Volume of Distribution

--Body weight X tissue /Blood

	Liver
	0.04
	0.83
	0.0332

	Tissue
	0.87
	0.95
	0.8265

	Blood
	0.060
	1.00
	0.06

	Total Body
	0.97
	
	0.9197


It follows from this that a rat given a 1 mg/kg dose (13.9 µmole/kg) should have an initial acrylamide concentration in the blood (after tissue redistribution, but before appreciable metabolism) of (13.9 µmole/kg)/0.9197 liters/kg = 15.1 µmoles/liter.  With this as the starting point, it is easy to see how the rat AUC of 79 µM-hr/(mg/kg dose) can be achieved within a few hours of residence time:

79 µmole-hr/liter = (15.1 µmoles/liter) * 5.2 hours residence time.

The half life corresponding to this residence time is ln(2) * 5.2, or about 3.6 hours—somewhat longer than the 1.6-2.5 hour half lives found at later time points in our dynamic models for rats—perhaps reflecting some delay in achieving initial equilibration or a departure from steady state concentration ratios in different tissues resulting from the more rapid destruction of free acrylamide in the liver, relative to blood and other tissues.  In any event, it can be seen in Table 2.13 that the calculated several hour residence time of acrylamide in the blood leads to a relatively small difference between the AUCs for acrylamide and glycidamide that can be observed at 24 hours after dosing and the ultimate AUCs expected for a much longer term observation time point.   

	Compartment
	Fraction of Body Volume or Weight
	Tissue/Blood partition coefficients
	Contribution to Volume of Distribution--Body weight X tissue /Blood

	Liver
	0.0195
	0.83
	0.0162

	Tissue
	0.8934
	0.95
	0.8488

	Blood
	0.0571
	1.00
	0.0571

	Total Body
	0.97
	
	0.9220


Similar calculations lead to a different result for humans.  Using the same partition coefficients but a slightly different allocation of body weight between the liver and other tissues in people leads to the following calculation of steady state volume of distribution per body weight:

From this analysis, a human given a 1 mg/kg dose should have an initial acrylamide concentration in the blood (after tissue redistribution, but before appreciable metabolism) of (13.9 µmole/kg)/0.922 liters/kg = 15.04 µmoles/liter—very similar to the rats.  However to achieve the average  human AUC of 249 µM-hr/(mg/kg dose) inferred from the 24 hour hemoglobin adduct measurements requires

249 µmole-hr/liter = (15.04 µmoles/liter) * 16.5 hours residence time.

It is not possible to “squeeze” this amount of effective blood residence time into the first 24 hours after dosing unless the rate of acrylamide metabolism (and other destruction via reactions with macromolecules) is slow enough that appreciable acrylamide remains unreacted in the system at the time the measurements were made.  This difficulty would be even greater if one assumed that less than 100% absorption of the acrylamide in the water ingested by the subjects was absorbed. 

The direct implication of this finding for human risk assessment would be that the 24 hour measurements of internal dose X time per unit external dose would reflect much less than the full AUC for acrylamide that would be observed if the experiment were carried to completion.  Since the metabolism and other modes of destruction of glycidamide must await the full generation of glycidamide from available acrylamide, the ultimate AUC for this key genetically active compound would need to be even larger, relative to external acrylamide dose, than could be observed in the 24 hour hemoglobin adduct measurements.  Therefore, the interspecies difference of only about 1.2 between humans and rats in the ratio of glycidamide AUC to acrylamide dose* reported by Fennell and Friedman would need substantial upward revision to reflect the greater AUC for acrylamide and glycidamide that would have been expected to occur in people beyond the 24 hour time points where the hemoglobin adduct observations were made.  

One way in which the calculation above could be in error is that the tissue/blood partition coefficients derived by Kirman, and hence the volume of distribution for acrylamide, could be incorrect.  If the volume of distribution were significantly lower than we estimated, the starting concentration in the blood would be greater (after approximate attainment of steady state) than we have derived.  Table 2-12 above showed a test of the volume of distribution implications of the Kirman et al. (2003) vs. our alternative set of rat tissue/blood partition coefficients.  In the context of the rat strain tested, Table 2-12 shows that the Kirman et al. (2003) partition coefficients behaved reasonably, and our alternative set of partition coefficients led to expectations of appreciably higher blood concentrations than were observed by Raymer et al. (1993).  Nevertheless, we believe it is likely that alternative estimates of human partition coefficients derived from our data base of human tissue/blood partition coefficients might better reflect the actual volume of distribution in humans, and lead to more reasonable estimates of the internal half-lives of acrylamide and glycidamide in people.  We will, nonetheless, present human dosimetry results derived with models constructed from both the Kirman et al. (2003) and our revised set of human tissue/blood partition coefficients.

3.1.2 Derivation of Revised Estimates of Human Tissue/Blood Partition Coefficients

Our basic methods for derivation of tissue/blood partition coefficients were described in Section 2.6.1 above.  Table 3-2 shows the results of applying these methods to our data base of human tissue/blood partition coefficients for 30 compounds (Table 3-3). 

3.2 Adaptation of the Rat Model to Humans, and Recalibration to Conform to Hb-Adduct-Based AUCs

Central values for body weight, tissue volumes and blood flows for the human PBTK model were developed from the National Health and Nutrition Examination Survey (NHANES III) database using the P3M software program (Price et al., 2003).
  We generated a population of 1000 adult women, aged 18-64, including all ethnic groups represented in the NHANES III database (white, black, non-black Hispanic, other).  The central values in the PBTK model are represented by the arithmetic mean across all individuals in the sample population. 

Initial values of metabolism parameters were estimated by scaling overall body metabolic capacities (e.g. Vmax values for the liver as a whole) in proportion to overall metabolic rates, which approximately scale across species with the three quarters power of body weight (Rees and Hattis, 1994).  Because the liver makes up only about half the proportion of body weight in people as it does in rats, metabolism rates per unit of liver tissue were further adjusted upward by a factor of (0.04/0.195) related to this proportion.  Parameters that were expressed in terms of a rate per unit time were adjusted downward in proportion to body weight0.25.   The liver glutathione parameters were adapted to establish steady state at the same liver glutathione concentration (7 mmol/liter) as was used by Kirman et al. (2003) for rats.  For example, both the liver volume and the relative rate adjustments contributed to the estimated baseline loss rate for glutathione in the liver of 0.164/hour, compared to the comparable rat value of 0.35/hour.  

From these starting points, the “base” model for the Kirman et al. (2003) partition coefficients was generated by making the minimal further adjustments needed to fit the available AUCs for acrylamide and glycidamide derived from the Fennell and Friedman (2004) hemoglobin adduct measurements (Table 3-1):  

· First, substantial downward adjustments (about 4-fold) were made to the rates of all non-P450 routes of metabolism of acrylamide to achieve the target average acrylamide AUC/dose for the three doses studied by Fennel and Friedman (2004).  This conformed to our objective of making minimal adjustments to the rat model in the sense that any reductions in the P450 pathway to achieve the same goal would entail greater reductions in the estimated rate of destruction for glycidamide by its several pathways in order to simultaneously fit the adduct-based glycidamide AUC estimates.

· Next, all glycidamide loss rates were increased slightly (by about 18%) from the original values projected from the rat model to achieve an approximate fit the glycidamide AUC estimates.  

· We should also note that the final calibrated human base model included a small 0.7-fold downward adjustment to the P450 processing rate because the Km used in the human model reverted to the value originally specified by Kirman et al. (2003), whereas the 0.7-fold reduction in Vmax in the calibrated rat model was retained in the human base model

The model parameters for this “base” model are given in Table 3-4. Two rounds of subsequent models were generated in the course of our analysis.  First, we noticed that the “base” model seriously under predicted the amount of acrylamide-glutathione that is generated and appears in the urine in the Fennell-Friedman experiments.  This led us to create an “enhanced-GSH metabolism” version of the model.  The parameters for this version are given in Table 3-5.  Finally, Table 3-6 shows the parameters of our “final” model, after substitution of our alternative set of estimated human tissue/blood partition coefficients, and recalibration to reflect both the hemoglobin adduct-based acrylamide and glycidamide AUC estimates, and the acrylamide-glutathione conjugate excretion data.

Table 3-7 shows the fits that were achieved for the adduct-based AUCs, and also a comparison between model predictions for the generation of the acrylamide-glutathione conjugation product and urinary output observations quoted earlier from Fennell et al. (2004) for the human group given the highest dose of acrylamide in drinking water (34% of the administered dose was reportedly recovered as urinary metabolites by the 24-hour sampling time; of which 75% were derived from conjugation of acrylamide with glutathione).  The results  in Table 3-7 indicate that, although there is a good fit to the hemoglobin-adduct based AUCs, the “base” model predicts much less generation of the acrylamide-glutathione conjugate than would be required to conform to the latter observation.

Given these results, we decided to generate the second model (whose parameters are documented in Table 3-5) that would make predictions that correspond to all three types of empirical observations shown in Table 3-8.  To do this, we specifically adjusted the balance of the rates of glutathione-based vs. P450-based metabolism of acrylamide, and then made the substantial (nearly 3-fold) downward adjustment of glycidamide loss rates required to retain a reasonable fit to the 24-hour glycidamide AUCs derived from the adduct data.  Rates of other routes for metabolism of acrylamide (non P450 and non-glutathione) were also adjusted downward. The results of final calibrating runs for this model are given in Table 3-8.  For the final alternative model for sensitivity analysis, all the “predicted” values of all three parameters are within 5% of the corresponding observations.

Finally, after reflecting on the very long half lives for acrylamide and glycidamide implied by the first two models, we generated a final model incorporating the revised partition coefficients derived earlier (parameters documented in Table 3-6).  Table 3-9 shows the calibrating runs for this final model.  This final model will be the basis for our main estimates of likely effects of pharmacokinetic-related polymorphisms and developmental differences in Sections 4 and 5 below.

3.3 Implications of the Recalibrated Model of Human Acrylamide Metabolism for Central Estimates of the Ratios of Infinite-Time Internal Human Acrylamide and Glycidamide Exposures Per Unit External Acrylamide Dose

Some model-performance parameters and parameters related to expected low dose         (1 µg/kg—in the range of normal dietary exposures) internal exposures to acrylamide and glycidamide are given for all three model variants in Table 3-10.  Both of the first two models show a much longer half-life for acrylamide (19-20 hours) than would have been expected from prior data.  The final model exhibits elimination half lives for acrylamide and glycidamide that are both about 5.4 hours. On further analysis we found that this result for the glycidamide half life at very late time points was due to the continuing supply of glycidamide via conversion of acrylamide.  When the model is provided a simulated dose of glycidamide in the absence of acrylamide, the actual glycidamide half-life is found to be 3.04 hours.

For both of the first two models, the infinite-time AUCs are expected to be appreciably larger than the AUCs (and hence hemoglobin adduct concentrations) that could be observed at the 24 hour point studied by Fennell et al. (2004).  For acrylamide, both models predict an infinite-time AUC that is about 70-80% larger than the corresponding 24-hour AUC.  For glycidamide, this same ratio is much larger, ranging from 4 to nearly 10 for the first two models.  However for the final model these corrections are reduced to about a 7% increment for acrylamide and an 11% increment for glycidamide.  Based on present evidence, the estimated ratio of glycidamide internal dose per unit of external acrylamide intake in people relative to rats should be adjusted upward by this latter factor.  

The resulting glycidamide infinite AUC per 0.001 mg/kg dose in people (0.0754 µM-hr) can be compared with the analogous estimates for our final rat models (0.0499 - 0.0540 µM-hr).  Thus, at daily doses in the range of current U. S. dietary exposures, our  best current model’s estimate is that people receive about 1.4-1.5 times the internal AUC dose that would have been received at a comparable external dose by the rats used in the chronic cancer bioassays.  (The difference between these ratios, and the ratio of 1.2 in the Human/Rat 24-hour AUC doses at 0.4-2.5 ppm) is partly attributable to the modest nonlinearity in the human model between a dose of 0.001 ppm and the 0.4-2.5 ppm measurement range, and partly attributable to the 11% difference expected between infinite-time human glycidamide AUC and the 24 hour measurement time point reported on by Fennel and Friedman).

One additional set of data can be used to make some test of the model expectations at low dosage.  The first of our models predicts that, many days after exposure, the ratio of glycidamide to acrylamide AUCs resulting from a low dietary exposure to acrylamide should be about 0.288/0.428 = 0.67.  By contrast, the corresponding predicted glycidamide/acrylamide AUC ratio for the second model is 0.646/0.393 = 1.64.  Our final model gives rise to an expectation of a glycidamide to acrylamide AUC ratio of 0.0754/0.240 = 0.31.  Since we know of no likely source of glycidamide exposure other than the metabolism of acrylamide, the ratio of AUCs inferred from “background” adducts observable in ordinary people provides a preliminary avenue for testing these expectations.  

In an earlier presentation to the Risk Forum, Friedman (2003) provided the following information about “background” glycidamide vs. acrylamide adduct levels in people (the number of people studied was not given):

	
	(fmol/mg globin)

	ACR-Val adduct
	72.8 ± 41.6

	GA-Val adduct
	31.3 ± 4.1


When combined, as before, with the second order rate constants for adduct formation, these data imply a ratio of glycidamide/acrylamide AUC of about 0.33.  This ratio is below the predictions of the first two of our models, but very close to the expectation for our final model.  This comparison with data not used in model derivation does not constitute a full “validation” of our final model, but it indicates that the low dose ratio of glycidamide to acrylamide AUCs predicted for humans is compatible with available human data.

3.4 Summary of Acrylamide Fate in Human Adults

The best-fit runs of the adult acrylamide model yield percent throughput of parent compound and metabolite via various pathways.  The resulting pattern of disposition is summarized in Figure 3-1.  At low, non-saturating doses, nearly 60% of acrylamide is converted by CYP2E1 to the more reactive metabolite glycidamide.  Direct conjugation with glutathione via glutathione transferase is a detoxification pathway that accounts for 20-25% of the acrylamide dose.  The remainder, about 20%, binds internally to hemoglobin or tissue proteins.   The majority of glycidamide is detoxified via GST-mediated conjugation while 10% undergoes epoxide hydrolysis via EH.  The remainder of the glycidamide that is formed (35%) reacts with blood or tissue protein.  

This percent disposition profile indicates that sources of variability that affect CYP2E1 will be influential in terms of internal dose of both acrylamide and glycidamide while variability in GST function will have a larger effect on glycidamide than acrylamide dose.  

Table 3-1

Fennell et al. (2004) and Fennell and Friedman (2004) Hemoglobin Adduct Findings 24 Hours Following Oral Administration of 13C-Labeled Acrylamide to 5 Human Male Volunteers per Dose Group (15 Subjects in All)

	Nominal dose (mg/kg)
	Measured dose mg/kg
	AMD-Val fmol/mg globin 
	GLY Val fmol/mg globin
	AMD Val AUC µMol-hr
	GLY Val AUC µMol-hr
	AMD-Val

µMol-hr/(mg/kg dose)
	GLY Val 

µMol-hr/(mg/kg dose)

	0.5
	0.43
	514
	186
	120.4
	27.7
	279.9
	64.4

	1
	0.89
	914
	344
	214.1
	51.2
	240.5
	57.5

	3
	2.57
	2488
	1136
	582.7
	169.0
	226.7
	65.8

	
	
	
	
	
	Average
	249.1
	62.6

	
	
	
	
	
	Std Dev
	27.6
	4.4

	
	
	
	
	
	Std Error
	15.9
	2.6

	
	
	
	
	
	Lower 95% Conf limit
	233
	60.1

	
	
	
	
	
	Upper 95% Conf limit
	265
	65.1


Table 3-2

Derivation of Partition Coefficients for Acrylamide in Human Tissues  

A.  Fitted Human Tissue Constants for Partition Coefficient Equation1

	Equation Input
	             Rat Parameter Value

	Common "c"
	0.00179

	Liver a
	0.87746

	Liver b
	0.01439

	Fat a
	0.81082

	Fat b
	0.00762

	Kidney a
	0.07218

	Kidney b
	0.39124

	Muscle a
	0.71934

	Muscle b
	0.00949


1Parameter values are shown to more significant figures than are warranted by the statistical uncertainty of the estimates in order to allow more precise reproduction of the calculations.
B. Fit of the Data to the Model for 23-30 Chemicals

	
	Liver
	Kidney
	Fat
	Muscle
	All tissues

	Number of observed vs. predicted comparisons
	23
	26
	30
	30
	109

	Standard deviation log(observed/model "predicted")
	0.151

	.168
	0.175
	0.138
	0.151


C. Model-Derived Partition Coefficients

	Tissue
	Original Kirman et al. (2003) Values
	Our Revised Model-Based Estimates

	Liver
	0.83
	0.88

	Fat
	Not specified
	0.10

	Kidney
	
	0.81

	Muscle
	Not specified
	0.72

	“Tissue” [weighted average of 36.2 liters fat: 25.1 liters muscle, and 7.0 liters of well-perfused tissues other than liver (represented by kidney) based on volumes calculated for average adult females of all races].
	0.95
	0.558


Table 3-3

Data Base of Human Tissue/Blood Partition Coefficients

	Chemical
	Log(Kow)
	observed HLiver/blood
	observed HKidney/blood
	observed HFat/blood
	observed HMuscle/blood

	Methanol
	-0.80
	
	0.79
	0.14
	0.81

	Ethanol
	-0.32
	
	0.71
	0.16
	0.64

	2-Propanol
	-0.06
	
	0.70
	0.25
	0.70

	1-Propanol
	0.30
	
	0.72
	0.31
	0.71

	Acetone
	-0.24
	
	0.75
	0.44
	0.77

	Isobutanol
	0.71
	
	0.69
	0.72
	0.63

	2-Butanone (methyl ethyl ketone)
	0.26
	
	0.86
	1.30
	0.82

	N-Pentane
	3.62
	5.53
	1.58
	104.21
	1.84

	2,2-Dimethylbutane
	3.82
	13.46
	5.38
	253.85
	3.85

	2-Methylpentane
	4.28
	10.98
	4.88
	212.20
	7.07

	Dichloromethane
	1.28
	0.77
	0.62
	9.12
	0.52

	Methylcyclopentane
	3.66
	9.07
	5.47
	204.65
	5.81

	3-Methylhexane
	4.77
	8.15
	5.62
	213.08
	8.31

	Chloroform
	1.97
	1.98
	1.28
	32.65
	1.40

	1,1,1-Trichloroethane
	2.49
	5.66
	2.30
	86.11
	2.30

	1,1,1-Trifluoro-2-Chloroethane
	1.62
	1.53
	1.40
	22.67
	1.47

	N-Hexane
	4.11
	6.50
	3.75
	130.00
	6.25

	N-Heptane
	4.66
	4.55
	3.75
	162.11
	5.26

	Cyclohexane
	3.44
	8.31
	5.54
	200.00
	8.08

	Trichloroethylene
	2.36
	3.34
	1.67
	64.62
	2.18

	Benzene
	2.13
	2.83
	1.51
	53.16
	2.05

	Toluene
	2.72
	3.72
	1.37
	74.29
	2.69

	Isoflurane
	2.07
	2.93
	1.50
	49.29
	1.71

	2-Butoxyacetic acid
	
	1.30
	1.07
	0.77
	1.31

	2-Butoxyethanol
	0.83
	1.46
	1.83
	2.03
	0.64

	Acetone
	-0.24
	0.58
	0.74
	0.44
	0.77

	Isoflurane
	2.25
	2.00
	
	53.10
	1.52

	Enflurane
	2.11
	1.45
	
	40.97
	1.09

	Halothane
	2.33
	2.15
	
	60.62
	1.44

	Methoxyflurane
	2.25
	1.53
	
	52.47
	1.54


Table 3-4

Acrylamide Human PBTK Base Model Parameters (Before Adjustments to Achieve Observed Levels of Excretion of Acrylamide-Glutathione Conjugate and Before Incorporation of Revised Estimates of Tissue/Blood Partition Coefficients)

	Parameter group
	Parameter
	Symbol (units)
	Value



	Basic physiology
	Body weight
	BW (kg)
	71.17

	
	Alveolar ventilation


	QC (L/h-kg)
	6.54

	
	Cardiac output (total body blood flow)
	QP (L/h-kg)
	5.91

	
	Liver blood flow 
	QLC (fraction QC)
	0.198

	
	Tissue blood flow
	QTC (fraction QC)
	0.802

	Compartment Volumes
	Volume blood
	VBC (fraction BW)
	0.0571

	
	Fraction arterial/total blood
	FABC (fraction VB)
	0.35

	
	Fraction venous/total blood
	FVBC (fraction VB)
	0.65

	
	Liver volume
	VLC (fraction BW)
	0.0195

	
	Tissue volume
	VTC (fraction BW)
	0.8934

	
	Fraction blood cells/blood


	FBC (fraction VB)
	0.44

	
	Fraction blood serum/blood
	FBS (fraction VB)
	0.56

	Absorption
	Absorption rate from gastrointestinal tract (oral dose) or intraperitoneal cavity (ip dose)
	KA(/h)
	5

	Partition coefficients 
	Blood:air, AMD
	PB1 (unitless)
	3.1E7

	(equilibrium concentration ratios)
	Liver: blood, AMD
	PL1 (unitless)


	0.83

	
	Tissue: blood, AMD
	PT1 (unitless)
	0.95

	
	Blood:air, GLY
	PB2 (unitless)


	9.8E7

	
	Liver: blood, GLY
	PL2 (unitless)
	0.83

	
	Tissue: blood, GLY
	PT2 (unitless)
	0.95


Table 3-4, Continued

Acrylamide Human PBTK Base Model Parameters (Before Adjustments to Achieve Observed  Levels of  Excretion of Acrylamide-Glutathione Conjugate and Before Incorporation of Revised Estimates of Tissue/Blood Partition Coefficients)

	Parameter group
	Parameter
	Symbol (units)
	Value



	Metabolism
	Cytochrome P-450 oxidation rate, AMD
	VMAXC1 (mg/h-kg0.7)
	0.784

	
	Cytochrome P-450 Michaelis-Menten constant, AMD
	KMC1 (mg/L)
	7

	
	Epoxide hydrolase hydrolysis rate, GLY
	VMAXC2 (mg/h-kg0.7)
	1.121

	
	Epoxide hydrolase Michaelis-Menten constant, GLY
	KMC2 (mg/L)
	100

	
	Reaction with glutathione, AMD
	KGSTC1 [L/(mmolGSH-kg0.3 –h)]
	0.0188

	
	Reaction with glutathione, GLY
	KGSTC2 [L/(mmolGSH-kg0.3 –h)]
	0.1313

	Tissue binding
	Binding to hemoglobin, AMD (eliminated from human model because of the lack of the free cysteine present in rat hemoglobin)
	KHGB1 (L/gHGB-h)
	0

	
	Binding to hemoglobin, GLY (eliminated from human model because of the lack of the free cysteine present in rat hemoglobin)
	KHGB2 (l/gHGB-h)
	0

	
	Binding to liver macromolecules, AMD
	KFEEL1 (/h)
	0.012

	
	Binding to liver macromolecules, GLY
	KFEEL2 (/h)
	0.059

	
	Binding to tissue macromolecules, AMD
	KFEET1 (/h)
	0.0048

	
	Binding to tissue macromolecules, GLY
	KFEET2 (/h)
	0.0236

	
	Binding to blood macromolecules other than hemoglobin, AMD
	KFEEB1 (/h)
	0.0006

	
	Binding to blood macromolecules other than hemoglobin, GLY
	KFEEB2 (/h)
	0.00295

	
	
	
	

	Glutathione
	GSH production rate 
	KGSHP (µmol/h)/kg BW
	22.4256

	
	GSH loss rate
	KGSHL (/h)
	0.16753

	
	Initial GSH concentration in liver
	GHSL0 (mmol/L)
	7.0


Table 3-5

Acrylamide PBTK Alternative “Enhanced-GSH Metabolism” Human Model for Sensitivity Analysis (After Adjustments to Achieve Observed Levels of Excretion of Acrylamide-Glutathione Conjugate but Before Incorporation of Revised Estimates of Tissue/Blood Partition Coefficients)

	Parameter group
	Parameter
	Symbol (units)
	Value



	Basic physiology
	Body weight
	BW (kg)
	71.17

	
	Alveolar ventilation


	QC (L/h-kg)
	6.54

	
	Cardiac output (total body blood flow)
	QP (L/h-kg)
	5.91

	
	Liver blood flow 
	QLC (fraction QC)
	0.198

	
	Tissue blood flow
	QTC (fraction QC)
	0.802

	Compartment Volumes
	Volume blood
	VBC (fraction BW)
	0.0571

	
	Fraction arterial/total blood
	FABC (fraction VB)
	0.35

	
	Fraction venous/total blood
	FVBC (fraction VB)
	0.65

	
	Liver volume
	VLC (fraction BW)
	0.0195

	
	Tissue volume
	VTC (fraction BW)
	0.8934

	
	Fraction blood cells/blood


	FBC (fraction VB)
	0.44

	
	Fraction blood serum/blood
	FBS (fraction VB)
	0.56

	Absorption
	Absorption rate from gastrointestinal tract (oral dose) or intraperitoneal cavity (ip dose)
	KA(/h)
	5

	Partition coefficients 
	Blood:air, AMD
	PB1 (unitless)
	3.1E7

	(equilibrium concentration ratios)
	Liver: blood, AMD
	PL1 (unitless)


	0.83

	
	Tissue: blood, AMD
	PT1 (unitless)
	0.95

	
	Blood:air, GLY
	PB2 (unitless)


	9.8E7

	
	Liver: blood, GLY
	PL2 (unitless)
	0.83

	
	Tissue: blood, GLY
	PT2 (unitless)
	0.95


Table 3-5, Continued

Acrylamide PBTK Alternative “Enhanced-GSH Metabolism” Human Model (After Adjustments to Achieve Observed Levels of Excretion of Acrylamide-Glutathione Conjugate but Before Incorporation of Revised Estimates of Tissue/Blood Partition Coefficients) (Bolded Parameters Differ from Base Human Model)

	Parameter group
	Parameter
	Symbol (units)
	Value



	Metabolism
	Cytochrome P-450 oxidation rate, AMD
	VMAXC1 (mg/h-kg0.7)
	0.6272

	
	Cytochrome P-450 Michaelis-Menten constant, AMD
	KMC1 (mg/L)
	7

	
	Epoxide hydrolase hydrolysis rate, GLY
	VMAXC2 (mg/h-kg0.7)
	0.38

	
	Epoxide hydrolase Michaelis-Menten constant, GLY
	KMC2 (mg/L)
	100

	
	Reaction with glutathione, AMD
	KGSTC1 [L/(mmolGSH-kg0.3 –h)]
	0.1223

	
	Reaction with glutathione, GLY
	KGSTC2 [L/(mmolGSH-kg0.3 –h)]
	0.0445

	Tissue binding
	Binding to hemoglobin, AMD (eliminated from human model because of the lack of the free cysteine present in rat hemoglobin)
	KHGB1 (L/gHGB-h)
	0

	
	Binding to hemoglobin, GLY (eliminated from human model because of the lack of the free cysteine present in rat hemoglobin)
	KHGB2 (l/gHGB-h)
	0

	
	Binding to liver macromolecules, AMD
	KFEEL1 (/h)
	0.002

	
	Binding to liver macromolecules, GLY
	KFEEL2 (/h)
	0.02

	
	Binding to tissue macromolecules, AMD
	KFEET1 (/h)
	0.0008

	
	Binding to tissue macromolecules, GLY
	KFEET2 (/h)
	0.008

	
	Binding to blood macromolecules other than hemoglobin, AMD
	KFEEB1 (/h)
	0.0001

	
	Binding to blood macromolecules other than hemoglobin, GLY
	KFEEB2 (/h)
	0.001

	
	
	
	

	Glutathione
	GSH production rate 
	KGSHP (µmol/h)/kg BW
	22.4256

	
	GSH loss rate
	KGSHL (/h)
	0.16753

	
	Initial GSH concentration in liver
	GHSL0 (mmol/L)
	7.0


Table 3-6

Acrylamide PBTK  “Alternative Partition Coefficient” Human Model for Sensitivity Analysis (Bolded Parameters Differ from Base Human Model

	Parameter group
	Parameter
	Symbol (units)
	Value



	Basic physiology
	Body weight
	BW (kg)
	71.17

	
	Alveolar ventilation


	QC (L/h-kg)
	6.54

	
	Cardiac output (total body blood flow)
	QP (L/h-kg)
	5.91

	
	Liver blood flow 
	QLC (fraction QC)
	0.198

	
	Tissue blood flow
	QTC (fraction QC)
	0.802

	Compartment Volumes
	Volume blood
	VBC (fraction BW)
	0.0571

	
	Fraction arterial/total blood
	FABC (fraction VB)
	0.35

	
	Fraction venous/total blood
	FVBC (fraction VB)
	0.65

	
	Liver volume
	VLC (fraction BW)
	0.0195

	
	Tissue volume
	VTC (fraction BW)
	0.8934

	
	Fraction blood cells/blood


	FBC (fraction VB)
	0.44

	
	Fraction blood serum/blood
	FBS (fraction VB)
	0.56

	Absorption
	Absorption rate from gastrointestinal tract (oral dose) or intraperitoneal cavity (ip dose)
	KA(/h)
	5

	Partition coefficients 
	Blood:air, AMD
	PB1 (unitless)
	3.1E7

	(Equilibrium concentration ratios)
	Liver: blood, AMD
	PL1 (unitless)


	0.88

	
	Tissue: blood, AMD
	PT1 (unitless)
	0.40

	
	Blood:air, GLY
	PB2 (unitless)


	9.8E7

	
	Liver: blood, GLY
	PL2 (unitless)
	0.88

	
	Tissue: blood, GLY
	PT2 (unitless)
	0.40


Table 3-6, Continued

Acrylamide PBTK “Alternative Partition Coefficient” Human Model (After Incorporation of Revised Estimates of Human Partition Coefficients and Fitting to Correspond to Both Hemoglobin Adduct and Acrylamide-GSH Urinary Excretion Information) 

	Parameter group
	Parameter
	Symbol (units)
	Value



	Metabolism
	Cytochrome P-450 oxidation rate, AMD
	VMAXC1 (mg/h-kg0.7)
	0.9296

	
	Cytochrome P-450 Michaelis-Menten constant, AMD
	KMC1 (mg/L)
	7

	
	Epoxide hydrolase hydrolysis rate, GLY
	VMAXC2 (mg/h-kg0.7)
	4.09

	
	Epoxide hydrolase Michaelis-Menten constant, GLY
	KMC2 (mg/L)
	100

	
	Reaction with glutathione, AMD
	KGSTC1 [L/(mmolGSH-kg0.3 –h)]
	0.1113

	
	Reaction with glutathione, GLY
	KGSTC2 [L/(mmolGSH-kg0.3 –h)]
	0. 4784

	Tissue binding
	Binding to hemoglobin, AMD (eliminated from human model because of the lack of the free cysteine present in rat hemoglobin)
	KHGB1 (L/gHGB-h)
	0

	
	Binding to hemoglobin, GLY (eliminated from human model because of the lack of the free cysteine present in rat hemoglobin)
	KHGB2 (l/gHGB-h)
	0

	
	Binding to liver macromolecules, AMD
	KFEEL1 (/h)
	0.071

	
	Binding to liver macromolecules, GLY
	KFEEL2 (/h)
	0.215

	
	Binding to tissue macromolecules, AMD
	KFEET1 (/h)
	0.0284

	
	Binding to tissue macromolecules, GLY
	KFEET2 (/h)
	0.086

	
	Binding to blood macromolecules other than hemoglobin, AMD
	KFEEB1 (/h)
	0.0036

	
	Binding to blood macromolecules other than hemoglobin, GLY
	KFEEB2 (/h)
	0.01075

	
	
	
	

	Glutathione
	GSH production rate 
	KGSHP (µmol/h)/kg BW
	22.4256

	
	GSH loss rate
	KGSHL (/h)
	0.16753

	
	Initial GSH concentration in liver
	GHSL0 (mmol/L)
	7.0


Table 3-7

Calibrating Run for the Basic Human Model 

(Bolded Numbers Indicate the Comparisons Between 

Model “Predictions” and Observations)

	mg/kg dose
	Cum 24 hr µM-hr AMD in blood
	Cum 24 h µM-hr GLY in blood
	% acryl converted to GLY of total eliminated by all routes
	% acryl directly reacted with GSH of total eliminated by all routes
	% GLY eliminated via GSH reaction of total eliminated by all routes
	% GLY eliminated via epoxide hydrolase of total eliminated by all routes
	Minimum GSH conc in liver (mmol/L)
	AMD

 µM-hr/mg/kg
	GLY 

µM-hr/mg/kg
	Absolute µmoles AMD Metabolized to  GSH Conjugate 

	0.43
	1.04E+02
	2.85E+01
	79.68
	6.86
	40.02
	6.96
	6.99
	243.02
	66.34
	

	0.89
	2.19E+02
	5.69E+01
	78.97
	7.10
	40.01
	6.96
	6.98
	246.47
	63.88
	

	2.57
	6.60E+02
	1.45E+02
	76.46
	7.94
	39.97
	6.95
	6.95
	257.00
	56.26
	120

	
	
	
	
	
	
	
	Average model prediction
	248.83
	62.16
	

	
	
	
	
	
	
	
	Fennell and Friedman (2004), Fennell et al. (2004) observed
	249.06
	62.55
	647


Table 3-8

Calibrating Run for the Alternative “Enhanced-GSH Metabolism” Human Model for Sensitivity Analysis 

(Bolded Numbers Indicate the Comparisons between Model “Predictions” and Observations)

	mg/kg dose
	Cum 24 hr µM-hr AMD in blood
	Cum 24 h µM-hr GLY in blood
	% acryl converted to GLY of total eliminated by all routes
	% acryl directly reacted with GSH of total eliminated by all routes
	% GLY eliminated via GSH reaction of total eliminated by all routes
	% GLY eliminated via epoxide  hydrolase of total eliminated by all routes
	Minimum GSH conc in liver (mmol/L)
	AMD 

µM-hr/mg/kg
	GLY

 µM-hr/mg/kg
	Absolute µmoles AMD Metabolized to  GSH Conjugate 

	0.43
	1.01E+02
	2.76E+01
	57.70
	40.27
	39.85
	6.94
	6.98
	233.73
	64.28
	

	0.89
	2.10E+02
	5.49E+01
	56.70
	41.21
	39.80
	6.94
	6.96
	236.33
	61.73
	

	2.57
	6.28E+02
	1.39E+02
	53.42
	44.32
	39.61
	6.96
	6.89
	244.22
	54.05
	625

	
	
	
	
	
	
	
	Average model prediction
	238.09
	60.02
	

	
	
	
	
	
	
	
	Fennell and Friedman (2004), Fennell et al. (2004) observed
	249.06
	62.55
	647


Table 3-9

Calibrating Run for the Revised Best-Estimate “Alternative Partition Coefficient” Human Model 

(Bolded Numbers Indicate the Comparisons between Model “Predictions” and Observations)

	mg/kg dose
	Cum 24 hr µM-hr AMD in blood
	Cum 24 hr µM-hr GLY in blood
	% acryl converted to GLY of total eliminated by all routes
	% acryl directly reacted with GSH of total eliminated by all routes
	% GLY eliminated via GSH reaction of total eliminated by all routes
	% GLY eliminated via epoxide hydrolase of total eliminated by all routes
	Minimum GSH conc in liver (mmol/L)
	AMD

 µM-hr/mg/kg
	GLY

 µM-hr/mg/kg
	Absolute µmoles AMD Metabolized to GSH Conjugate 

	0.43
	1.02E+02
	2.84E+01
	55.17
	24.13
	56.61
	9.88
	6.95
	236.58
	66.03
	

	0.89
	2.17E+02
	5.69E+01
	53.64
	24.90
	56.49
	9.91
	6.91
	244.38
	63.91
	

	2.57
	6.90E+02
	1.47E+02
	48.89
	27.25
	56.05
	9.99
	6.74
	268.29
	57.24
	647,7

	
	
	
	
	
	
	
	Average model prediction
	249.75
	62.39
	

	
	
	
	
	
	
	
	Fennell and Friedman (2004), Fennell et al. (2004) observed
	249.06
	62.55
	647


Table 3-10

Performance of the Three Models Run over 120 hours, with Projections to Infinite-Time AUCs 

for Acrylamide and Glycidamide

	
	mg/kg IP
	% acryl converted to GLY of total eliminated by all routes
	% acryl directly reacted with GSH of total eliminated by all routes
	AMD T1/2 90-120 hr
	Cum 24 hr µM-hr AMD in blood
	Cum 90 hr µM-hr AMD in blood
	Cum 120 hr µM-hr AMD in blood
	Cum AUC infinite  µM-hr AMD in blood
	Cum AMD AUC infinite/24 hrs

	Base Model
	0.001
	80.1
	6.6
	20.3
	2.39E-01
	4.09E-01
	4.21E-01
	4.28E-01
	1.79

	Enhanced GSH Metab. Model 
	0.001
	58.7
	39.3
	18.7
	2.31E-01
	3.79E-01
	3.88E-01
	3.93E-01
	1.70

	Final “Alt Part. Coeff.” Model
	0.001
	56.7
	23.3
	5.39
	2.29E-01
	2.40E-01
	2.40E-01
	2.40E-01
	1.05

	
	
	
	
	
	
	
	
	
	

	
	
	% GLY eliminated via GSH reaction of total eliminated by all routes
	% GLY eliminated via epoxide hydrolase of total eliminated by all routes
	GLY T1/2 90-120 hr
	Cum 24 h µM-hr GLY in blood
	Cum 90 h µM-hr GLY in blood
	Cum 120 h µM-hr GLY in blood
	GLY AUC infinite µM-hr
	Cum GLY AUC infinite/24 hrs

	Base Model
	0.001
	39.0
	6.8
	24.8
	6.89E-02
	2.44E-01
	2.69E-01
	2.88E-01
	4.18

	Enhanced GSH Metab. Model
	0.001
	38.8
	6.7
	58.4
	6.69E-02
	3.56E-01
	4.43E-01
	6.46E-01
	9.65

	Final “Alt Part. Coeff.” Model
	0.001
	56.6
	9.85
	5.39a
	6.82E-02
	7.54E-02
	7.54E-02
	7.54E-02
	1.11


Figure 3-1.  Best-Fit Model Predictions of Acrylamide and Glycidamide

 Disposition in Adult Humans 

(Percentages shown are of total acrylamide dose)

      Acrylamide

                                    23%                           20%                                          57%  

Glutathione Transferase                       Binding to Protein                              CYP2E1 Metabolism


[image: image7]        

                                                                                        Glycidamide


[image: image8]                                                         

                            Glutathione Transferase          Epoxide Hydrolase                 Tissue/Blood

4.0 Variability and Developmental Changes in CYP2E1, GSTs and Epoxide Hydrolase

4.1 Introduction

This chapter provides the input data necessary to use the human acrylamide model just described to characterize how the internal dose of acrylamide and glycidamide are affected by: 1) inter-individual variability in metabolic enzyme activity, and 2) age-related developmental differences in enzyme activity and other toxicokinetic factors.    

All three enzymes involved in acrylamide metabolism exhibit some degree of inter-individual variability, in some cases quite extensive.  Given the importance of these enzymes in the activation and detoxification of acrylamide and its metabolites, there is naturally interest in whether the observed inter-individual variability observed translates into a similar degree of inter-individual variability in internal dose, and ultimately susceptibility to acrylamide exposure.  In reality, other toxicokinetic factors such as blood flow limitations (Kedderis, 1997; Lipscomb et al., 2002) may modify the extent to which enzyme variability measured in vitro is translated into inter-subject variability in internal dose.  Given these competing processes, the impact of inter-individual variability in enzyme activity on acrylamide dose must be evaluated in the context of a PBTK model.

In the sections which follow, we review the literature available to characterize inter-individual variability in CYP2E1, GST, and EH for the purpose of developing inputs to the human acrylamide PBTK model.  The primary objective of our literature search was to identify the role of genetic polymorphisms in inter-individual variability.  However, genetic polymorphisms that result in substantive and reproducible  differences in enzyme activity have not been identified for all three enzymes.  Therefore, we have also reviewed and analyzed data describing variability  in enzyme activity  that may exist in the population due to a variety of miscellaneous factors such as use of pharmacologic agents, and dietary, physiological and lifestyle factors.  Thus, the current PBTK modeling  results in estimates of internal dose that reflect  variability from genetic polymorphisms in combination with variability from other sources  present in the general population. 

 For each enzyme, our initial focus is on inter-individual variability in adults aged 18-65, although in some cases data may include a few subjects outside this range.  We have tried to exclude individuals older than 65 years as some data suggests that enzyme activity levels may decline with age and we wanted minimize age-related sources of variability.

We then focus on developmental or age-related differences in enzyme activity beginning at or before birth and continuing until enzyme content or activity reaches mature levels.  Our analysis characterizes changes both in the mean or median level of activity with age and in the degree of inter-individual variability with age. 

4.1.1 Variability versus Uncertainty

In order to put the current research into proper perspective, it is important to recognize that our assessment does not necessarily provide an estimate of variability alone because of the contribution of uncertainty to the spread in input distributions.  Variability is often used generally to describe multiple sources of variation in data.  Ideally, it would be estimated in such a way to represent true variability, which is variation due to an inherent property of the object being measured (e.g. the height of individuals in a particular cohort).  However, variability estimates also typically contain uncertainty,  which is variation that arises from a lack of knowledge or imprecise data.  Examples of uncertainty include  statistical error arising from the use of small samples or imprecise measurement equipment.  Variability it is not reducible by further measurement or research, whereas uncertainty is theoretically reducible by improved knowledge depending on the problem at hand.  

Ideally, variability and uncertainty would be separated and described independently for input to decisions.  Variability helps define, for example, the dose experienced by an individual at the 95th percentile of a population distribution.  Uncertainty describes how well that 95th percentile is known, in the same way that a standard error of the mean describes the amount of uncertainty in a mean.

In practice, as in this study, variability and uncertainty are often difficult to separate.  Although this study’s goal is to characterize inter-individual variability in enzymes, uncertainty pervades the estimates.  Published measurements of enzyme activities in vivo or in vitro incorporate elements of uncertainty -- measurement error inherent in the test system(s) and/or variation due to small sample sizes all contribute to uncertainty about the estimates of inter-individual variability used in our PBTK modeling.  Therefore, estimates of population variability in the current analysis are, to some degree, affected by sources of uncertainty in the underlying database. 

4.2 Inter-individual Variability in CYP2E1

There is extensive inter-individual variability in CYP2E1 protein content and activity across the human population (Wrighton et al., 1986; Yoo et al., 1988; Peter et al., 1990; Guengerich and Turvy, 1991; Lucas et al., 1993; Nedelcheva et al., 1999; Lipscomb et al., 1997; 2002; Ginsberg, et al., 2003).  Genetic polymorphisms as well as dietary, lifestyle, environmental, and physiological factors have been studied in relation to the variability observed in CYP2E1.  

4.2.1 Genetic polymorphisms

Several polymorphisms of CYP2E1 have been identified: CYP2E1*1A, *1B, *1C, *1D, *2, *3,*4, *5A, *5B* 6, *7A, *7B,*7C as well as a number of as yet unnamed variants.
  Of these, the variants with any observed differences relative to the wildtype activity include *1D which has been shown to be inducible in vivo by ethanol and obesity (Hu et al.,1999 and McCarver et al, 1998); *2 which has been found to have reduced activity in vitro (Hu et al., 1997); *5A and *5B both contain the Rsa I (c2) polymorphism that has been associated with lower CYP2E1inducibility (Lucas et al.,1995b) and with reduced chlorzoxazone clearance in vivo (147 ml/min) compared with those with the c1/c1 genotype (Le Marchand et al. 1999); and *6 which had similar activity to wildtype in vitro (Inoue et al., 2000)  but reduced activity relative to wild type in vivo (Kim et al. 1995). 

The frequency of these CYP2E1 polymorphic alleles varies across ethnic groups.  For example, similar percentages of Caucasians (75-87%) and African Americans (85%) carry the wildtype alleles (*1A/*1A) compared to 52% of Taiwanese, 50% of Japanese, and 56% of Chinese.  Caucasians and African-Americans who are homo-or heterozygous for alleles associated with potentially reduced CYP2E1 activity occur at a much lower rate (e.g., 2-4%) than their Asian counterparts of whom 30-38% are heterozygous for the *5A allele (see Ginsberg et al. (2003) for a more extensive review).  Such differences raise the possibility of distinct ethnic profiles of CYP2E1 activity and risk.  However, the presence of a variety of other factors discussed below can affect expression of CYP2E1.  Since these factors are often not well controlled for in population studies, it is difficult to discern the influence of CYP2E1 polymorphisms alone on enzyme activity. 

Johnsrud et al. (2003) studied the interaction of CYP2E1 genotype and enzyme ontogeny in 188 liver samples from individuals ranging from 1st trimester prenatal through 18 years of age. The allelic frequency of CYP2E1*1D was 6.9%; 87% of their sample was homozygous for CYP2E1*1C and about 13% had at least one *1D allele.  Using analysis of variance techniques, they found that the interaction between age and the presence CYPE2E1*1D allele was associated with significant differences in CYP2E1 content.  The presence of the *1D allele alone was not significant.  The observed effect was entirely attributable to decreased CYP content in developing liver samples (third trimester to 90 days post natal).  It is important to note that most of the variance in CYP2E1 content was explained by differences in age alone rather than age-genotype interactions. Ethnicity was not an important determinant in CYP2E1 differences once age, CYP2E1 genotype, and their interaction were taken into account.

4.2.2 Enzyme Inducers and Inhibitors 

Variability in CYP2E1 has also been attributed to induction and inhibition by compounds found in the diet or in pharmaceuticals.  A wide variety of xenobiotics can induce CYP2E1 with ethanol being perhaps the best studied in humans (Perrot et al., 1989; Ingleman-Sundberg et al., 1993). In addition to ethanol, a number of other substrates including benzene, pyrazole, pyridine, trichloroethylene, ethylene glycol, and acetone also induce this CYP (Koop et al., 1985). Several CYP2E1 substrates also act as inhibitors, such 4-methyl pyrazole (Wu et al., 1990), and diethyldithiocarbamate (Guengerich et al., 1991).  Some may act as both inducers and inhibitors depending on the circumstance.  The only therapeutic drug that has been found to inhibit CYP2E1 is disulfiram which has been shown to reduce the hepatotoxicity of chloroform, carbon tetrachloride,  acetaminophen, and N-nitrosodimethylamine in rats (Brady et al., 1991). CYP2E1 inhibitors from natural sources include several compounds in garlic, (diallyl sulfide, diallyl sulfoxide, and diallyl sulfone), in red peppers (dihydrocapsaicin), in cruciferous vegetables such as cabbage, broccoli, and brussel sprouts (phenethyl isothiocyanate), in green and black tea (epigallo-catechin-3-gallate) and in watercress. 

Obesity can also induce CYP2E1 (Salazar, Sorge, and Corcoran, 1988; Raucy et al., 1991; O’Shea et al., 1994) as well as ketones (B-hydroxybutyrate) produced during fasting (Hong et al., 1987; Miller and Yang, 1984; O’Shea et al., 1994) and poorly controlled diabetes (Dong et al., 1988; Song et al., 1987; Song, Veech and Saenger, 1990).  In particular, the CYP2E*1D polymorphism has been associated with increased CYP2E1 metabolic capacity in obese individuals or in individuals known to consume alcohol (McCarver et al., 1998).  High fat diets (and, alternatively, low carbohydrate diets) have been shown to significantly increase hepatic 2E1 activity in rats with a corresponding increase in 2E1 mRNA (Teschke, Moreno, and Petrides, 1981; Yun et al., 1992).  

A previous analysis of the literature led to the conclusion that that the evidence for particular CYP2E1 polymorphisms having a significant effect on enzyme activity in vivo is too limited to support a population distribution of CYP2E1 enzyme activity based upon genotypes (Ginsberg, et al., 2003).   Many of the population studies in Caucasians suffer from poor statistical power because the Rsa I (c2) allele, associated with lower CYP2E1 activity, is uncommon.  In addition, few researchers have reported data on dietary and physiological factors that may affect CYP2E1 activity so findings may be confounded by variable exposure to factors that can induce or inhibit CYP2E1 activity.
4.2.3 Characterization of Variability in CYP2E1

Other research teams have also chosen to characterize overall inter-individual variability in CYP2E1 rather than to attempt to attribute variability separately to genetic polymorphisms or to dietary or other factors.  Four recent papers have utilized   different methodologies to characterize variability (Iyer and Sinz, 1999; Johnsrud et al., 2003; Lipscomb et al., 2003; and Dorne et al., 2004.)  All four produced similar estimates of variability in CYP2E1 in adults (GSDs ranging from 1.2-1.7).  These studies are summarized in Table 4-1.

Iyer and Sinz, (1999) characterized the activity of CYP2E1 (nmol/min per mg microsomal protein) in 21 human liver samples obtained from a liver bank using p-nitrophenol as probe substrate.   Although chlorzoxazone is a more common substrate, the authors reported that the specificity of p-nitrophenol for CYP2E1 is shown by studies of CYP2E1 cDNA expression systems in which approximately 85% of p-nitrophenol hydroxylation was catalyzed by this human CYP (Tassaneekyakul et al., 1993).)  The donors ranged in age from 6 to 52 years.  They varied in characteristics associated with CYP2E1 induction/inhibition; the data set included smokers, non-smokers, those who reported alcohol consumption and those who reported none. One individual was characterized as obese.

Variation in CYP2E1 activity in the Iyer and Sinz (1999) samples was consistent with a lognormal distribution:  the geometric mean (GM) and geometric standard deviation (GSD) for their data appear in the first line of Table 4-1.   The activity levels spanned a 4.8 fold range.  This degree of variation is consistent with several other studies of CYP2E1 catalytic activity using different probe substrates in other liver banks alluded to by Iyer and Sinz (1999) where 2 to 11 fold ranges were reported (no other distribution parameters were reported for these data).  The GSD was also a similar magnitude as that reported in other studies discussed below.

Johnsrud et al., 2003 studied developmental changes in CYP2E1 protein expression in human hepatic microsomes.  The investigators analyzed the level of hepatic expression of CYP2E1 in a total of 238 healthy human livers obtained from a liver bank.  Donors ranged in age from 8 weeks gestation to 18 years; the postnatal group (N= 167) ranged in age from less than one day to 18 years.  Of the 219 samples for which gender information was available, 136 were male and 83 female.  Of the 201 samples for which ethnic information was available, 93 were Northern European-American, 88 were African-American, and 20 were Hispanic American. 

Johnsrud et al. (2003) used analysis of variance techniques to focus on the key factors explaining CYP2E1 content.  They found no significant differences in CYP2E1 protein expression by ethnic group but did find significant differences in expression by age group.  Regression tree analysis was used to identify age categories between which there were statistically significant differences in CYP2E1 expression; the postnatal groups they identified were 0-30 days, 31-90 days, and 91 days to 18 years.  Table 4-1 shows the GM and GSD for the oldest age group in the study (91 days to 18 years).
  For purposes of comparison with the other studies in the table that focused primarily on adults, the values in parentheses show the GM and GSD for the 10 to 18 year old group. Although Johnsrud et al. (2003) found no statistical basis for breaking the 91 day to 18 year age group into subgroups, we found that variability in CYP2E1 protein expression was greater (GSD=1.6) for the full age range than for the 10-18 year old group (GSD=1.35).  This difference may reflect a progression toward more stability in mature levels of CYP2E1 protein expression.

Lipscomb et al., (2003) provide the most directly relevant estimates of variability of CYP2E1 activity for use in PBTK modeling.  They derived estimates of variability in Vmax for CYP2E1 mediated oxidation of trichloroethylene (TCE) per unit liver mass from several sets of in vitro data.   They first determined the CYP2E1 content per unit microsomal protein (pmol CYP2E1/MSP) from a total of 60 adult human livers using enzyme-linked immunosorbent assay (ELISA) following the method of Snawder and Lipscomb (2000).  Of these 60 livers, 40 had been analyzed by Snawder and Lipscomb (2000) previously and included adults aged 22-65 (mean 42 years), 23 males and 17 females, were mostly Caucasian, and reported variable alcohol use.
  The additional 20 donors ranged in age from 19-77 years (mean 44 years), included 11 males and 9 females, were primarily Caucasian with a few Black and Hispanic individuals, and reported varying degrees of alcohol use.  The latter set of 20 donor livers were also used to measure the CYP2E1 content of intact liver (pmol CYP2E1/gram liver) using ELISA.  With the data on CYP2E1 content per unit microsomal protein measured previously (pmol CYP2E1/MSP),  the CYP2E1 content of intact liver data were used to derive estimates of the content of microsomal protein per gram of intact liver (mg MSP/gram intact liver).   A third  set of data, measured from 15 adult liver samples,  was used to characterize a distribution for the rate of TCE oxidized per unit microsomal protein (pmol TCE/min/mg MSP) (Lipscomb et al., 1997; Snawder and Lipscomb, 2000).

These three data sets were combined to characterize the distribution of Vmax in units (pmol TCE oxidized/min/gram liver) suitable for pharmacokinetic modeling of TCE metabolism in vivo.  Lipscomb et al. (2003) found Vmax for TCE oxidation to be well-characterized by a log-normal distribution with a geometric standard deviation of about 1.73.  This corresponds to about a 6-fold factor between the 95th and 5th percentile. 

Dorne et al. (2004) provide estimates of variability in CYP2E1 and other metabolizing systems based on a meta-analysis of in vivo data obtained from a literature search up through October 2002.  Probe substrates for each metabolic route were selected on basis that their oral absorption was high (>90%) and that 60-100% of oral dose was excreted as metabolite of that pathway.  Chlorozoxazone and trimethadione were the two probe substrates chosen to characterize CYP2E1 activity.  Dorne et al. (2004) summarized and compared data from studies involving healthy adults, the elderly, and patients with liver or renal disease in order to evaluate the potential for susceptible subpopulations.  Individuals aged 16 to 70 years were classified as adults.  Those greater than 70 years old were classified as elderly.

For CYP2E1, the authors obtained kinetic in terms of plasma clearance and Cmax, in plasma from several studies.  They combined the data for particular kinetic parameters, compounds and subgroups of the population using a weighted mean method described in an earlier study (Dorne et al., 2001).  

The GSD estimates were similar in magnitude for all the CYP2E1 kinetic parameters described: GSDs for measures of clearance ranged from 1.2-1.4 while GSDs for measures of Cmax ranged from 1.1-1.4 (Dorne et al., 2001).   For the acrylamide analysis, we are interested in the two estimates of clearance adjusted for body weight which had GSDs of 1.3 and 1.2 for the substrates chlorzoxazone and trimethadione, respectively (Table 4-1).  

The estimates of variability in CYP2E1 expression and activity shown in Table 4-1 are generally consistent despite the different types of studies and methodologies.   The Lipscomb et al. (2003) GSD is the largest and reflects the combination of several data sets needed to scale from in vitro to in vivo to estimate Vmax.  In vivo GSDs may be smaller because of compensating factors that would tend to offset inter-individual variability in 2E1 content of liver – e.g., blood flow limitations and other metabolic pathways that can contribute to clearance of substrate (note that Dorne et al. (2004) indicate that only 60-100% of substrate is cleared via the ascribed pathway).  For the purpose of the PBTK modeling in this study, we are most concerned with the in vitro data because it is most direct measurement of the system we are modeling and the other in vivo factors such as blood flow limitation will be automatically accounted for in the model developed for acrylamide. 

4.2.4 Developmental Differences in CYP2E1 Activity


Age-related changes in CYP2E1 microsomal content and activity can also be a factor in individual variability.  Several studies have shown that CYP2E1 protein levels in hepatic microsomes are very low at birth, but rise rapidly thereafter such that this CYP can become an important metabolizing component during the first month of life (Treluyer, et al., 1996; Vieira, et al., 1996 Cresteil, 1998; Johnsrud et al. 2003).  


Studies by Vieira et al. (1996) and Johnsrud et al. (2003) offer the most detailed insight to the developmental changes in CYP2E1 microsomal content.  Vieira et al. (1996) measured CYP2E1 content in hepatic microsomes from 80 liver samples and CYP2E1 activity in 70 of those samples as a function of 6-hydroxychloroxazone formation. As discussed earlier, Johnsrud et al., 2003 measured CYP2E1 content in hepatic microsomal protein from 167 donors ranging in age from birth to 18 years.  


The two studies show similar patterns of CYP2E1 expression with age. Using the geometric means (GM) for the age groups reported in the original Vieira et al. (1996) paper, Figure 4-1 to compares the ratio of GM CYP microsomal protein to adult levels for each of the age groups reported.  (The data on which this figure is based are found in Table 4-2).  Levels are lowest directly after birth but increase rapidly to near adult levels by early childhood.  


Note that the ratios in the first three age groups in the Vieira et al. (1996) study and the first two age groups in the Johnsrud  et al. (2003) study may not portray levels typical of full-term newborns.  CYP2E1 levels in fetal livers are lower than those reported here (data not shown).  However, the newborn infants in these age categories were premature ( 32-34 weeks gestation in the Vieira et al. 1996 study); the body weights for the first two age categories in the Johnsrud et al. (2003) study were 1.7 and 2.5 kg indicating that these subjects were also premature.  Thus, it is possible that their reported CYP2E1 levels may be more reflective of 3rd trimester fetal liver.  However, CYP2E1 content of microsomes is reported to increase rapidly in the days immediately after birth regardless of gestational age at birth (Vieira, 1996).  Thus, this element of the early post natal data from Johnsrud and Vieira is not likely to create much uncertainty. 


Johnsrud et al. (2003) did not find significant differences in protein expression between the age groupings used by Vieira et al. (1996) and it is not clear from the Vieira et al. (1996) paper whether they did either.  However, in order to compare the two studies, we chose to use the Vieira age groupings.  Using DataThief, a data retrieval program
, we estimated the means and standard deviations for each age group from Figure 1 in the Vieira et al. (1996) paper.  We then estimated the GM and GSDs using standard algorithms in Crystal Ball®.  We had been provided the Johnsrud et al. (2003) data, and were able to calculate the same parameters for the new age groups directly. 


Both studies found a higher degree of variability in protein expression in the first days and weeks after birth (Table 4-2). The amount of variability appears to decline somewhat in the older age groups with the least amount of variability observed in the 10-18 year age group.
  


The reason for the high degree of variability in the 0-7 day age group for the Johnsrud et al. (2003) study becomes clear when one examines the data in greater detail.  Figure 4-2 shows the cumulative distribution for microsomal CYP2E1 content for this age group.  Approximately 30% of the values are at zero and 80% of the values are below 10 pmol/mg microsomal protein.  The authors have suggested that the four highest values may reflect enzyme induction in utero perhaps as a result of maternal exposure to CYP2E1-inducing chemical or physiological factors.
  The high values occurred in infants across the age range in this group, not just in the oldest infants.  The cumulative distributions for the older age groups followed smoother functions (data not shown).


This in vitro evidence for CYP2E1 is consistent with in vivo clearance data in which trimethadione was studied across a wide age range beginning with neonates (Nakamura, et al., 1998). Trimethadione, which was formerly used to treat epilepsy, is metabolized primarily by CYP2E1 and continues to be used at low doses to assess hepatic function (Kurata, et al., 1998; Tanaka, et al., 2000).  The very low trimethadione metabolism rates in neonates seen by Nakamura et al (1998) approached adult levels in a broad infant age group (one month to one year).   

4.3 Variability in Acrylamide and Glycidamide Conjugation with Glutathione

The conjugation of reactive species like acrylamide and glycidamide with glutathione is catalyzed by a group of cytosolic enzymes known as glutathione-S-transferases (GSTs).  Several human GSTs are polymorphic, containing variant alleles with altered enzyme function.  The resultant inter-individual variation in GST function, and its potential implications for human health risks associated with xenobiotics that are either detoxified or toxified by binding with glutathione, have been the basis for numerous molecular epidemiology studies (Taningher, et al., 1999; Wormhoudt, et al., 1999).  Similarly, our study examines the impact of polymorphisms in GSTs on variation in the internal doses of acrylamide and glycidamide using a human PBTK model.  Although the focus of this analysis is on variability due to polymorphisms, it is impossible to rule out the contribution of other potential sources of inter-individual variability and or uncertainty in the data. 

4.3.1 Polymorphisms in GSTM1, GSTT-1, and GSTP1


The best understood polymorphisms in GST enzymes exist in the mu (GSTM-1), theta (GSTT-1) and pi (GSTP-1) classes (Wormhoudt, et al., 1999); thus, these are the focus of the current analysis.  The particular enzyme class(es) responsible for catalyzing acrylamide and glycidamide binding with glutathione are not known.  However, these enzyme classes are known to have overlapping substrate specificity and thus may act in concert to conjugate acrylamide.  Therefore, it is possible that multiple polymorphisms in multiple GSTs occurring in a single individual may affect risk in a way that could not be predicted by evaluating a single polymorphism.  Therefore, using the approach delineated in an earlier report (Ginsberg, et al., 2003), we first summarize the enzyme function and population distributions of each polymorphism separately for GSTM1, GSTT1, and GSTP1.  

In our PBTK analysis we simulate the role of GSTs polymorphisms in two ways. We use data on GSTM1, the most variable of the GST enzymes, to represent potential variability in GSH conjugation assuming only one GST isoform is responsible for binding to acrylamide and/or glycidamide.  We also simulate the role of all three GSTs in an individual by integrating across the individual population distributions of enzyme function.


The wild type form of GSTM1 encodes the active enzyme, GSTM1*A, while a polymorphism involving a mutation at a single base in exon 7 yields the variant termed GSTM1*B (Eaton, 2000).  This mutation does not appear to affect enzyme function as genotyping and phenotyping probes commonly used cannot distinguish between this variant and the wild type (Taningher, et al., 1999).  However, a second variant, GSTM1*0 is of major consequence.  It represents deletion of the major portion of the GSTM1 gene rendering the product inactive.  Homozygotes for the deleted gene are termed GSTM1 null or GSTM1 (-/-) as distinguished from heterozygotes (GSTM1 (+/-) and the homozygous wild type, GSTM1(+/+).  


The wild type form of GSTT1-1 is fully active.  The primary variant of interest is GSTT1-0 that has a substantial part of the gene deleted and is devoid of enzyme activity (Landi, 2000).  Homozygotes are GSTT1 null (-/-) while heterozygotes (GSTT1(+/-) have intermediate activity demonstrating a gene dosage effect (Thier et al., 1998).  In addition to catalyzing GSH conjugation with electrophiles, GSTT1 has peroxidase activity towards a variety of organic peroxides (e.g., phospholipid hydroperoxides).   Another isozyme, GSTT2, is very similar in sequence but has been little studied and the phenotypic consequences of this polymorphism have not been delineated (Landi, 2000).  


The GST pi subclass is the major fetal isoform for GSTs, though its levels in liver decrease after birth as other GST levels increase (Strange, et al., 1989).  However, GST pi can remain quantitatively important in kidney, lung and other extrahepatic tissues well after birth (Beckett, et al., 1990; Vos, and van Bladeren, 1990).  In addition, elevated expression of this GST class in liver is an indication of pre-neoplastic transformation.   GSTP1-A is the wild type and generally but not always the most active form of this class.  Three allelic variants have been identified as follows:  GSTP1-B results from a mutation at codon 105 involving isoleucine (ile) to valine (val) substitution; GSTP1-C has the codon 105 mutation plus a codon 114 mutation that changes alanine (ala) to val; GSTP1-D is different from the wild type only with respect to the codon 114 mutation. Note: some authors state the polymorphisms are at codons 104 and 113 depending on the nucleotide considered as the starting point for transcription. The effect of polymorphisms on GSTP1 conjugating activity is substrate-specific. 


Table 4-3 summarizes the relative activity levels of the individual GSTs and their polymorphisms compared to wild type activity. They are expressed relative to wildtype activity in order to be able to compare activity levels across substrates and different measures of activity. The analysis supporting this table was taken from a previous evaluation of GST genetic polymorphisms (Ginsberg et al., 2003)   


In order to explore the impact of having multiple GSTs involved in acrylamide and glycidamide metabolism,  the joint activity of the possible GSTM1, T1, and P1 genotype crosses on acrylamide clearance was assessed.   Table 4-4, also taken from Ginsberg et al.  (2003), shows the relative activity levels for possible GSTM1, T1 and P1 crosses, for two different GSTP1 substrates, 1-chloro-2,4-dinitrobenzene (CNDB) and BPDE-type substrates (e.g. benzo(a)pyrene diol-epoxide).  The total relative activity of a particular combination of genotypes is the sum of the relative activity level for each individual GST genotype from Table 4-3.  For example, in case number 1, where the wildtype GSTM1, T1 and P1 are each represented, the individual activity levels sum to 3 activity units when CNDB is the substrate (Table 4-4).  Ultimately for modeling purposes, activities were normalized relative to a total activity of 100% with a maximum of 33% contributed by each of the specific GST isoforms.


Population variability in GST activity results not just from the presence of particular polymorphisms but from their relative frequency in different ethnic groups in the population.  The frequency of the GSTM1, T1 and P1 polymorphisms vary by ethnic group.
  For example, 53 percent of Caucasian populations are estimated to be GSTM1 null (-/-) compared to 21 percent of African Americans (Appendix Table A-1).  Given the importance of GST in catalyzing the conjugation of particular chemicals with glutathione, these populations could have reduced GSH binding capabilities. The relative frequency of the GSTM1, T1, and P1 genotype crosses in three ethnic groups (Caucasians, African Americans and Asians), also taken from Ginsberg et al. (2003), are provided in Appendix Table A-2.

4.3.2 Developmental changes in GSTs 


Information regarding the development of GSTs in human liver tends to focus on the prenatal and perinatal period (Beckett et al., 1990; Gallagher and Gardner, 2002; Hiley et al., 1988; Holt et al., 1995; Mathew et al., 1992; Mera et al., 1994; Raijmakers et al., 2001; Strange et al., 1985, 1989).  No studies were found of older infants and children. 

Of the studies cited, Strange et al., (1989) provide the most complete data on GST alpha, mu and pi in full term infants relative to adults.   To avoid problems with differential substrate specificity in characterizing relative levels of the different GST isoforms, they used radioimmunoassay techniques to assess GST levels in preparations of liver cytosols.  They studied 20 full term infants who died at 2-85 weeks postnatal age (most from sudden infant death syndrome) and 20 adults (ages not given).  The ethnic backgrounds of the donors were also not given.

The Strange et al., (1989) data for all non-null phenotype samples show no significant differences between GST mu levels (μg/ mg cytosolic protein) from a broad postnatal age group relative to adults in this study (Table 4-5).   However, no non-null subjects were identified in the 0-3 month postnatal age group , so it is not possible to determine directly from actual data the likely GST levels in this time period.   We have therefore linearly interpolated between mean pre-natal and mean post-natal GST mu values for modeling GST mu  levels in the 0-3 month age groups.  This interpolation yields an estimated GST mu content in neonatal liver that is 24 to 63% of adult liver depending upon whether one is considering the first week or 3rd month of life.   The percentage of GSTM null subjects observed in the Strange et al (1989) dataset is consistent with other studies discussed in the previous subsection, about 50%, which could suggest a Caucasian study population.

Levels of GST pi were highest in pre-natal samples and progressively lower in neonates and adults.   From graphical data in Strange, et al. (1989), GST pi levels appear to decrease steeply from the first 10-20 post-menstrual weeks to the levels observed in the 2-85 weeks after birth.  

4.4  Epoxide Hydrolase



Hassett et al., (1994) identified human microsomal epoxide hydrolase (mEH) polymorphisms at two amino acid loci Tyr113His and His139Arg.  These polymorphisms can associate in four distinct combinations:  Tyr113/His 139, Tyr113/Arg139, His113/His139, and His 113/Arg19 (Abdel-Rahman et al., 2003).   Hassett et al. (1994) report from in vitro studies that each of these genotypes have a unique mEH protein level that can affect net mEH enzymatic activity.  Furthermore, these genotypes can lead to ten possible diploid combinations.  Abdel-Rahman et al. (2003) report that it is possible to predict mEH activity based upon an individual’s genotype.  

Although certain studies describing the relationship between polymorphic genotypes and phenotype are suggestive of a relationship, the effect size appears to be small and not consistent across studies.  This may be due to the fact that other factors such as exposure to xenobiotics and dietary factors which induce mEH may obscure the influence of polymorphisms in in vivo studies.  Consequently, we relied on several studies describing total inter-individual variability in EH to develop inputs for the PBTK model.

4.4.1 Estimates of Variability in EH Activity


Kroetz et al., 1993 conducted a well controlled in vivo study of inter-individual variation in epoxide hydrolase activity using carbamazepine-10,11- epoxide as the substrate.  The study population included 100 healthy individuals (72 men and 38 women) with average age of 24 ± 4 years.  All subjects had to be within ± 15% of their ideal weight.  Subjects received a single oral dose of carbamazepine.  The measure of mEH activity  was the log metabolic ratio (transdihydrodiol/epoxide) in the 24-36 hour urine collection period; this data outcome showed a high correlation with measures of epoxide clearance.  A subset of individuals (13) received a second oral dose of carbamazepine 1 to 4 months later to evaluate intra-individual variation.


In this population study, the authors found that the log metabolic ratios were normally distributed and ranged from 1.28 to 2.05 with a mean of 1.68 and a standard deviation of 0.155.  Values were not significantly correlated with gender, age, weight or height.  The study of intra-individual variation found no significant differences between the first and second samples.  The error was unbiased -- the average difference was close to zero between the two samples in the 13 individuals who were resampled, but the intra-individual variation was relatively high (the standard deviation of the differences was 0.24).  


The inter-individual variation found in this study (about 5.8 fold for the untransformed range) was less than reported in some in vitro studies, which varied from 2.5 to 63-fold, depending on substrate and source and handling of liver tissue.  The authors attribute the lower variation to their control for age, race, health status, alcohol and tobacco use, drug therapy, etc. However, they did not genotype the individuals so it is not known whether their population represented the range of genotypes possible in the general population.  At the time the study was published, in vitro studies had not identified enzyme deficient subpopulations.


The range of activity was greater when EH inhibition and induction was included in the study.  Kroetz et al. (1993) measured carbamazepine clearance in a subset of individuals treated with EH inhibitors and a subset treated with EH inducers. The range of activity across these groups was about 7-fold.  This finding suggests that EH variability is likely to be greater in the general population where dietary and other inducers/inhibitors may be present.  


A later study (Hassett et al., 1997) examined phenotypic variability and microsomal EH genetic polymorphisms in a bank of 40 transplant quality human liver samples. Protein content (immunochemically determined), enzymatic activities, polymorphic amino acids, as well as mEH RNA levels were evaluated in parallel.  Enzymatic activity was assessed using benzo[a]pyrene-4,5-epoxide at two substrate concentrations.  They found an approximately 8-fold range in activity levels across the panel of 40 liver samples which were taken from 16 women and 24 men.  Although Hassett et al., (1997) identified EH genotypes for the subjects in their study, they did not find that polymorphisms accounted for much of the variation in EH activity in their samples.  They did find that variation in EH activity was strongly correlated with EH protein content (r> 0.74) which also varied about 8.4-fold. Two other studies have also reported good correlation between EH activity and protein content in fetal liver (Cresteil et al., 1985 and Omiecinski et al., 1994).


The age range in the Hassett et al. (1997) study was broader (9-63 years) than in the Kroetz study (24±4 years).  However, EH appears to be expressed near adult levels by the time children reach 7 so the reason for the greater degree of variability in this study is not entirely clear.  The Kroetz study was conducted in vivo, so a likely explanation may be that the variability measured in vitro is moderated by other pharmacokinetic factors in vivo.  Another is that the Kroetz study  was carefully controlled to include individuals of a similar age, ideal body weight, and limited intake of possible EH inducers/inhibitors.  It is interesting that the 7-fold variation found in the Kroetz study when individuals were included who had received both inducers and inhibitors is similar to the 8-fold variation reported by Hassett et al., (1997).  In any case, the in vitro data are of most direct use as an input to PBTK modeling  because it represents the enzyme status in a key metabolizing organ, with the remaining physiological factors that can affect in vivo dosimetry also accounted for in the model. 

4.4.2 Developmental Changes in EH Protein Content/Activity

Few studies appear to have carefully examined the ontogeny of mEH in the post-natal period compared to adults.  Two studies (Cresteil et al., 1985; Omiecinski et al., 1994) compared EH content and or activity in fetal livers relative to adults. 
 Cresteil et al. (1985) reported the mean ratio of fetal to adult EH content to be about 23%.  Omiecinski et al. (1994) measured EH activity in fetal and adult liver and lung microsomes using the substrate BP-4,5-oxide. EH activity in liver microsomes exhibited a linear increase between gestational day 53 and day 153 (N=18). Median activity on days 130-153 was 68% that of 15 adults.


Ratanasavanh et al. (1991) used  immunoblotting techniques to study the distribution and levels of epoxide hydrolase (in addition to several P-450 enzymes)  in human livers from newborn (1 hour to 3 weeks), child (6 months to 11 years), and adult (18-41 years) donors.  Rather than report the actual EH protein levels measured, the authors expressed the protein levels relative to the level detected in a particular adult sample, arbitrarily set to 1.
  We have summarizes the mean relative values by age groups (Table 4-6) In order to compare age groups directly as we have for the other enzymes,  the ratio of these mean values relative to the group mean for adults is presented (last column).

This analysis suggests that EH levels in newborns and children are closer to adult levels than were the fetal levels reported by Cresteil et al. (1985) but more similar to the levels found in later gestational ages by Omiecinski et al (1994).   Mean EH content was lowest in the 0-1 week age group  with the mean value being 69% of the adult mean and appeared to increase in older children.  However, the group means were not statistically significant from one another, likely due to small sample size and the high degree of variability in the results (Table 4-6).  

4.4.3 Developmental Changes in Starting Glutathione Concentrations


GSH is an important defense against oxidative stress in neonates as evidenced by the fact that premature infants who are deficient in GSH synthesis are more susceptible to retinopathy and possibly also to respiratory distress syndrome (Nemeth and Boda, 1994; Papp, et al., 1999).  Premature neonates tend to have greater levels of oxidized as compared to reduced GSH (high GSSG:GSH ratio) (Nemeth and Boda, 1994) in blood, although erythrocyte preparations from newborns were more refractory to GSH depletion than adult erythrocytes in response to an in vitro oxidative stress (Clahsen, et al., 1992).  Plasma GSH levels in infants steadily increased from 0.6-1 µM during the first week of life to approximately 3 µM at 1 year (Chantry, et al., 1999) (Table 4-7).   This is in contrast to older child and adult plasma GSH concentrations which are approximately 6 µM (Chantry, et al., 1999; Rodriguez, et al., 1998; Gibbs, et al., 1997).  The GSH deficiency in neonates was postulated to result from greater oxidative stress at this age combined with hepatic immaturity since the liver is an important source of systemic GSH.  However, this paper did not report the gestational age of the neonates.  Elsewhere, it has been reported that plasma GSH is lower in premature as compared to full-term neonates (Jain, et al., 1995).   Another uncertainty is the degree to which plasma GSH status reflects hepatic GSH.  However, given the fact that we are presented with data suggesting an immaturity in GSH synthesis, it is important to simulate the dosimetry repercussions of this apparent immaturity.  

4.5 Parameter Inputs for Acrylamide PBTK Modeling and Variability Analysis

The purpose of this section is to summarize the final assumptions used in the acrylamide PBTK model to characterize the impact of inter-individual variability and developmental differences in CYP2E1, GST and EH activity on potential internal doses of acrylamide and glycidamide.   The section first presents the distribution of activity for CYP2E1, GSTs, and EH chosen to represent variability in adults based on the literature reviews in sections 4.2 through 4.4.  It next summarizes the inputs for the analysis of developmental differences in potential dose beginning with the physiological parameters (weight, compartment volumes, blood flows, ventilation rates, etc.) for each age group and followed by a compilation of the age-related differences in both mean enzyme activity and variability in enzyme activity.  

4.5.1  Modeling Assumptions for Variability in Enzyme Activity


Table 4-8 summarizes the parameters used to characterize inter-individual variability for CYP2E1, GST, and EH in the adult PBTK model.  The mean values were estimated in the process of calibrating the human acrylamide model as discussed in Section 3 of the report.  The geometric means (GMs) and standard deviations (GSDs) for the lognormal distributions assumed to represent variability in the enzyme activities are also shown.  In most cases, the data available to characterize variability were relatively sparse and could support a number of alternative distributional forms.  Lognormal distributions were chosen for modeling purposes because of their convenient mathematical properties and because they often adequately describe biological data.

4.5.1.1 CYP2E1


For our analysis of the impact of enzyme variation on internal doses in adults, we have used Lipscomb et al. (2003) characterization of variability in CYP2E1.  As described earlier, Lipscomb estimated CYP2E1 Vmax to be lognormally distributed with a GSD estimate (1.7274) for variation in CYP2E1 (Table 4-1).  Though greater than some other estimates, it is the only estimate that has been made for a measure of Vmax, the parameter of most direct relevance to  our model.  It has been derived from data from adults aged 19 to 77 which is a large age range, but includes only one individual over 65.  The geometric mean was estimated from the mean and the GSD using the following relationship:
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4.5.1.2  GSTs



We used three different assumptions about variability in GST to explore the impact of GST polymorphisms  on variability in internal dose of acrylamide and glycidamide:

· GSTM1 alone acts on acrylamide/glycidamide with genotype-based differences in enzyme activity shown in Table 4-3 and frequencies for a Caucasian population shown in Appendix Table A-1.

· The combination of GSTM1, T1, and P1 act in concert on acrylamide/glycidamide with the influence of genotype on enzyme activity shown in Table 4-4 and genotype frequencies for a Caucasian population shown in  Appendix Table A-2.

· The combination of GSTM1, T1, and P1 act in concert with genotype frequencies for a mixed Caucasian, African American, and Asian population as shown in Appendix Table A-2 and the relative frequency of these ethnic groups in the U.S. population (Appendix Table A-3).

The first two scenarios were used to explore alternate assumptions about which GSTs are involved in acrylamide and glycidamide metabolism. We chose GSTM1 to explore the scenario in which a single  GST isoform is responsible for acrylamide metabolism because of its greater variability.  GSTT1 would also exhibit considerable variability due to the relatively large frequency of the null genotype, but for GSTT1 there is no evidence for a hyper-metabolizer with an extra gene copy as there is for GSTM1.  The Caucasian population was chosen because of the large percentage of GSTM1 null individuals expected.  With the third assumption, we explore the difference between activity in a Caucasian population and a mixed ethnic population consisting of Caucasians, African-Americans and Asians (represented by Japanese because of their different genotype profile relative to Chinese and Americans). These groups are represented in proportion to their presence in the overall US population.
 


For GSTP1 we used activity data based on studies using CNDB as a substrate.  Although substrate specificity may be another factor contributing to inter-individual variability, our previous analysis (Ginsberg et al.2003) showed qualitative but not quantitative differences in GSTP1 activity that were substrate-specific, i.e., the size of wildtype to variant differences is similar across substrates but the direction of the difference can be substrate specific (wildtype is more active in one case and less active in another).

The enzyme distributions for each of the GST genotypes in Table 4-4 were assumed to be lognormal.
  The exception to this was the null genotype which was not entered as a distribution but as a point estimate (0).  The frequency for a particular enzyme distribution was based on genotype frequencies in the population being represented.  For the full population, the distributions for each of the three ethnic groups were sampled randomly according to the frequency of those groups in the U.S. population according to recent census data (Table A-2).  Because we did not include all of the ethnic groups listed in the table, our analysis adjusted the percentages of Caucasians, African Americans, and Asians to reach 100 percent. 


Monte Carlo simulation of  GST conjugation of acrylamide or glycidamide with GSH  involved the following steps for each iteration:

· For scenarios involving multiple ethnic groups, the model first selects the ethnicity of the “individual” represented by each iteration according to the frequencies in the U.S. population (Table A-2),

· For the chosen ethnic group, a genotype is selected according to the frequency of genotypes in that population (Table A-1),

· For that genotype, the model samples from the lognormal distribution specified in either Table 4-4 or Table 4-5 to produce a relative activity factor,

That value is multiplied by the mean GST binding for acrylamide and for glycidamide in the calibrated PBTK model (i.e. same mix of GSTs involved in acrylamide as in metabolite conjugation).   The activity level factors represented in Tables 4-4 and 4-5 are defined relative to the wild type activities for each GST isoform which are arbitrarily set at the value of one.  

4.5.1.3  Epoxide Hydrolase


Variability in EH activity, expressed via Vmax for EH, was also characterized as lognormal.  As discussed in the previous section, limited data were available to assess the distributional characteristics of EH activity.  The range for both EH activity and protein expression was fairly consistent in several in vitro studies, showing a 7 to 8.4 fold difference where subjects were not screened out due to potential exposure to EH inducers and inhibitors (e.g. alcohol).  The midpoint of this range (about 7.6-fold) corresponds to a GSD of about 1.55 (assuming the 7.6 fold corresponds to a ratio of the 99th to the 1st percentile).  We used this GSD to represent a ‘best estimate’ of variability in EH.

 
As in the case of CYP2E1, the GM Vmax for EH had to be estimated for input into Monte Carlo analysis.  The equation shown above for converting the arithmetic to geometric mean value was used again here for EH.   The mean value was the backfit needed to match in vivo biomarker data as described in Section 3.  The EH GM Vmax and GSD were then used to define the EH lognormal input distribution for Monte Carlo PBTK modeling.  

4.5.1.4  Modeling Scenarios Used to Evaluate Acrylamide and Glycidamide Doses in Adults

Crystal Ball® software was used to conduct the simulations.  In each iteration, values were randomly sampled from the distributions specified and the outputs of the model recalculated.  A sufficient number of trials (5000) were run for each simulation to obtain a stable distribution (i.e., one that would not be materially different if more iterations were run).    Several scenarios were explored to evaluate the impact of variation in enzyme activity on internal doses of acrylamide and glycidamide. They include variation in:

· CYP2E1 only

· GSTM1 only

· GSTM1, T1, P1 (mixed population ) only

· EH only

· CYP2E1 + GSTM1 (Caucasians) 

· CYP2E1 + GSTM1, T1, P1 (Caucasians)

· CYP2E1 + GSTM1, T1, P1 (Caucasians) + EH

· CYP2E1 + GSTM1, T1, P1 (mixed population) + EH

The two primary outputs of interest were the internal doses of acrylamide and glycidamide, measured as the area under the concentration times time curve in blood (AUC in μM) at 120 hours.   One hundred and twenty hours is far enough out on the time scale so that there are no further changes to AUC from a single bolus dose for either parent compound or metabolite.  Other outputs included the enzyme activities levels simulated, the half lives for compounds, and the percentages eliminated via each metabolic route.

4.5.2  Modeling Assumptions for Developmental Differences in Enzyme Activity

4.5.2.1 Age Categories

As summarized in Section 4.2.4, more data are available regarding the ontogeny of CYP2E1 (Johnsrud, Vieira; see Section 4.2.4) than for development of GSTs and EH (Sections 4.3.2 and 4.4.2).  Therefore, the ontogeny of CYP2E1 is used here as the major determinant in selecting age categories for detailed analysis.   Specifically, we have chosen to model acrylamide and glycidamide dose for average individuals representing each of the major age categories used in the Vieira et al., (1996) study:

· 1-7 days

· 8-29 days

· 30- 90 days

· 90 days – 1 year

· 1-10 years

· 18-65 (adult level)

While the Johnsrud et al. (2003) statistical analysis suggested a broader range of ages could be lumped without losing statistically important groups, re-examination of the data for CYP2E1 suggests that more narrow age categories might warrant evaluation (as discussed in Section 4.2.4); this particularly applies to  the  0-1 week age group.

4.5.2.2 Physiological Parameters for Developmental Models

The physiological parameter inputs for PBTK models for each of these categories are shown in Table 4-9.  The assumptions for the youngest age category, 0-7 days, were taken from a calibrated neonatal model developed for caffeine and theophylline (Ginsberg, et al., 2004).   For the next age category, we used a body weight published in the Children’s Exposure Factors Handbook and scaled blood flows and ventilation rates (need to finish) accordingly.  The physiological parameters for the remaining age groups were developed using P3M (Price et al., 2003).  P3M is a model which predicts compartment volumes, blood flows, and other factors from NHANES III height, weight, and other measured parameters using published mathematical relationships published in the scientific literature.  P3M was also used to estimate the parameters for the adult model.

4.5.2.3 Developmental Differences in Enzyme Levels 

Based on the evaluation of the available on the ontogeny of CYP2E1, GST and EH presented in Section 4.4, we developed a set of factors with which to adjust the adult enzyme activity levels in the acrylamide PBTK model to reflect activities in each of the developmental age groups listed above.  Each adjustment factor reflects the ratio of activity for a particular age group to that in adults; Table 4-10 summarizes these factors for each enzyme.  

Note that the human acrylamide PBTK model uses allometric scaling to develop the human enzyme activities from those observed in the rat up to data; it therefore takes into account differences in total enzyme activity due to differences in body and liver weight for different age groups.  The child/adult adjustment factors in Table 4-10 address differences between children and adults in the amount of activity per unit of liver.

CYP2E1


The age-specific adjustment factors for CYP2E1 Vmax are based on a combination of the Vieira et al. (1996) and Johnsrud  et al (2003), using inverse variance weighting.  We estimated the resultant GM and GSD for each age group, and re-calculated the GM ratios for each age group relative to adults.  The one exception is that we have relied on the detailed Johnsrud et al (2003) data to model CYP2E1 in the first month where the data was not well represented by a parametric distribution.  Instead CYP2E1 activity is represented by an empirical distribution (shown in Figure 4-2).

GSTs


For the GSTM1 and P1, we relied on the Strange et al. (1989) to characterize the GST enzyme levels in children relative to adults. The age-specific adjustment factors are shown in Table 4-9.  We found no point of comparison for GST theta class enzymes between neonates, older children and adults; for the purpose of this analysis we assumed that the developmental profile would mirror that of GST mu class.  
 

Inter-individual variability in GSTs was characterized using the same approach taken with the adults.  The degree of variability associated with each GST isoform, for example GSTM1, was the same as that estimated for the adults (Table 4-3).  The relative frequency of genetic polymorphisms in different ethnic populations was also assumed to be the same as in adults. 


Epoxide Hydrolase

For EH, we have used the data on child/adult ratios displayed in Table  4-6  from Ratanasavanh et al., (1991) to estimate EH activity levels in neonates relative to those in adults (Table 4-10).  Given the very small number of subjects in each age group, it was not possible to assess differences in variability between age groups.  Variability was assumed to be the same as in adults, approximately 7-8 fold variation (corresponding to a GSD of about 1.55).  As in the case of some of the CYP2E1 analyses, because the differences observed between age groups were not statistically significant in the Ratanasavanh et al. (1991) study; the ratios should be viewed as sensitivity analyses.

Glutathione 

The model input for hepatic glutathione in early life stages is adjusted according to the ontogeny of plasma GSH described in Chantry, et al. (1999) (Table 4-7).  The numerical adjustments (based on the ratio of child to adult glutathione levels) that were derived from those data for the age groups modeled in the current assessment are shown in the last columns Table 4-10.  These adjustments range from a 10 fold downward adjustment of GSH in the first week of life to no adjustment (relative to adults) in the 1-10 year old group.
4.5.2.4   Modeling Scenarios for Evaluating Acrylamide and Glycidamide in Children

In children, the analysis of inter-individual variability was restricted to two scenarios:, 

· Variation in CYP2E1, GSTM1, and EH

· Variation in CYP2E1, GSTM1, EH, and starting glutathione levels

The GSTM1 variation in Caucasians was chosen both because it represents the most variable scenario for acrylamide metabolism but also because the developmental differences in GSTM1 are better defined than for all three GST isoforms.

Table 4-1

Summary of Data on Variability in CYP 2E1 in Adultsa
	Study
	Type of study
	Substrate(s)
	Metabolic parameter measured
	GM
	GSD
	Notes

	Iyer and Sinz, 1999
	Human

hepatic microsomes (liver bank specimens)
	p-nitrophenol
	Catalytic activity (nmol/min/mg microsomal protein)
	0.353


	1.43
	21 livers, 14 males, 6 females, 1 unknown. 1 Hispanic, 5- African-American,  12 Caucasian, 2- unknown

	Johnsrud et al.

2003


	Human hepatic microsomes

(liver bank specimens)
	---
	CYP protein content

(pmol CYP/mg microsomal protein)
	44.8

(61.3)


	1.6

(1.35)
	91 days to 18 years

(10-18 years)a

	Lipscomb et al. 2003
	Human

in vitro
	TCE
	Vmax:

(pmol TCE oxidized/min/g liver)
	78,810


	1.7274
	Variance derived statistically from variance in CYP2E1 mediated oxidation of TCE in vitro, hepatic CYP2E1 content

	Dorne et al. 2004


	Human pharmacokinetic studies (in vivo)
	Chlorzoxazone 

Trimethadione
	Clearance

(ml/min/kg BW)


	4.2

0.72
	1.3

1.2 
	GSDs for clearance values derived from meta-analysis of several studies, involving oral and intravenous dosing in adults.  Ages unavailable.


a. For the Johnsrud et al. study, the age category 91 days to 18 years represented stable CYP2E1 protein expression levels.  For more direct comparison to other studies, we have included distribution parameters for a 10-18 year age group, although Johnsrud et al. (2003) did not find this group to be statistically significantly different from the 91 day to 10 year old age groups.

Table 4-2

Age-related Variation in Post-natal CYP2E1 Protein Expression:

Comparison of Vieira et al. 1996 and Johnsrud et al. 2003

	
	Vieira et al., 1996

OD units/mg microsomal protein       
	Johnsrud et al., 2003

pmol CYP/mg microsomal protein

	Post-Natal Age Categoriesa
	GMb
	GSDb
	n
	Ratio to adult GM
	GM
	GSD
	n
	Ratio to adult GM

	24 hr
	0.28
	3.06
	4
	
	--
	--
	
	

	1-7 days
	0.47
	2.66
	8
	0.10
	5.88
	3.13
	24
	0.10

	8-28 daysc
	0.81
	2.57
	12
	0.17
	13.07
	1.93
	18
	0.21

	30-90 days
	1.32
	1.98
	23
	0.28
	23
	1.36
	29
	0.38

	91 days-1 year
	1.48
	2.04
	15
	0.31
	41.74
	1.57
	35
	0.68

	1-10 year
	3.5
	1.96
	4
	0.73
	35.26
	1.7
	41
	0.58

	>10-18 years
	4.77
	1.68
	14
	1
	61.21
	1.35
	20
	1


a. Age categories from Vieira et al. 1996. Note that Johnsrud et al did not find significant differences in 

in the first four age groups.

b. We estimated the geometric means (GM) and standard deviations (GSD) from Figure 1 in Vieira et al. (1996).  Figure 1 is a bar graph showing the mean and standard error of protein expression for each age group.  Using Data Thief II, a program for estimating numerical data from graphs, we estimated the mean and standard error. We then estimated the standard deviation using the sample size for each age group and then calculated the expected GM and GSD using standard methods assuming a lognormal distribution.

c. For the Johnsrud et al. 2003 data, this category also includes data for one infant aged 29 days.

Table 4-3

Summary of GST Genotypes and Normalized Activity Levelsa

	GST Activity Distributions
	 
	Notes

	
	Mean
	S.D.
	 

	GSTM1+
	1
	0.74
	

	GSTM1+/-
	0.35
	0.12
	 

	GSTM1-/-
	0
	---
	 

	
	
	 
	 

	GSTT1+
	1
	0.15
	

	GST+/-
	0.44
	0.11
	

	GST-/-
	0
	---
	 

	
	
	
	

	GSTP1(I/I)b
	1
	0.22
	CNDB as

	GSTP1(I/V)b
	0.67
	0.14
	Substrate

	GSTP1(V/V)b
	0.33
	0.071
	

	
	
	
	

	GSTP1(I/I)b
	0.33
	0.071
	BPDE as

	GSTP1(I/V)b
	0.67
	0.14
	Substrate

	GSTP1(V/V)b
	1
	0.22
	


a. Reproduced with permission from Ginsberg et al. 

(2003 unpublished).

b. I/I – wildtype

    I/V --  heterozygous wildtype/variant

    V/V – homozygous variant/variant

Table 4-4

Estimated Relative GST Activity Levels for 

Possible Genotype Combinations of GSTM1, T1 and P1a
	
	CNDBb as P1 Substrate
	
	BPDEc as P1 Substrate

	Case No. 
	Genotype Combination
	Mean
	Standard deviation
	mean
	Standard deviation

	1
	M1+:T1+:P1(I/I)
	3
	0.78
	2.33
	0.76

	2
	M1+:T1+:P1(I/V)
	2.67
	0.77
	2.67
	0.77

	3
	M1+:T1+:P1(V/V)
	2.33
	0.76
	3
	0.78

	
	
	
	
	
	

	4
	M1+:T1+/-:P1(I/I)
	2.44
	0.78
	1.77
	0.75

	5
	M1+:T1+/-:P1(I/V)
	2.11
	0.76
	2.11
	0.76

	6
	M1+:T1+/-:P1(V/V)
	1.77
	0.75
	2.44
	0.78

	
	
	
	
	
	

	7
	M1+:T1-:P1(I/I)
	2
	0.77
	1.33
	0.74

	8
	M1+:T1-:P1(I/V)
	1.67
	0.75
	1.67
	0.75

	9
	M1+:T1-:P1(V/V)
	1.33
	0.74
	2
	0.77

	
	
	
	
	
	

	10
	M1-:T1+:P1(I/I)
	2
	0.26
	1.33
	0.16

	11
	M1-:T1+:P1(I/V)
	1.67
	0.21
	1.67
	0.21

	12
	M1-:T1+:P1(V/V)
	1.33
	0.16
	2
	0.26

	
	
	
	
	
	

	13
	M1-:T1+/-:P1(I/I)
	1.44
	0.24
	0.77
	0.13

	14
	M1-:T1+/-:P1(I/V)
	1.11
	0.18
	1.11
	0.18

	15
	M1-:T1+/-:P1(V/V)
	0.77
	0.13
	1.44
	0.24

	
	
	
	
	
	

	16
	M1-:T1-:P1(I/I)
	1
	0.22
	0.33
	0.07

	17
	M1-:T1-:P1(I/V)
	0.67
	0.14
	0.67
	0.14

	18
	M1-:T1-:P1(V/V)
	0.33
	0.07
	1
	0.22


a. Reproduced with permission from Ginsberg et al. (2003 unpublished).  Relative levels estimated as the ratio of the activity associated with each genotype to full activity for each isoform.  These values are used alone to adjust the mean GST levels in the PBTK model as some values are greater than one.  They are normalized over the population distribution used in each scenario (see text).

b.  CNDB = 1-chloro-2,4-dinitrobenzene

c.  BPDE = benzo(a)pyrene diol-epoxide

Table 4-5 

 Expression of GST-Alpha, Mu and Pi in Neonates and Adult Liver Cytosol Preparations (μg/mg cytosol protein)a

 (Strange et al., 1989)

	
	Pre-natal (10-42 weeks post menstrual)
	Post-natal (2-85 weeks)b
	Adults

	GST
	N
	Mean±SD
	95th : 5th %ile
	N
	Mean±SD
	95th : 5th %ile
	N
	Mean±SD
	95th : 5th %ile

	Alpha-B1
	22
	9.0 ±3.1
	1.4
	20
	14.3 ±4.7
	1.4
	20
	12.8 ±5.5
	1.5

	Alpha-B2
	22
	0.93 ±0.76
	2.2
	19
	2.3 ±2.3
	2.9
	20
	3.7 ±2.1
	1.7

	Mu
	10
	0.10 ±0.54
	3.9
	11
	0.43 ±0.33
	3.1
	11
	0.46 ±0.27
	2.4

	Pi
	22
	0.53 ±0.27
	1.6
	20
	0.21 ±0.22
	2.8
	20
	0.01 ±0.013
	7.0


a. Data presented include only non-null phenotypes.  

b. For GST mu, non-null subjects ranged in age from 15-85 weeks.

Table 4-6

Age-Related Differences in EH Protein in Healthy Human Livers

(Ratanasavanh et al., 1991)

	Subject
	Age
	Relative

EH protein contenta 
	Ratio

Child/Mean adultb

	1
	1 hour
	1
	0.55

	2
	1 day
	1.33
	0.73

	3
	1 week
	1.22
	0.67

	4
	1 week
	0.76
	0.42

	5
	3 weeks
	1.9
	1.05

	6
	6 months
	1.2
	0.66

	7
	3 years
	1.3
	0.72

	8
	11 years
	1.58
	0.87

	9
	18 years
	1.28
	1

	10
	24 years
	2.33
	1

	11
	41 years
	2.71
	1

	12
	28 years
	1.97
	1

	13
	30 years
	1
	1


a. Ratanasavanh et al. (1991) expressed the absolute 

protein levels (nmol/mg protein) for each subject relative to the value for one adult subject whose value was arbitrarily set to 1.

b. Ratio of individual value to mean adult relative value in previous column.  
Table 4-10

Plasma Glutathione Levels in Infants a

 (µmol/liter)

	
	Males
	Females
	Averageb
	Ratio Maturec: developing

	Mean age
	Mean glutathione  concentration
	SD
	Mean glutathione  concentration
	SD
	Mean glutathione  concentration
	SD
	Mean glutathione  concentration
	SD

	weeks
	µmol/liter
	
	µmol/liter
	
	µmol/liter
	
	µmol/liter
	

	0.5
	0.84
	1.16
	0.92
	1.34
	0.60d
	1.25
	0.09
	0.19

	4.1
	1.52
	1.19
	1.41
	1.26
	1.31d
	1.47
	0.20
	0.22

	9.4
	1.68
	1.17
	1.75
	1.25
	1.72
	1.21
	0.26
	0.18

	18.2
	3.17
	1.16
	1.93
	1.59
	2.55
	1.38
	0.39
	0.21

	26.8
	2.97
	1.2
	2.08
	1.2
	2.53
	1.20
	0.38
	0.18

	39.7
	4.04
	1.16
	3.1
	1.4
	3.57
	1.28
	0.54
	0.19

	52.8
	3.34
	1.27
	1.84
	1.4
	2.59
	1.34
	0.39
	0.20

	79.4
	3.05
	1.45
	2.52
	1.47
	2.79
	1.46
	0.42
	0.22

	312 to adult
	6.60
	NR
	
	
	6.60
	NR
	1.00
	0.48e


a. Source: Chantry et al., (1999).

b. Arithmetic average of males and females

c. Mature – 312 weeks (6 years).  Adult levels are reported also to be about 6-7 µmol/liter.

d. The plasma GSH levels for these age groups are estimated from infants whose mothers had not received the anti-HIVdrug, zidovudine, which is reported to increase postnatal plasma GSH (note higher levels in male and female infants who did have in utero exposure to zidovudine).  Gender not specified in article.

e. Estimated from mean coefficient of variation for ages 18-79 weeks.

Table 4-8

Inputs to Adult Acrylamide PBTK Model:

Summary of Variability in CYP2E1, GSTs, and Epoxide Hydrolase

	
	Fitted Meana
	Variability

	
	
	GMb
	GSD

	CYP2E1

Metabolism of Acrylamide

Vmax

(mg/hr)
	18.4


	15.8
	1.7274

	GST

Acrylamide

Reaction with Glutathione

(L/mmol GSH-h)


	0.111
	See discussion of variability in text.

	GST

Glycidamide

Reaction with Glutathione

(L/mmol GSH-h)


	0.478


	See discussion of variability in text.

	Epoxide Hydrolase

Reaction with Glycidamide

 Vmax

( mg/hr)


	80.9


	73.4
	1.55


a. Mean estimated in calibrated human acrylamide model (see Section 3) of the report.

b. Converted from mean using GSDs representing variability. See discussion in text.

Table 4-9

Physiological Parameters for Neonates, Children, and Adults

	Inputs to Acrylamide PBTK model
	AGE:
	0-7

daysa
	8-29

daysb
	31-90 daysc
	90 days –

1 yearc
	(1-10 yrs)

5 yearsc,d


	18-65

yearsc

	Body weight
	kg
	3.5
	4.360
	6.543
	8.822
	19.207
	71.17

	Basal cardiac output
	l/hr/kg
	9.869
	9.798
	9.631
	9.187
	7.688
	5.91

	Compartment volumese
	
	
	
	
	
	
	

	   Liver
	fraction BW
	0.041
	0.038
	0.032
	0.031
	0.027
	0.0195

	  Tissue (well perfused, poor +       fatty tissues)
	fraction BW
	0.843
	0.850
	0.864
	0.860
	0.864
	0.893

	   Total blood volume
	fraction BW
	0.086
	0.083
	0.076
	0.080
	0.079
	0.0571

	Blood flows as fraction of cardiac output
	
	
	
	
	
	
	

	   Liver
	fraction CO
	0.25
	0.23
	0.20
	0.186
	0.21
	0.198

	   Tissue (well perfused, poor + fatty tissues)
	fraction CO
	0.893
	0.869
	0.811
	0.814
	0.813
	0.802

	Total ventilation rate l/hr-kg (assume basal CO)
	l/hr/kg
	9.869
	9.798
	9.631
	9.187
	7.688
	6.54

	Resting CO/BW
	
	0.164
	0.163
	0.161
	0.153
	0.128
	0.094


a. The physiological parameters are taken from neonatal caffeine model (Hattis et al. ___)

b. Assumed  75%ile female body weight for 1 month old infant.  From Table 11-1, Child-specific Exposure Factors Handbook (USEPA, 2002). Scaled other 

 parameters accordingly.

c. The physiological parameters were developed using P3M (Price et al., 2003), a program for estimating these parameters from data collected by the NHANES III database.

d. Rather than average body weight over the 1-10 years, 5 years was selected as a midpoint and children aged 4.75-5.25 were sampled from NHANES.

e. Liver, tissue and blood volume as a fraction of body weight are adjusted to sum to 0.97, in accordance with the Kirman rat model from which the human model was developed.

Table 4-10

Mean Child/Mean Adult Ratios and Variability in Activity for 

CYP2E1, GST, EH and Glutathione Content

	Enzyme:
	CY2E1a
	GST
	Epoxide Hydrolase
	Glutathione Concentration

	Age range represented:
	Child/Adult Ratio (mean)
	Variability (GSD)
	Mu class
	Pi class
	Child/adult Ratioc
	Variability (GSD)
	Child/adult 

Ratio
	Standard

Deviation

	0-7 days
	0.15
	2.31
	0.24b
	21
	0.5
	1.55
	0.09
	0.19

	8-28 days 
	0.25
	1.77
	0.31b
	21
	0.5
	1.55
	0.20
	0.22

	30-90 days
	0.36
	1.33
	0.63b
	21
	0.5
	1.55
	0.26
	0.18

	90 days -1 year
	0.50
	1.52
	0.93
	21
	0.5
	1.55
	0.43
	0.20

	1-10 years 
	0.67
	1.5
	0.93
	15
	0.5
	1.55
	1.00
	0.48

	adult 18-65 years 
	1.00
	1.3
	1
	1
	1
	1.55
	1.00
	0.48


a. Variance weighted mean ratio from Vieira et al. (1996 ) and Johnsrud et al. (2003).  GSDs  estimated from mean and standard deviation using algorithms in Crystal Ball® See text for details.

b. Linearly extrapolated between pre-natal and post-natal levels in the Strange et al. (1989) study (Table 4-5) to midpoints of the age ranges in this table. Variation in GSTM1is based on Monte Carlo simulation of a population distribution of GSTM1 derived from data on inter-individual variation in the GSTM1 subpopulations (null (-/-), heterozygous null/non-null (+/-), and homozygous non-null (+/+ or +/++) and the population frequency of these genotypes in human populations.

c. Derived from Ratanasavanh et al. (1991) data shown in Table 14.  Given sparse data at different age groups, our analysis chose not to fit a function to the data but simply assumes reduced EH function at younger age groups (i.e. half of adult level).  See discussion in text for derivation of GSD.

d. From Chantry et al. 1999.  See Table 4-7.

Figure 4-1

CYP2E1 Protein Expression as a Fraction of Adult Geometric Mean Value:

Comparison of Vieira et al. (1996) and Johnsrud et al. (2003)
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Figure 4-2

Cumulative Distribution of CYP2E1 Content (pmol/mg microsomal protein) in 

0-7 Day Old Infants from the Johnsrud et al. (2003) Studya,b
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a. Data obtained from the authors.

b. Average birth weight for these 24 infants was 1.8 kilograms indicating 

that most of these subjects were premature.

5.0 Results

This section provides estimates of population variability in internal doses of acrylamide and its major metabolite, glycidamide, as predicted from PBTK/Monte Carlo analysis.  The sources of variability considered in this analysis are genetic polymorphisms in a key detoxifying pathway (GSTs), inter-individual variability in the key activating pathway (CYP2E1), inter-individual variability in a relatively minor detoxifying pathway (EH), and inter-individual variability in starting glutathione levels (developmental models only).  Variability in these pathways was considered not only for adults, but in separate model runs, for several children’s age groups.  The latter was accomplished by incorporating the physiological characteristics of early life age groups and ontogeny of enzymatic systems into the acrylamide/glycidamide PBTK model. The focus of the analysis has been the cumulative (AUC) dose of acrylamide and glycidamide experienced by individuals exposed to a 1 μg/kg (body weight) dose of acrylamide.

Results are presented in three sections.  The first section (5.1) presents range- finding analyses that help characterize the basic operation of the adult model when inter-individual variability in each enzyme is separately introduced.  In the second section (5.2), the interaction of variable pathways is explored to develop estimates of population variability that account for the variability present in the 3 metabolizing pathways.    In the third section (5.3), we evaluate the joint impact of inter-individual variability and developmental differences on acrylamide and glycidamide dose in a series of six discrete age groups ranging from newborns in the first week of life to adults.

The ensuing analysis of results focuses on how inter-individual variability in enzyme activity affects the central estimates and upper percentiles of acrylamide and glycidamide dose.  In this manner, PBTK Monte Carlo analysis facilitates an understanding of how literature observations of inter-individual variability in enzyme activity translate into inter-individual variability in internal dose.  Model projections enable one to evaluate whether the standard risk assessment assumption of approximately one-half log (3.2 fold) variability in toxicokinetic response across an exposed human population is reasonable.  Further, model projections provide dosimetry results for parent compound and active metabolite in potentially sensitive populations; these estimates may be useful for assessing cancer and non-cancer endpoints associated with acrylamide exposure.  

5.1 Impact of Inter-individual Variability in Individual Enzyme Activity on Acrylamide and Glycidamide Internal Dose in Adults

The simulations using the adult human acrylamide model presented in this report were based on the physiological parameters (body and organ weights, blood flows) of an average adult female as described in Section 4 of this report.  These parameters were held constant in order to examine the impact of variability in enzyme activities.  Examination of full population variability in acrylamide dose would require inclusion of population variability in physiological factors as well.  However, it should be borne in mind that acrylamide is a very hydrophilic compound.  Therefore the size of the fat compartment, which is a source of substantial inter-individual variability in body composition, would only minimally affect acrylamide and glycidamide disposition.

As described in Section 4, the distributions of CYP2E1, GST, and epoxide hydrolase were largely modeled as lognormal for the purposes of the Monte Carlo simulation.  Because of uncertainties about the GST subclasses primarily responsible for acrylamide and glycidamide metabolism, we evaluated three alternative GST scenarios:

· GSTM1 alone is involved – in this scenario we used the frequency distribution of GSTM1 phenotypes for Caucasians because of its broad variability and high percentage of null individuals 

· GSTM1, T1 and P1 are all equally involved – two scenarios were evaluated: 

· one using the frequency distributions of these subclasses among Caucasians and, 

· one using the distribution for a mixed ethnic population (Caucasian, African American and Asian).

The GSTM1-Caucasian scenario essentially focuses on a potentially susceptible genetic subpopulation, GSTM1-null individuals.  These individuals are potentially susceptible because GSTM1 may be a key (or the sole) GST responsible for detoxification of glycidamide via conjugation with GSH.   The mixed GST subclass scenario covers the scenario in which overlapping substrate specificity across GSTs allows for a deficit in one enzyme to be at least partially filled by a different GST isozyme.  Given the lack of knowledge on which GST isozymes are involved in acrylamide/glycidamide detoxification, this scenario is equally plausible as the single GST scenario.  The multi-ethnic group runs yield AUC distributions for a more general and diverse population.

In a series of panels, Figure 5-1 displays the input distributions for each enzyme.  This type of model output shows the shape of the distribution of parameter values actually generated in model runs. As expected, both the CYP2E1 and EH distributions are lognormal (Figures 5-1a and 5-1e, respectively).  For GST, we have displayed only the distributions for acrylamide reaction with glutathione as the basic shape of the distributions are the same for glycidamide (although the parameters differ). When GSTM1 is assumed to be the primary subclass responsible and is modeled according to the Caucasian frequency distribution for genetic polymorphisms in GSTM1, the input distribution is bimodal with a spike at zero activity (Figure 5-1b) since approximately fifty percent of Caucasians are GST null. When all three subclasses, GSTM1, T1 and P1 are assumed to be active in acrylamide or glycidamide metabolism, the distribution for the reaction rate appears continuous and lognormal whether the distribution is modeled for Caucasians only (Figure 5-1c)  or for the mixture of Caucasians, African Americans and Asians (Figure 5-1d).

Our first set of analyses was conducted to confirm that the model was behaving as expected when inter-individual variability in enzyme activities was introduced.  We ran the adult model first setting each enzyme at a low level (5th percentile) and then at a high level (95th percentile) of activity while maintaining the other two enzymes at their mean values.  For the GST range, the input for GSTM1 Caucasian population was used as the example dataset; in this case the 5th percentile is the null (0 activity) phenotype while the upper end chosen was the 95th percentile of the entire population (null and non-null individuals combined).  The acrylamide and glycidamide AUC values were recorded for each variation.   Figures 5-2a and 5-2b present the results of this analysis for acrylamide and glycidamide, respectively; the numerical values for the figures can be found in the accompanying table.  The first black bar in each figure shows the AUC values when the enzymes are all set at their respective mean value.  The next two bars depict the AUC values in the case of the 5th percentile and 95th percentile values for that particular enzyme activity.

These figures demonstrate that the model behaves as one might expect based upon the percent disposition of acrylamide and glycidamide as presented in Figure 3-1.     AUC results for acrylamide are most sensitive to variation in the CYP2E1 input while glycidamide AUC is most sensitive to variation in the GST input.  When CYP2E1 activity is low, acrylamide levels are at their highest and glycidamide levels are low.  When GST activity is low (zero in the GSTM1 example used here), acrylamide and glycidamide levels are both relatively high.  Glycidamide dose is particularly high when GST activity is low or absent because conjugation with glutathione is the predominant fate pathway for glycidamide as opposed to acrylamide, for which CYP2E1 oxidation is the main removal pathway (Figure 3-1).  Variation in EH, which does not metabolize acrylamide, has no impact on acrylamide AUC.  AUC dose of glycidamide is affected by variance in EH, but only modestly.   This comports with the relatively small contribution of EH (10%) to overall glycidamide metabolism (Figure 3-1).

The next set of analyses vary activity in one enzyme at a time to observe its impact on the distribution of acrylamide and glycidamide AUC.  The results are shown in Table 5-1 for acrylamide and 5-2 for glycidamide.  

Contribution to variability reflects the relative throughput to the various metabolic pathways for acrylamide and glycidamide (Figure 3-1).  Variation in CYP2E1, a major metabolic pathway for acrylamide disposition, is an important contributor to overall variability (as indicated by the coefficient of variability) in acrylamide AUC and but less influential on variability in glycidamide AUC.  The most variability in both acrylamide and glycidamide AUC occurs under the assumption that acrylamide is metabolized by a single GST subclass, represented by GSTM1 in our example.  While CYP2E1 introduced a moderate degree of variability (coefficient of variability =0.24-0.27), the GSTM1 run saw the coefficient of variability jump to 0.64 (Table 5-2).  Activity of GSTM1 in Caucasians is essentially bimodally distributed with an estimated 53% with null activity, 39% with partial activity, and 7% with full activity (wild type).   The GST mixed distribution runs for glycidamide are unimodal outputs with variability that is less than in the case of the GSTM1 alone run but greater than in the CYP2E1 run.  Inputting the full distribution of epoxide hydrolase adds very little variability to the glycidamide AUC and no variability to the acrylamide AUC.  Analyses in the next section (5.2) will explore the relative contributions to variability in AUC when all three enzymes are simultaneously allowed to vary in activity. 

The mean acrylamide and glycidamide AUC values are similar across all scenarios with the exception of the GSTM1 scenario.  When the GST input distribution is bimodal, as in the GSTM1 Caucasian population, two modes are also projected for acrylamide and glycidamide AUCs.  The statistics for both modes are presented (Tables 5-1 and 5-2).  The highest acrylamide AUC (0.31 µmol-hour) and glycidamide AUC (0.227 umol-hr) result- from the portion of the modeled Caucasian population that is GSTM1-null.  The high mode has 1.5 fold greater acrylamide AUC and 4.8 fold greater glycidamide AUC than the low mode (Tables 5-1 and 5-2, respectively).  In addition, glycidamide half-life more than doubled from 3 to 6.9 hours when comparing the high AUC mode (GSTM1 run) to the CYP2E1 run where there was no variability in GST.      

One observation that was initially perplexing was that the distributions of acrylamide and glycidamide AUCs appear normally distributed when lognormal variation in CYP2E1 and epoxide hydrolase (relevant for glycidamide only) is introduced.  As shown in the first column of Table 5-1, for example, the mean and median acrylamide AUCs are about the same.   By contrast, the distributions of glycidamide AUC are lognormally distributed when lognormal variation in GSTs is introduced.  The change in distribution shape from a lognormal input to a normal AUC output for enzymes which have Michaelis-Menten kinetics is due to the interaction of Vmax (lognormal distribution), Km (invariant) and substrate concentration (varies as a function of exposure dose, time after dose, Vmax, and other factors).  However, when allowing GST to vary according to the underlying lognormal or bimodal population distribution, the resulting distribution more closely resembles the input distribution.  This reflects the fact that for a first order reaction (GSH conjugation), the input variability distribution has a more direct bearing on the output dosimetry distribution than in the case of enzymes with Michaelis-Menten kinetics.   

5.2 Impact of Inter-individual Variability in Multiple Enzymes on Acrylamide and Glycidamide Internal Dose

The next set of analyses examines how variance in individual enzymes combines to affect overall variability in internal dose by  sequential addition of enzyme distributions to the model.  The base model (all parameters at mean values) was adjusted first by including variability in CYP2E1, then adding variability in GSTM1 (Caucasians) and finally in EH and recording the impact on the distributions of acrylamide and glycidamide AUCs. The acrylamide AUC results are shown Table 5-3 and the glycidamide results in Table 5-4.  As in the earlier tables, the column headings indicate the enzymes for which variability is included in the model.  

The first three columns in each table reveal the relative contribution of CYP2E1, GSTM1, and EH to overall variability in AUC.  The coefficient of variability indicates a substantial increase in variability for both acrylamide and glycidamide AUC when adding GSTM1 variability to the model.  The tail to central tendency differential (99th % to median) is largest for acrylamide AUC as influenced by variability in both CYP2E1 and GSTM1; this tail to median differential is 2.6 fold.  However, in the case of glycidamide AUC, the distribution is bimodal when variability in GSTM1 is included.  Upper tail to median statistics for this type of output are not particularly relevant since those statistics assume a single population whereas two distinct sub-populations are apparent.  There is a nearly a 5 fold differential in glycidamide AUC mean results between the low and high modes.  There is a 7 fold differential when comparing the 99th percentile of the high glycidamide AUC mode with the median of the low mode.  Individuals with this profile (99th percentile of high mode distribution) have the interaction of being GSTM1 null and high functioning with respect to CYP2E1.  This combination is estimated to confer 7 fold greater internal exposure to glycidamide relative to the non-null population median.  In the case where a mixture of GSTs is involved in acrylamide and glycidamide detoxification, the resulting AUC outputs are unimodal with variability relatively modest when comparing the 99th percentile to the median (2.4 fold).  

Figures 5-3 and 5-4 present these AUC comparisons graphically for acrylamide and glycidamide.  Each figure compares the distributions of AUC assuming variation in CYP2E1 alone and under the three different assumptions about GSTs.   The latter three representations also include the variability contributed by the epoxide hydrolase distribution.  The predominant role of CYP2E1 in determining the variation in acrylamide AUC regardless of GST assumption is apparent in Figure 5-3.  Only in the case of GSTM1 does an added distribution substantially alter the acrylamide AUC profile obtained when CYP2E1 is the only source of variability. The influence of GSTM1 variability is to spread the AUC distribution, creating a longer tail of individuals with relatively high levels of acrylamide.   

In Figure 5-4, the influence of differing GSTs assumptions on glycidamide AUC is more evident.  Under the assumption that GSTM1 alone is involved, the glycidamide AUC distribution is clearly bimodal with the right-hand node representing individuals who are GST-null and the left-hand node representing individuals with wild-type and heterozygous genotypes.  The other two scenarios for GST result in similar AUC distributions and are centered closer to the AUC distribution created when CYP2E1 alone is varied.  Only about 4-5% of individuals are null with respect to both GSTM1 and T1 and a null genotype for GSTP1 does not exist.  Therefore, the GST mixed distribution’s contribution to variability in glycidamide AUC is less dramatic (i.e. the AUC is unimodal and similar in appearance to the CYP2E1 alone distribution).  

We also see a small impact of introducing variability in individual enzymes on the mean estimates of acrylamide and glycidamide dose, although the reason is not entirely clear. With CYP2E1 alone varied, the mean is slightly greater (0.26 µmol-hr) than the mean when all enzymes are fixed at their mean values (0.24 µmol-hr).  When GSTM1 is input as a distribution, the mean glycidamide AUC increases to 0.29 µmol-hr.  These differences are not statistically significant however.


The final adult analysis was to explore how varying CYP2E1, GST, and EH contributes to the highest acrylamide and glycidamide AUC levels in our simulated populations.  The 95th and 99th percentiles and the maximal values in our sample populations were used to explore the inputs that contributed to these high end individuals.  The analogy to this analysis in an epidemiological study would be to explore which genotypes lead to the highest internal doses or cancer risks.  In our model, GSTs were the only enzyme for which interindividual variability was modeled based on genetic polymorphisms.  While the current version of this model does not track the specific GST genotype for each simulated individual, we were able to identify the specific CYP2E1, GST and EH levels that contributed to the high end AUC values.  We then determined what percentile each enzyme level represented from their respective distributions.  This analysis was conducted with the output from the simulation assuming variation in all three pathways.  Inter-individual variation in GST was represented by the distribution of GSTM1 in a Caucasian sub-population.


Tables 5-5 and 5-6 show the results from this analysis for acrylamide and glycidamide, respectively. The column headings indicate the percentile of the AUC distribution for which data has been compiled. The body of the table lists the activity level and associated percentile for each relevant enzyme, the percent of each compound eliminated via each pathway, and the half life.

The results in Table 5-5 reconfirm the importance of the role of CYP2E1 and GST in determining acrylamide AUCs.    Low-end CYP2E1 activity, leading to slower metabolism of acrylamide to glycidamide, is the main contributor to the 95th  percentile,   99th percentile and the maximum value of acrylamide AUC.  The percent of acrylamide eliminated via conversion to glycidamide decreased with decreasing levels of CYP2E1.  However, it is noteworthy that even at the minimum CYP2E1 level simulated in 5000 iterations, there was still a 25% conversion of acrylamide to glycidamide.  This is in contrast to the mean case wherein 57% is converted to glycidamide.  This indicates that the range of CYP2E1 variability is limited such that even individuals at the bottom of the distribution still have a substantial ability to convert acrylamide to glycidamide.      Low GST activity is also a contributor to the high acrylamide AUC values in the table.  The simulated individual at each percentile was GSTM1-null.


The results of the analysis for glycidamide (Table 5-6) show the importance CYP2E1 in producing glycidamide and of GST in eliminating glycidamide in our model.  The 95th and 99th percentiles and the maximum levels of glycidamide were dependent first on high levels of CYP2E1 activity (all in the 98th to 99th percentile of activity).  High glycidamide AUC was coupled with low levels of GST (GSTM1-null).  In the absence of GST activity, epoxide hydrolase was the dominant route of glycidamide metabolism.  

This simulation involving GSTM1 represents a simplified situation, where half the population is GSTM1-null.  We expect that for simulations involving mixed GST subclasses and genotypes for a population more ethnically representative of the U.S., that the combinations of CYP2E1, GST, and EH leading to high acrylamide or glycidamide levels may be less straightforward.

5.3 Impact of Developmental Differences in Enzyme Activity on Acrylamide and Glycidamide AUC

This section presents results of the impact of developmental differences in enzyme activity on projected internal doses of acrylamide and glycidamide, using the data and approaches outlined in Section 4 of this report.  As in our analyses for adults, we have modeled inter-individual variability in CYP2E1, GST, and EH.  In addition, we further modified the model to add developmental differences in starting GSH concentration in the liver (mmol/L) and in GSH production rate (µmol/hr).  To take advantage of data on inter-individual variability as well as mean differences in enzyme levels between age groups, we have conducted our analysis in six discrete age groups: 0-7 days; 8-29 days; 30-90 days; 91 days-1 year; 1-10 years and 18-65 years (as in the adult model).  The analyses for each age group are based on use of the same PBTK model, but modified for age-specific physiological parameters.  The PBTK model incorporates the assumption that GSTM1 is the GST isoform responsible for acrylamide and glycidamide metabolism and uses the frequency distribution for GSTM1 genotypes in Caucasians to represent inter-individual variability.  We chose to represent GST with this isoform and population because together, they represent a scenario with the most inter-individual variability, and because the high percentage of GST-null individuals in Caucasians represents a potentially susceptible subpopulation.

The first part of the early life results focus on the version of the PBTK model in which the starting glutathione concentrations are the same across all age groups.
  We present comparisons of both the mean acrylamide and glycidamide AUC values at each age group and the full distributions representing age-specific inter-individual variability in internal doses of both compounds.   Also presented is the breakdown of acrylamide and glycidamide disposition via metabolism or binding to blood or tissue macromolecules for each age group.  

Our final set of analyses relies on the second version of the PBTK model which incorporates developmental differences in glutathione concentrations.  We compare the mean acrylamide and glycidamide AUC levels for the two modeling approaches for glutathione.   

5.3.1 Developmental Analysis using PBTK model with Fixed Initial Glutathione Concentrations

Figures 5-5a and 5-5b provide AUC distributions for acrylamide and glycidamide, respectively, across all age groups assessed (note: these graphs are best viewed in color).  Most acrylamide distributions are unimodal; the distribution for the 0-7 day age group is broader containing the greatest number of individuals with the highest AUCs, but it is still uniform in shape.  The other age group distributions are increasingly skewed to the left, appearing more lognormal in appearance.  The one exception is the distribution for the 30-90 day age group, which has two modes.  This appears to be a reflection of the bimodal GSTM1 input distribution and suggests that acrylamide fate in this age window is more dependent on glutathione conjugation than at other times.  

With the exception of the youngest age group evaluated, the glycidamide distributions are all bimodal (Figure 5-5b) showing the influence of the bimodal GSTM1 distributions on the AUC of this reactive metabolite.  Metabolism by GST-mediated binding with glutathione accounts for over half of glycidamide elimination in the baseline adult model (Figure 3-1).  The lack of bimodality at the earliest age is due to low CYP2E1 activity which constricts the amount of glycidamide formed and decreases dependence on GST-mediated conjugation.

The boxplots in the next set of figures compare more clearly the developmental differences in the means and spread of the AUC distributions for each age group.  Figure 5-6a provides the boxplots depicting the distributions of acrylamide and 5-6b shows those for glycidamide.  Each boxplot depicts the mean (■) and the 5th to 95th percentile range of AUC values (whiskers).  

The analysis of acrylamide AUC across age groups shows distinct age-related differences.  Mean acrylamide AUC values are highest in the first week after birth and gradually decline reaching near adult levels in the 91 day -1 year age group.  This pattern largely follows from the low levels of CYP2E1 and GST activity in the youngest age groups.  In addition, variability in acrylamide AUC is greatest in the newborn group and diminishes thereafter.  The maximal difference in mean acrylamide AUC between an early life age group and adults is 1.9 fold.  

The impact of age-related metabolism differences on mean glycidamide AUC appears to be smaller than for acrylamide AUC (Figure 5-6b).    Mean glycidamide levels are lowest in the youngest age and gradually increase to reach adult levels, likely reflecting the ontogeny of CYP2E1, which to some extent is countered by the ontogeny of the major detoxification pathway, GST.  However, this figure is based on overall population means and can be misleading because it does not take into account the bimodality of glycidamide AUC.  Bimodality in AUC is presented in the next figure (5-7) which shows that unlike adults, infants in the first month of life lack a high glycidamide AUC mode.  This is related to the immaturity in CYP2E1 which limits the amount of glycidamide which can be formed.  This abruptly shifts by 30-90 days of age where the bimodal distribution is established with high end individuals (primarily those with GSTM1 null activity) becoming apparent.  The upper mode glycidamide AUC values steadily rise towards adult levels as CYP2E1 matures.  

The quantitative details describing the acrylamide and glycidamide distributions for each age group can be found in Tables 5-7 and 5-8, respectively.  The tables are the same format as the adult analyses and allow more direct comparison of the statistics for each distribution.  For acrylamide, the variation within any children’s age group is relatively modest, with 99th percentile to median ratios in the vicinity of 2.  When comparing these distributions back to the adult distribution, the mean and median acrylamide AUCs are approximately 2 fold greater in the 0-7 day old group than in adults, with these values coming progressively closer to adults with increasing age.  The high end of the 0-7 day old distribution (99th percentile) is 3.8 fold greater than the adult median, while for the 8-29 day group, this ratio is 3.2.  

For glycidamide AUC distributions, Table 5-8 shows that the mean and median values for early life groups are lower compared to adults.  However, the 99th percentile of the unimodal distribution in the first week of life is approximately equal to the median of the adult upper mode.  This indicates that even though neonates are deficient in CYP2E1, it is still possible for a small percentage of neonates to have relatively high glycidamide AUC.  

In the next set of analyses, we examined the developmental differences in the patterns of acrylamide and glycidamide disposition projected by the acrylamide PBTK model.  The model tabulates the amount of acrylamide and glycidamide processed by each fate pathway (metabolism or binding) as outlined in Figure 3-1.     In the basic adult model 56.7% of the initial acrylamide dose is converted to glycidamide via CYP2E1, about 23 % is eliminated via reaction with glutathione, 0.4% binds to blood macromolecules (other than hemoglobin to which no binding is believed to occur), 2.1% binds to liver macromolecules, and about 17.5% binds to macromolecules in tissues other than the liver.  Of the glycidamide formed, 56.6% is removed by GST mediated reaction with glutathione, about 9.9% by epoxide hydrolase metabolism, 0.6% by binding to blood macromolecules (other than hemoglobin), 3.6% by binding to liver macromolecules and 29% by binding to macromolecules in tissues other than the liver.  

Figure 5-8 provides a graphical overview of the patterns of acrylamide and glycidamide disposition during development simulated by our model when starting glutathione concentrations are assumed to be fixed.  The results are expressed as a percent of the total initial acrylamide dose in µmoles.   The uppermost set of bands are related to the disposition of glycidamide.  Taken together, the glycidamide bands represent the total percent of acrylamide metabolized to glycidamide via CYP2E1.   Back-up details for the figure can be found in Tables 5-9 (expressed in percents) and Table 5-10 (expressed as µmoles of acrylamide or glycidamide).  

It is important to note that this is an analysis of the population mean glycidamide  output without consideration of bimodal subgroups which may have much different chemical disposition, especially with respect to the percentage detoxified via GST-mediated conjugation.  The main point of Figure 5-8 is to compare across age groups rather than subpopulations within an age group and so the mean values were chosen for comparison.  

Figure 5-8 reveals several patterns of acrylamide and glycidamide disposition across the age groups in our study.  Consistent with the lower levels of CYP2E1 activity in early life, metabolism to glycidamide accounts for the lowest percentage of acrylamide disposition in the youngest age group and gradually increases to adult levels, which are achieved in the 1-10 year old age group.  Acrylamide reaction with glutathione, as a percent of total acrylamide dose, shows a relatively small increase from neonates to adults which is consistent with the somewhat lower level of GSTM1 that appears to be present at birth.  A major finding with respect to acrylamide fate is the substantially larger fraction binding to liver macromolecules (10% in neonates vs. 2% in adults) and other tissue macromolecules (38% in neonates vs. 20% in adults).  This pattern likely results from the low levels of CYP and GST enzymes in the first days of life.  The percentage of dose binding to macromolecules as parent compound decreases through the developmental course but the binding to liver is still double the adult level at 1 year of age.  

Disposition of glycidamide also varies during development with there being less detoxification via GST and a greater fraction binding to liver macromolecules in the first week of life.  This profile gradually shifts towards adult values but the model still estimates lower GST-mediated detoxification and 2-3 fold greater liver binding up through the 1-10 year old group.  Glycidamide binding to other tissue macromolecules also tends to be higher in children than in adults except in the first week of life.  The reasons for less GST-mediated detoxification in older children compared to adults is not immediately obvious since the mean amount of GSTM1 present in 1-10 year old liver is simulated to be very close to that in adults.  However, the bimodal GSTM1 and glycidamide AUC distribution varies across age groups (Figure 5-5b) yielding a complex interaction between age and GST-mediated detoxification that merits further examination.  

The percentage of administered acrylamide accounted for by epoxide hydrolase-mediated detoxification of glycidamide slightly increases across age groups up to adult levels.  Epoxide hydrolase accounts for only about 10 percent of glycidamide metabolism (and about 5 percent of total acrylamide metabolism) in the basic adult model.  

5.3.1 Developmental Analysis using PBTK model with Age-related Variation in Starting Glutathione Concentrations

The final set of developmental analyses was conducted to evaluate the potential impact of incorporating assumptions about age-related differences in starting glutathione concentrations in the liver.  As discussed in Section 4, based upon results for plasma GSH from one study (Chantry et al., 1999), it appears that glutathione concentrations may be markedly lower in infants than in adults.    These lower concentrations will decrease the amount of acrylamide and glycidamide detoxified via GST-mediated conjugation and thus has the potential to impact AUC and percent disposition results.  The influence of GSH deficiency in early life on the mean acrylamide AUC is shown in Figure 5-9a.  As expected, decreased starting glutathione concentrations in the younger age groups (up to 1 year) result in higher cumulative acrylamide dose.  The maximal effect is in the 0-7 day old group, where there is an approximately 20% increase in acrylamide AUC relative to using adult GSH concentration in neonatal liver.  The low GSH model runs leave neonates in this age group with 2.3 fold more acrylamide AUC relative to adults on a mean basis, with the 99th percentile of the neonate distribution being 4.8 fold greater than the adult median (data not shown).   Mean glycidamide levels are also higher (Figure 5-9b); they range from 37% higher in neonates in the 0-7 day group down to 16% higher in the 91 day to 1 year age group relative to the fixed glutathione scenario.

 The reductions in glutathione concentrations in children relative to adults are assumed to be large (9-26% of adult GSH) consistent with GSH developmental data from plasma (Chantry et al. 1999).  However, these reductions translate into considerably smaller changes in acrylamide and glycidamide AUC (Figure 5-9ab) which demonstrates that the model is not highly sensitive to this parameter.  As discussed earlier, this lack of sensitivity relates to the relatively low percentage of total administered acrylamide dose that is removed via either acrylamide (23%) or glycidamide (32%) reaction with glutathione.    Glycidamide AUCs are slightly more sensitive to the changes in glutathione levels since about 56% of total glycidamide disposition is accounted for by this pathway.

Table 5-1

Impact of Variation in Individual Enzyme Activities on Acrylamide AUCa in Adults

(μM-hr)

	AUC Statistics:
	Individual Enzyme Variedb

	
	CYP2E1
	GSTM1c

Total        Low           High
	GSTM1,T1 P1 (Caucasian)
	GSTM1,T1 P1 (mixed races)c
	Epoxide Hydrolase 

	Trials
	5000
	5000
	2373
	2627
	5000
	5000
	5000

	Mean
	0.262
	0.259
	0.200
	0.313
	0.243
	0.242
	0.240

	Median
	0.260
	0.313
	0.208
	0.313
	0.245
	0.242
	0.240

	Standard Deviation
	0.071
	0.062
	0.037
	0.000
	0.025
	0.023
	0.000

	Range Minimum
	0.061
	0.028
	0.028
	0.313
	0.132
	0.173
	0.240

	Range Maximum
	0.479
	0.313
	0.275
	0.313
	0.301
	0.302
	0.240

	Measures of Variability
	 
	
	
	
	
	
	

	Coefficient of Variability
	0.27
	0.24
	0.18
	0.00
	0.10
	0.10
	0.00

	95th%ile :median
	1.47
	1.00
	1.17
	1.00
	1.14
	1.16
	1.00

	99th%ile:median
	1.62
	1.00
	1.23
	1.00
	1.19
	1.21
	1.00

	99th%ile:1st%ile
	3.79
	3.42
	3.49
	1.00
	1.62
	1.54
	1.00

	Half-life
	
	
	
	
	
	
	

	Mean
	5.86
	5.80
	4.54
	6.94
	5.45
	5.44
	5.39

	Standard Deviation
	1.51
	1.32
	0.78
	0
	0.53
	0.50
	0.00


a. AUC – Area under the infinite blood concentration times time curve. Based on 

1 μg/kg dose of acrylamide.  With enzymes set at mean values, the infinite acrylamide AUC= 0.240 µmol-hr

b. Each enzyme is input to the model as a distribution (see text for details) while the remaining two are held at their mean values.

c. This distribution is bimodal so statistics have been given for the full distribution, the lower mode and the higher mode.

d. The input distribution for GST in this scenario is based on the integration of activity distributions for the M1, T1, and P1 GST polymorphisms for three ethnic groups: Caucasians, African Americans, and Asians.
Table 5-2

Impact of Variation in Individual Enzyme Activities on Glycidamide AUCa in Adults

(μmol-hr) 

	AUC Statistics:
	Individual Enzyme Variedb

	
	CYP2E1
	GSTM1c

Total        Low         High
	GSTM1,T1 P1 (Caucasian)
	GSTM1,T1 P1  

(mixed races)d
	Epoxide Hydrolase 

	Trials
	5000
	5000
	2373
	2627
	5000
	5000
	5000

	Mean
	0.070
	0.142
	0.047
	0.227
	0.084
	0.083
	0.076

	Median
	0.071
	0.227
	0.047
	0.227
	0.081
	0.078
	0.076

	Standard Deviation
	0.017
	0.091
	0.020
	0.000
	0.029
	0.017
	0.003

	Range Minimum
	0.018
	0.000
	0.000
	0.227
	0.014
	0.028
	0.054

	Range Maximum
	0.118
	0.227
	0.125
	0.227
	0.187
	0.189
	0.082

	Measures of Variability
	 
	
	
	
	
	
	

	Coefficient of Variability
	0.24
	0.64
	0.42
	0.00
	0.34
	0.21
	0.05

	95th%ile :median
	1.38
	1.00
	1.69
	1.00
	1.67
	1.76
	1.05

	99th%ile:median
	1.51
	1.00
	1.98
	1.00
	1.96
	2.14
	1.06

	99th%ile:1st%ile
	3.35
	38.99
	26.70
	1.00
	5.14
	4.51
	1.25

	Half-life
	
	
	
	
	
	
	

	Mean
	3.04
	4.66
	2.16
	6.92
	3.25
	3.22
	3.04

	Standard Deviation
	0
	2.41
	0.65
	0
	0.80
	0.78
	0.14


a. AUC – Area under the blood concentration times time curve at 120 hours resulting from a one-time, 1 μg/kg acrylamide dose. 

 With enzymes set at mean values,  glycidamide AUC =0.0754 µmol-hr.

b. Each enzyme is input to the model as a distribution (see text for details) while the remaining two are held at their mean values.

c. This distribution is bimodal so statistics have been given for the full distribution, the lower mode and the higher mode.

d. The input distribution for GST in this scenario is based on the integration of activity distributions for the M1, T1, and P1 GST polymorphisms for three ethnic groups: Caucasians, African Americans, and Asians.

Table 5-3

Impact of Sequential Variation in CYP2E1, GST, and EH on Acrylamide AUC (μM-hr)a, b

	Variation in:

AUC Statistics:
	CYP2E1-only
	CYP2E1

 + GSTM1 (Cauc)
	CYP2E1

+

GSTM1 (Cauc)

+

EH
	CYP2E1

+

GSTM1,T1, and P1 (Cauc)

+

EH
	CYP2E1

+

GSTM1,T1, and P1 (mixed races)c

+ 

EH

	Trials
	5000
	5000
	5000
	5000
	5000

	Mean
	0.262
	0.294
	0.294
	0.265
	0.264

	Median
	0.260
	0.266
	0.266
	0.257
	0.255

	Standard Deviation
	0.071
	0.129
	0.131
	0.082
	0.080

	Minimum
	0.061
	0.039
	0.034
	0.059
	0.082

	Maximum
	0.479
	0.865
	0.899
	0.672
	0.660

	Measures of Variability
	 
	 
	 
	 
	 

	Coefficient of Variability
	0.27
	0.44
	0.45
	0.31
	0.30

	95th%ile :median
	1.47
	2.03
	2.08
	1.61
	1.59

	99th%ile:median
	1.62
	2.55
	2.56
	1.93
	1.90

	99th%ile:1st%ile
	3.79
	7.93
	7.98
	4.35
	4.31

	Half-life
	
	
	
	
	 

	Mean
	5.86
	6.53
	6.54
	5.92
	5.89

	Standard Deviation
	1.51
	2.75
	2.79
	1.75
	1.71


a. For each simulation, the activities for the enzymes in each column heading are varied according to the distributions described 

in the text. All other enzyme activities are held at their mean values. Simulations were conducted in Crystal Ball® software.  

b.  AUC – Area under the infinite blood concentration times time curve. Based on a one-time, 1 μg/kg dose of acrylamide. With enzymes set at mean values, the infinite acrylamide AUC= 0.240 µmol-hr

c. The input distribution for GST in this scenario is based on the integration of activity distributions for the M1, T1, and P1 GST polymorphisms for three ethnic groups: Caucasians, African Americans, and Asians.
Table 5-4
Impact of Sequential Variation in CYP2E1, GST, and EH on Glycidamide AUC (μM-hr)a,b

	Variation in:

AUC Statistics:
	CYP2E1-only
	CYP2E1

 + GSTM1 (Cauc)c

Total            Low           High
	CYP2E1

+

GSTM1 (Cauc) c

+

EH

Total             Low            High
	CYP2E1

+

GSTM1,T1, P1 (Cauc)

+

EH


	CYP2E1

+

GSTM1,T1, 

P1 (mixed races)d

+ 

EH

	Trials
	5000
	5000
	2347
	2653
	5000
	2383
	2617
	5000
	5000

	Mean
	0.070
	0.135
	0.045
	0.215
	0.134
	0.044
	0.216
	0.078
	0.077

	Median
	0.071
	0.158
	0.042
	0.217
	0.146
	0.042
	0.218
	0.073
	0.072

	Standard Deviation
	0.017
	0.090
	0.022
	0.033
	0.092
	0.023
	0.039
	0.033
	0.032

	Minimum
	0.018
	0.0005
	0.0005
	0.117
	0.0004
	0.0004
	0.116
	0.007
	0.010

	Maximum
	0.118
	0.288
	0.117
	0.288
	0.332
	0.115
	0.332
	0.221
	0.241

	Measures of Variability
	 
	 
	 
	
	 
	
	
	 
	 

	Coefficient of Variability
	0.244
	0.66
	0.50
	0.15
	0.68
	0.51
	0.18
	0.43
	0.42

	95th%ile :median
	1.381
	1.63
	2.04
	1.21
	1.82
	2.04
	1.27
	1.88
	1.88

	99th%ile:median
	1.509
	1.73
	2.56
	1.27
	1.99
	2.50
	1.36
	2.38
	2.37

	99th%ile:1st%ile
	3.35
	54.44
	36.51
	2.15
	66.22
	34.15
	2.35
	8.65
	7.62

	Half-life
	
	
	
	
	
	
	
	
	 

	Mean
	3.04
	4.71
	d
	d
	4.69
	e
	e
	3.23
	3.20

	Standard Deviation
	0
	2.40
	d
	d
	2.48
	e
	e
	0.82
	0.79


a. For each simulation, the activities for the enzymes in each column heading are varied according to the distributions described 

in the text. All other enzyme activities are held at their mean values. Simulations were conducted in Crystal Ball® software.  

b.  AUC – Area under the infinite blood concentration times time curve at 120 hours. Based on a one-time, 1 μg/kg dose of acrylamide. With enzymes set at mean values, the glycidamide AUC= 0.0754 µmol-hr 

c. These distributions are bimodal so the statistics are given for the full distribution, the lower and the upper modes of the distribution.

d. The input distribution for GST in this scenario is based on the integration of activity distributions for the M1, T1, and P1 GST polymorphisms for three ethnic groups: Caucasians, African Americans, and Asians.  

e.  Not calculated in the model
Table 5-5

Factors Contributing to the 95%ile, 99th%ile, and Maximum Simulated Acrylamide AUC Values in Adults:

Scenario Assuming Variation in CYP2E1, GSTM1 (Caucasians) and EHa
	
	Percentile of Acrylamide AUC (µM-hr) Distribution

	
	95%

(0.55)
	99%

(0.68)
	Maximum

(0.90)

	Acrylamide variables
	Value
	%ile 
	Value
	%ile 
	Value
	%ile 

	CYP2E1 Vmax  (mg/hr)
	7.6


	9.3%
	5.0
	1.8%
	2.7
	Minb

	AMD conjugation with glutathione (L/mmol GSH-h)
	0


	5.0%
	0
	1.0%
	0
	Minb

	% AMD converted to GLY (of total from all routes)
	53.8%
	41.0%
	43.3%
	24.3%
	25.1%
	4.7%

	% AMD conjugation with GSH (of total from all routes)
	0%
	5.0%
	0%
	1.0%
	0%
	Minb

	T1/2-acrylamide (hours)
	6.2
	54%


	6.6
	59%
	5.7
	47%


a. Monte Carlo simulations with acrylamide PBTK model in humans using Crystal Ball® software, 5000 trials per scenario.

b. Min/Max = minimum or maximum of simulated input or output.

Table 5-6

Factors Contributing to the 95%ile, 99th%ile, and Maximum Simulated  Glycidamide AUC Values in Adults:

Scenario Assuming Variation in CYP2E1, GSTM1 (Caucasians) and EHa
	
	Percentile of Glycidamide AUC (μM-hr) Distribution

	
	95%ile

(0.27)
	99th%ile

(0.29)
	Maximum

(0.33)

	Glycidamide Variables
	Value
	%ile 
	Value
	%ile 
	Value
	%ile 

	CYP2E1 Vmax (mg/hr)
	58
	99.1%
	51
	98%
	68
	99.6%

	GLY conjugation with glutathione (L/mmol GSH-h)
	0
	52.1%
	0
	51.6%
	0
	52.4%

	GLY epoxide hydrolase Vmax (mg/hr)
	93.1
	70.9%
	57.5
	28.4%
	25
	0.5%

	% GLY eliminated via GSH reaction (of total from all routes)
	0%
	37%
	0%
	14.8%
	0%
	0.3%

	% GLY eliminated via EH (of total from all routes)
	25.3%
	84%
	17.3%
	61.5%
	8.3%


	34.3%

	T1/2-glycidamide (hours)
	6.7
	63%
	7.4
	85.2%
	8.2
	99.7%


a. Monte Carlo simulations with acrylamide PBTK model in humans using Crystal Ball® software, 5000 trials per scenario.

Table 5-7

Developmental Differences in Acrylamide AUC (µM-hr)a

Interindividual Variation in CYP2E1, GSTM1, and EH b
	Statistics
	Age Groups

	
	0-7 days
	8-29 days
	30 to 90 days
	91 days – 1 year
	1 -10 years
	18-65 years

	Trials
	5000
	5000
	5000
	5000
	5000
	5000

	Mean
	0.55
	0.44
	0.361
	0.300
	0.283
	0.294

	Median
	0.52
	0.42
	0.358
	0.269
	0.261
	0.266

	Standard Deviation
	0.21
	0.16
	0.126
	0.132
	0.113
	0.131

	Minimum
	0.06
	0.06
	0.030
	0.019
	0.017
	0.034

	Maximum
	1.07
	0.98
	0.771
	0.760
	0.736
	0.899

	Measures of  Variability
	 
	 
	 
	 
	 

	Coefficient of Variability
	0.38
	0.36
	0.35
	0.44
	0.40
	0.45

	95th%ile:median
	1.79
	1.77
	1.58
	2.01
	1.89
	2.08

	99th%ile:median
	1.94
	2.01
	1.76
	2.37
	2.23
	2.56

	99th%ile:1st %ile
	6.24
	5.63
	6.36
	9.04
	2.07
	7.98

	Half-life
	
	
	
	
	
	

	Mean
	12.89
	10.24
	8.23
	6.89
	6.51
	6.54

	Standard Deviation
	12.10
	9.69
	2.81
	2.96
	2.51
	2.79


a.  AUC – Area under the infinite blood concentration times time curve. Based on a one-time, 1 μg/kg dose of acrylamide.
b.  This table is based on the scenario assuming variability in CYP2E1, GST, and EH.   GSTM1 is assumed to be the isoform responsible for acrylamide metabolism. The model input for GST uses the distribution of GSTM1 in Caucasians.  The AUC output is bimodal but this table gives the statistics for the full distribution.  Starting glutathione levels in the liver are assumed to be the same across age groups.

Table 5-8

Analysis of Bimodal Distributions for Age Groups Exhibiting Bimodal Distributions of Glycidamide AUC (µM-hr)a 

Inter-individual Variation in CYP2E1, GSTM1, and EH b
	
	Age Groups

	
	0-7 days
	8-29 days
	30-90 days
	91 days- 1 year
	1-10 years
	18-65 years

	Statistics
	Unimodal
	~Unimodal
	Lowerc
	Upperc
	Lowerc
	Upperc
	Lowerc
	Upperc
	Lowerc
	Upperc

	Trials
	5000
	5000
	2281
	2719
	2359
	2641
	2269
	2731
	2383
	2617

	Mean
	0.075
	0.100
	0.033
	0.185
	0.027
	0.203
	0.034
	0.220
	0.044
	0.216

	Median
	0.061
	0.092
	0.032
	0.186
	0.025
	0.204
	0.032
	0.222
	0.042
	0.218

	Standard Deviation
	0.055
	0.063
	0.016
	0.026
	0.014
	0.033
	0.018
	0.032
	0.023
	0.039

	Minimum
	0.00043
	0.00052
	0.000
	0.105
	0.000
	0.106
	0.000
	0.119
	0.0004
	0.116

	Maximum
	0.271
	0.301
	0.101
	0.267
	0.094
	0.313
	0.118
	0.309
	0.115
	0.332

	Measures of Variability
	 
	 
	
	
	
	
	
	
	

	Coefficient of Variability
	0.74
	0.63
	0.50
	0.14
	0.54
	0.16
	0.51
	0.14
	0.51
	0.18

	95th%ile:median
	3.01
	2.25
	1.93
	1.22
	2.12
	1.25
	2.00
	1.22
	2.04
	1.27

	99th%ile:median
	3.73
	2.59
	2.36
	1.30
	2.60
	1.35
	2.58
	1.29
	2.5
	1.36

	99th%ile:1st %ile
	70.06
	40.14
	34.71
	1.98
	54.18
	2.19
	39.09
	2.02
	34.15
	2.35


a.  AUC – Area under the infinite blood concentration times time curve. Based on a one-time, 1 μg/kg dose of acrylamide.

b.  This table is based on the scenario assuming variability in CYP2E1, GST, and EH.   GSTM1 is assumed to be the isoform responsible for acrylamide metabolism. The model input for GST uses the distribution of GSTM1 in Caucasians.  Starting glutathione levels in the liver are assumed to be the same across age groups.

c.  See Figure 5-4b showing two modes for glycidamide, one a lower AUC and the other at a higher AUC for age groups 30 to 90 days and above.  The higher mode is likely to correspond primarily to GSTM1-null individuals, whereas the lower mode corresponds to GSTM1 non-null individuals (+/+ or +/- genotypes).

Table 5-9

Developmental Differences in Acrylamide and Glycidamide Disposition Expressed as Percentages of Total Acrylamide Dose:  Model Assuming Interindividual and Age-related Variability in CYP2E1, GSTM1, and EHa

	
	Age Group

	
	0-7 days
	8-29 days
	30 -90 days
	91 days-1 year
	1-10 years
	18-65 years

	Total Dose (µmoles)
	0.049
	0.060
	0.091
	0.122
	0.266
	0.987

	
	Disposition of  Acrylamide and Glycidamide

(% of Total Dose in µmoles)

	Acrylamide

	ACM reaction with GSH
	17.7%
	17.1%
	20.5%
	23.2%
	19.8%
	17.9%

	ACM binding to blood macromolecules
	1.2%
	0.9%
	0.7%
	0.6%
	0.6%
	0.4%

	ACM binding to liver macromolecules
	10.3%
	7.6%
	5.2%
	4.2%
	3.5%
	2.6%

	ACM Binding to other tissue macromolecules
	38.0%
	30.7%
	25.5%
	21.1%
	20.0%
	21.4%

	Glycidamide

	GLY Reaction with EH
	6.0%
	7.6%
	7.2%
	7.5%
	8.2%
	9.6%

	GLY Reaction with GSH
	5.9%
	8.7%
	10.3%
	12.0%
	13.0%
	14.1%

	GLY Binding to other blood macromolecules
	0.5%
	0.6%
	0.7%
	0.7%
	0.8%
	0.6%

	GLY Binding to liver macromolecules
	4.3%
	5.3%
	5.1%
	5.2%
	5.1%
	3.7%

	GLY Binding to other tissue macromolecules in tissues other than liver
	15.5%
	21.1%
	24.7%
	25.5%
	29.0%
	29.7%

	GLY unmetabolized
	0.063%
	0.043%
	0.024%
	0.017%
	0.012%
	0.01%

	
	
	
	
	
	
	

	Total ACM metabolized to GLY via CYP2E1

(sum of all GLY)
	32.4%
	43.5%
	48.0%
	50.9%
	56.2%
	57.7%




a.  Starting glutathione levels in the liver are assumed to be the same across age groups.

Table 5-10

Developmental Differences in Acrylamide and Glycidamide Disposition Expressed in µmoles:  Model Assuming Interindividual and Age-related Variability in CYP2E1, GSTM1, and EHa

	
	Age Group

	
	0-7 days
	8-29 days
	30 -90 days
	91 days-1 year
	1-10 years
	18-65 years

	Total Dose (µmoles)
	0.049
	0.060
	0.091
	0.122
	0.266
	0.987

	
	Disposition of  Acrylamide and Glycidamide

(µmoles)

	Acrylamide

	ACM reaction with GSH
	0.0086
	0.0103
	0.0186
	0.0284
	0.0527
	0.1767

	ACM binding to blood macromolecules
	0.0006
	0.0006
	0.0006
	0.0008
	0.0015
	0.0042

	ACM binding to liver macromolecules
	0.0050
	0.0046
	0.0047
	0.0052
	0.0092
	0.0257

	ACM Binding to other tissue macromolecules
	0.0185
	0.0186
	0.0232
	0.0258
	0.0533
	0.2113

	Glycidamide

	GLY Reaction with EH
	0.0029
	0.0046
	0.0066
	0.0092
	0.0218
	0.0944

	GLY Reaction with GSH
	0.0029
	0.0053
	0.0093
	0.0147
	0.0347
	0.1395

	GLY Binding to other blood macromolecules
	0.0002
	0.0004
	0.0006
	0.0009
	0.0022
	0.0059

	GLY Binding to liver macromolecules
	0.0021
	0.0032
	0.0047
	0.0063
	0.0136
	0.0364

	GLY Binding to other tissue macromolecules in tissues other than liver
	0.0075
	0.0128
	0.0224
	0.0312
	0.0772
	0.2929

	GLY unmetabolized
	3.04E-05
	2.59E-05
	2.2E-05
	2.1E-05
	3.3E-05
	1.2E-04

	
	
	
	
	
	
	

	Total ACM metabolized to GLY via CYP2E1

(sum of all GLY)
	0.0157
	0.0263
	0.0436
	0.0623
	0.1496
	0.5692


a.  Starting glutathione levels in the liver are assumed to be the same across age groups.

Figure 5-1 a,b,c,d,e

Distribution Characteristics for Enzyme inputs to Acrylamide Adult PBTK model

a. CYP2E1 –all models
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b. GSTM1 (Caucasian)


c. GSTM1+T1+P1 (Caucasian)


d. GSTM1+T1+P1 (mixed races)
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 e. Epoxide hydrolase (all models)
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Figure 5-2 a,b

Exploratory Analyses for Impact of Enzyme Activities on Acrylamide and Glycidamide AUC

(µM-hr)
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	Enzyme Value set at
	Enzyme value

	
	mean
	5th%ile
	95th %ile
	mean
	5th%ile
	95th %ile

	
	Acrylamide AUC
	Glycidamide AUC

	CYP 
	0.240
	0.378
	0.145
	0.075
	0.042
	0.098

	GST
	0.240
	0.313
	0.161
	0.075
	0.227
	0.023

	EH
	0.240
	0.240
	0.240
	0.075
	0.080
	0.069


Note:  In mean example, all enzymes are set at the mean value.  In the other examples, one enzyme is set at the 5th or 95th percentile value while the other two remain at their mean values.  The 5th and 95th percentiles for the acrylamide and glycidamide reactions with glutathione were taken from the model using the distribution of GSTM1 in Caucasians.

Figure 5-3

Impact of Variation in Selected Enzymes on 

Acrylamide AUC in Adults

(µM-hr)
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Figure 5-4

Impact of Variation in Selected Enzymes on 

Glycidamide AUC in Adults

(µM-hr)
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Figure 5-5 a, b

Comparison of Inter-individual Variability in 

Acrylamide and Glycidamide AUC across Age Groups due to

Variation in CYP2E1, GSTM1, and EH 
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a.  These figures are based on the scenario assuming GSTM1 is the isoform responsible for acrylamide metabolism.  It uses the distribution of GSTM1 in Caucasians.

Figure 5-6 a, b

Comparison of the Impact of Developmental Differences and 

Inter-individual Variability in CYP2E1, GSTa, and EH 

on Acrylamide and Glycidamide AUC 

(µM-hr)
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a.  Based on simulation involving inter-individual variability in CYP2E1, GST, and EH.  Variability in GST is characterized by Inter-individual variation in GSTM1 in Caucasians.  
Figure 5-7

Developmental Breakdown of Mean Glycidamide AUC for Upper and Lower Modes of Bimodal Glycidamide AUC Distributions a

[image: image23.emf]0

0.05

0.1

0.15

0.2

0.25

0-7

days

8-29

days

30-90

days

91

days- 1

year

1-10

years

18-65

years

Glycidamide AUC (umol-hr)

lower mode

upper mode 


a.  Based on simulation involving inter-individual variability in CYP2E1, GST, and EH.  Variability in GST is characterized 

Figure 5-8

Mean Disposition of Acrylamide and Glycidamide:

Scenario Involving Inter-individual and Age-related Variation in 

CYP2E1, GSTM1, EH Levels:  Fixed Starting Glutathione Concentrations
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Figure 5-9a

Mean Acrylamide AUC across Age Groups due to

Age-related Variation in CYP2E1, GSTM1, EH: 

Comparison of Models with Fixed and Age-related Variation 

in Starting Glutathione Concentrations
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Figure 5-9b

Mean Glycidamide AUCs across Age Groups due to

Inter-individual Variation in CYP2E1, GSTM1, EH:

Comparison of Models with Fixed and Age-related Variation 

in Starting Glutathione Concentrations
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6.0  Summary and Conclusions

This modeling effort examines a relevant public health and risk assessment issue: the difference in internal dosimetry of acrylamide and its reactive metabolite, glycidamide in population subgroups that may be expected to receive higher internal exposure due to factors that affect enzymatic activation and detoxification: genetic polymorphisms, enzyme variability due to other factors, and early life metabolic immaturity.  Given widespread exposure to the general public to acrylamide in foods (Konings, et al., 2003; Dybing and Sanner, 2003), it is important for risk assessments to consider the entire distribution of internal doses and especially those doses that may be received by potentially more susceptible sub-populations.  

This report first describes development of an acrylamide/glycidamide PBTK model based upon the published rat model (Kirman, et al., 2003).  The published model was enhanced by calibration against recently reported acrylamide and glycidamide hemoglobin adduct data in rats (Fennell and Friedman, 2004).  This model was then adapted to human adults by using cross-species scaling principles and also based upon hemoglobin adduct data recently reported in humans (Fennell, et al., 2004; Fennell and Friedman, 2004).  Initial runs of the human model yielded unrealistically long blood half-lives for acrylamide and glycidamide.  Alternative ways were found to match the human hemoglobin adduct data including adjustment of acrylamide and glycidamide tissue: blood partition coefficients on the basis of their chemical properties and analogy with other chemicals for which such partition coefficients are available in humans.  The resulting human model was able to simulate hemoglobin adduct levels and blood half-lives for both parent compound and metabolite.  

The report then describes in more detail the metabolic pathways for acrylamide and glycidamide and how these pathways may vary due to genetic polymorphism (GSTs), due to non-specific variability inherent in the general population (CYP2E1 and epoxide hydrolase) and due to early life immaturities.  The roles of CYP2E1 and epoxide hydrolase are well defined in terms of metabolic activation of acrylamide and detoxification of glycidamide, respectively.  However, an uncertainty in the modeling was with regards to which GST isozyme(s) is/are involved in conjugation of parent compound and reactive metabolite.  To cover a wide range of cases, both the single, highly variable GST case (represented by GSTM1) and the multiple GST case (equal involvement of M1, T1 and P1) were run in adults.  These runs were conducted based upon input data from a single population (Caucasians) as well as from a mixed population representing a variety of ethnicities proportional to their contribution to the US population.  

Simulation of acrylamide and glycidamide internal dosimetry was accomplished via PBTK/Monte Carlo analysis in which the basic physiological parameters were held constant but the enzymatic processing of parent compound or metabolite was allowed to vary according the input distributions for these enzymes.  The input distributions for CYP2E1 and epoxide hydrolase in adults were lognormal according to published means and variability in sampled human populations (Lipscomb, et al., 2003; Ratanasavanh et al, 1991).  In contrast, the GSTM1 and T1 inputs were as bi-or trimodal distributions to account for genetic polymorphisms which create the null, intermediate (heterozygote) or wild type enzyme activity (Ginsberg, et al., 2003).   The input distribution for GSTP1 in adults was unimodal and lognormal on the basis that identified gene variants have led to only limited variation in enzyme activity.    

PBTK model adaptation for early life stages involved adjustment of body mass, organ sizes and blood flows to conform to known physiological development in young children (Clewell, et al., 2002, 2004; Ginsberg, et al., 2004).  Immaturity in enzyme function for CYP2E1, epoxide hydrolase, and GSTs were taken from published sources (Vieira, et al., 1996; Johnsrud, et al., 2003; Alcorn and McNamara, 2003; Strange, et al., 1989, Omiecinski et al., 1994; Ratanasavanh et al. (1991).  The immaturity in CYP2E1 protein content and in vitro and in vivo function are well established.  The immaturity in the other two systems, epoxide hydrolase and GSTs, is associated with greater uncertainty as there are very few data to describe the ontogeny of these systems (Strange, et al., 1989, Omiecinski et al., 1994; Ratanasavanh et al., 1991) .  What little there is suggests a relative deficiency of some GSTs and epoxide hydrolase in utero and in the first weeks to months of life .  This immaturity is likely for GSTM1 and certain others which have been probed in liver cytosol (Strange, et al., 1989) but there are no data for the ontogeny of GSTT1.  GSTP1 levels are high at birth because it is the major fetal GST.  Developmental PBTK runs focused on the limited GSTM1 ontogeny data to examine the possible influence of decreased GST function on acrylamide and glycidamide internal dosimetry.  A final immaturity that was modeled was with respect to hepatic glutathione content.  As the co-factor in GST-mediated conjugation of reactive xenobiotics, GSH content of the liver is a key parameter in governing the rate of chemical detoxification.  There are no GSH data for liver in children but an ontological profile does exist for GSH plasma content (Chantry, et al., 1999).  The early life deficiency in plasma GSH (9% of adult level at birth) has been suggested to be the result of hepatic immaturity since the liver is the main source of circulating GSH (Chantry et al.,  1999).  

The PBTK/Monte Carlo modeling approach enabled us to evaluate the interaction of these sources of variability in enzyme function in determining AUC dose.   While a non-linearity in acrylamide conversion to glycidamide is well recognized and accounted for in the current model (See Section 2), the PBTK/Monte Carlo runs simulated a low dose rate (1 µg/kg, i.p.) that is non-saturating with respect to CYP2E1 metabolism of acrylamide.  This represents an environmental level of exposure akin to what may be received on a daily basis from the diet (Dybing and Sanner, 2003).  Thus, this low, non-saturating dose rate is relevant for comparisons of internal dose across different conditions of enzyme function and age.  

The first step in the analysis was to evaluate the impact of enzyme variability on the distribution of internal dose, one enzyme at a time.  To do this, all parameters were kept at their point estimate mean level except for the enzyme which was allowed to vary.  Initially only three different values were run for the variable enzyme, the mean activity, the 5th percentile, and the 95th percentile of the input distribution.  As documented in Figure 5-2, these runs demonstrate that variance in CYP2E1 may have a substantive effect on both acrylamide and glycidamide AUC.  As expected, the influence of CYP2E1 is in the opposite direction for these two dose metrics (e.g., low 2E1 leads to high acrylamide but low glycidamide).  Further evidence that the basic model is working as expected is that varying epoxide hydrolase had no influence on acrylamide AUC (it does not metabolize acrylamide) and only limited influence on glycidamide AUC.  Further, variation in GST activity showed a modest change in acrylamide and a larger change in glycidamide AUC, also in the expected direction (low GST, high AUC of both compounds).  Aside from confirming the proper functioning of the model, these initial sensitivity analyses identify the parameters that will be most influential on particular endpoints: CYP2E1 variability will have its largest effect on acrylamide AUC and GST variability will have its greatest effect on glycidamide AUC.   

6.1 Analysis of Variability in the Adult Population   

When evaluating the interaction across multiple enzyme distributions, the impact on AUC variability in adults was generally modest (Table 6-1).  For acrylamide AUC, the upper end of the distribution, represented by the 99th percentile was 1.9 to 2.6 fold greater than the median.  This degree of variability is less than what is sometimes assumed in risk assessments for inter-individual variability in toxicokinetics, one-half log or 3.2 fold (Renwick, 2000).  However, it shows that toxicokinetic variability can be substantial in acrylamide AUC.  Thus, when considering non-cancer endpoints in adults that are dependent upon internal dose of parent compound (e.g., neurotoxicity), either the default uncertainty factor or a more specific adjustment based upon the current analysis should be considered.  

The effects of enzyme variability on glycidamide AUC were larger than described above for acrylamide AUC (Table 6-1).  This is primarily because of the greater influence of genetic polymorphism in GSTM1 on glycidamide AUC than on acrylamide AUC.  The bimodal GSTM1 input distribution translates into a bimodal glycidamide AUC output with the high AUC mode (null GSTM1 individuals) having 5 to 7 greater internal dose of active metabolite than the low AUC mode.   This represents a substantial degree of variability and suggests that, if GSTM1 were to be identified as the primary GST involved, there might be two distinct subpopulations with respect to toxicokinetic susceptibility to acrylamide/glycidamide.  Given that the GSTM1 null genotype occurs in approximately half of the Caucasian and Asian population and in 20-25% of African-Americans, the higher AUC mode represents a substantial portion of the population (Figure 5-4).   Note, however, that the identity of the GST(s) primarily responsible for acrylamide and glycidamide metabolism remains a source of uncertainty.  When model assumptions were varied to account for potential overlapping substrate specificity of GSTM1, T1, and P1 isoforms for acrylamide and glycidamide metabolism, the predicted inter-individual variability in glycidamide AUC was substantially smaller.

The GST null genotype is not known to exist in rodents and while rats generally have lower GST conjugating activity than mice, null individuals or strains have not been identified (reviewed in Ginsberg, et al., 2003).  This is in contrast to humans for whom the null genotype has been readily detected both in vivo and in vitro.   It is reasonable to consider the human non-null condition more like the rat which is relevant to acrylamide risk assessments given that the cancer bioassay results are in rats.  The current finding of 5 to 7 fold greater glycidamide AUC in GSTM1 null individuals thus implies greater risk in this subpopulation relative to non-null individuals and relative to rats.  

In Section 3.3 the expectations from the rat and human models for glycidamide dosimetry from a 1 µg/kg dose were compared.  That analysis found that humans would receive 1.4 to 1.5 times more glycidamide AUC than rats.  This result is based upon a human PBTK model that is calibrated to glycidamide hemoglobin adduct data from 15 adult volunteers.  If one assumes that these volunteers had the characteristic GSTM1 genotype for Caucasians and Asians of 50% null, then the variability in their glycidamide dosimetry would be what has been characterized in Section 5 and summarized in Table 6-1.  In this scenario, the median of the high glycidamide mode (GSTM1-null)  would be 1.6 fold greater than the overall population median and the upper (99th %) tail would be 2.2 fold greater.  This approximately 2 fold greater exposure in high end individuals could then be multiplied by the human/rat dosimetry difference mentioned above (1.4 to 1.5 fold) to obtain an approximately 3 fold greater internal dosimetry in GSTM1 null individuals as compared to rats.  

While 3 fold is a reasonable estimate of the potential for greater internal dose in a susceptible human (adult) subgroup, there are two main uncertainties in this estimate:

1) The 15 human volunteers may not have been representative of the population at large.  Fifteen is a relatively small sample size leading to the possibility that the null genotype may have been under- or over-represented in this sampling.  Unfortunately,  there is no genotype or phenotype information for these volunteers.  The maximal impact on the acrylamide risk assessment would be an assumption of no null individuals in the sampled group.  In that case, they would be represented by the low glycidamide mode and the dose ratios presented in Table 6-1 between the high and low mode (5-7 fold) become relevant.  If this were the case, then the sensitive human to rat comparison is 7-11 fold, i.e., the sensitive human subpopulation would receive 7 to 11 fold more glycidamide AUC than the rat.  

2) The GSTM1 scenario is only theoretical since we do not know which GST(s) are primarily responsible for acrylamide and glycidamide detoxification.  It is reasonable to assume GSTM1 has a prominent role because of its importance in detoxifying other reactive epoxides (Wormhoudt, et al., 1999).  To cover the case of extensive overlap in detoxifying capacity within the GST isozyme family, the mixed distribution of GSTM1, T1 and P1 influence on internal dose was modeled.  The last line in Table 6-1 presents the summary results for this simulation.  The ratio of the 99th % to the population median is 2.4.  When this ratio is multiplied by the human/rat dosimetry difference described earlier for glycidamide which did not take into account inter-individual variability, the high end human exposure would be 3.5 fold greater than in the rat.  This result is not appreciably different from the 3 fold human/rat dosimetry difference calculated above suggesting that identification of the GST(s) involved in glycidamide inactivation may not greatly affect the cross-species comparison of dose and risk.  

In conclusion, the adult analysis shows a potential for increased dose in a subpopulation of humans that is approximately 3 times greater than in the rat.  The major uncertainty in this estimate is the genotype of human volunteers whose biomonitoring data underlie the human PBTK model.  If these individuals were all non-null, the sensitive human / rat ratio could be as high as 11 fold.   This may be an appropriate upper bound on the degree of increased glycidamide dose that sensitive human adult subpopulations might receive.     

6.2 Analysis of Variability in Children

The combined effect of immature systems for the activation of acrylamide (CYP2E1) and for the detoxification of glycidamide (GSTs, EH) lead to the Monte Carlo results summarized in Table 6-2a and b.  Table 6-2a presents summary measures of variability in acrylamide and glycidamide AUC based on the assumption that starting glutathione concentrations are fixed across all age groups.  Table 6-2b presents the results for the scenario in which starting glutathione levels are assumed to vary with age in accordance with the developmental profile reported by Chantry, et al., (1999).  The reason that the developmental glutathione profile was not the primary case run is that the Chantry et al. (1999) profile comes from plasma as opposed to liver glutathione data.  However, given that it would be very difficult to obtain liver glutathione content from children and that liver is the primary source of plasma glutathione, the plasma data were seen as a potentially useful surrogate.

As shown in Table 6-2a, under the fixed glutathione scenario, children generally have higher acrylamide AUC than adults with the 99th % in children 2.2 to 3.8 fold greater than the median in adults.  This source of variability in acrylamide AUC (ontogeny of enzyme systems) is greater than seen in the adult population, but is still generally within range of the inter-individual uncertainty factor attributed to toxicokinetics (3.2 fold).  Thus, as for adults, it is important to consider the variability contributed by children to acrylamide non-cancer risk assessments either by including the standard uncertainty factor for toxicokinetics or considering the age-specific factors shown in Table 6-2.  

The child/adult differential for glycidamide AUC is smaller than seen with acrylamide AUC (Table 6-2a).   In this case, the ratios range from 1.7 to 2.1 fold when comparing the 99th percentile child value to the adult median.  The smaller age differential for glycidamide is because decreased CYP2E1 activity in early life limits the amount of glycidamide formed.  This is partially counter-balanced by the immaturity in GST in early life but, as shown in Figure 5-9b, glycidamide mean AUC levels tend to be higher in adults than in children’s age groups.  The fact that the upper tail (99th %) of the children’s AUC distributions are within 2 fold of the adult median indicates that the development of activation and detoxification enzymes in early life do not add substantially to the variability seen in the adult population (Section 6-1).  

Under the second scenario, in which developmental differences in starting glutathione concentrations was introduced, the rather large deficit in glutathione in the first weeks to months of life do not correspond to a major change in acrylamide or glycidamide AUCs.  The glutathione deficit in children relative to adults produces a 10 to 20% higher mean acrylamide AUC and up to a 37% higher mean glycidamide AUC relative to the mean adult AUCs.  Since having less glutathione decreases the importance of the GST pathway, the variability contributed by this pathway is smaller and so the 99th percentile of the AUC distributions are not substantially different than in the fixed glutathione runs (Table 6-2b).  

In conclusion, the Monte Carlo analysis suggests that the ontogeny of metabolizing enzymes produces modest changes in AUC distributions with the largest effect on the acrylamide AUC where up to a 3.8 fold increase was found.  However, this was in the earliest age group, 0-7 day old neonates.  This age group is not expected to receive the type of dietary exposure to acrylamide that older children and adults might receive.  Given the relatively short half-life and low lipid solubility of acrylamide and glycidamide, these compounds are not expected to be an important contaminant of breast milk.  The children’s age groups which may begin to receive substantial acrylamide exposure in the diet, 91 days to 1 year and 1 to 10 years, had acrylamide AUCs that were 2.2 to 2.4 fold above adults.  In these age groups, ontological and inter-individual variability in enzyme activity may be important sources of variability to consider in non-cancer risk assessments which focus on such effects as neurotoxicity which appears to be mediated by the parent compound.  

6.3 Implications for Future Work


Since the preparation of this manuscript, the authors have done additional analyses to more fully explore the implications of assumptions about the role of GSTM1 in acrylamide and glycidamide detoxification and the potential for ontological differences in starting glutathione concentrations on the acrylamide and glycidamide AUC received by children and adults.  In particular, the analysis has looked in greater detail at differences in AUC projected for the GSTM1-null, and non-null populations across age-groups.  The analysis characterizes the differences in mean AUCs, the inter-individual variability in AUCs, and in the patterns of acrylamide and glycidamide disposition in the body. 


This work has been presented in a summary document which has also been prepared for EPA and is available as an addendum to this report:  

Walker, KD, Hattis DH, Russ A, Sonawane B, Ginsberg G. Physiologically-based Toxicokinetic Modeling Case Study:  Acrylamide Dosimetry in Children and Adults.  Prepared for Office of Research and Development, U.S. EPA. Washington, DC.  April 2005.  Draft.

Table 6-1

Summary of Monte Carlo Results for Adult AUC Distributions

	Variable Enzymes
	Resulting Distribution
	Comparison
	Acrylamide AUC
	Glycidamide 

AUC

	CYP2E1, GSTM1, EH 
	Acrylamide: Lognormal

Glycidamide: Bimodal
	99th % / median of total population
	2.56
	1.99

	CYP2E1, GSTM1, EH 
	Acrylamide: Lognormal

Glycidamide: Bimodal
	Median of high modea /  median of low modeb
	Not applicable

(unimodal)
	5.2

	CYP2E1, GSTM1, EH 
	Acrylamide: Lognormal

Glycidamide: Bimodal
	99th % of high mode / median of low mode
	Not applicable
	7.1

	CYP2E1, GSTM1, EH 
	Acrylamide: Lognormal

Glycidamide: Bimodal
	Median  of high mode / median of total population
	Not applicable
	1.6

	CYP2E1, GSTM1, EH 
	Acrylamide: Lognormal

Glycidamide: Bimodal
	99th % of high mode / median of total population
	Not applicable
	2.2

	CYP2E1, multiple GSTs (M1, T1,P1), EH 
	Acrylamide: Lognormal

Glycidamide: Lognormal
	99th % / median of total population
	1.93
	2.38


a. High mode corresponds to GSTM1-null individuals

b. Low mode corresponds to GSTM1-positive individuals.

Table 6-2

Summary of Monte Carlo Results for Child AUC Distributions

a) Fixed Glutathione Content (Adult Level), Comparison Across Full Populationa

	Comparison
	0-7 Days
	8-29 Days
	30-90 Days
	91 Days – 1 Yr
	1-10 Years

	Acrylamide AUC
	
	
	
	
	

	   Child  99th % / Child median
	1.9
	2.0
	1.7
	2.4
	2.2

	   Child  99th % / Adult median
	3.8
	3.2
	2.4
	2.4
	2.2

	Glycidamide AUC
	
	
	
	
	

	   Child  99th % / Child median
	3.7
	2.6
	  1.3b
	  1.4 b
	  1.3 b

	   Child  99th % / Adult median
	1.7
	1.8
	1.8
	2.1
	2.1


a. Modeled population with null and non-null GSTM1.

b. These distributions are bimodal, as was the case for adults for glycidamide AUC.  The ratios shown are for the upper AUC mode.

b) Modified Glutathione Content Based Upon Developmental Profile by Chantry, et al., 1999, Comparison across Full Populationa

	Comparison
	0-7 Days
	8-29 Days
	30-90 Days
	91 Days – 1 Yr
	1-10 Years

	Acrylamide AUC
	
	
	
	
	

	  Child 99th % / Child median
	1.5
	1.7
	1.5
	2.0
	2.1

	   Child 99th % / Adult median
	3.8
	3.1
	2.3
	2.3
	2.1

	Glycidamide AUC
	
	
	
	
	

	   Child  99th % / Child median
	2.3
	1.8
	1.5
	1.7
	1.7

	   Child  99th %/ Adult median
	1.5
	1.6
	1.6
	1.8
	1.9


a. Modeled population with null and non-null GSTM1 genotypes.
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Appendix A

Population Statistics Used in Developing Population Distributions 

of GST Activity

Table A-1

Population Frequencies of GSTM1 Genotypes1

	GSTM1 Genotype
	African-Americans
	Caucasians
	Chinese
	Japanese
	Mexican-American

	+/++
	unknown
	unknown
	unknown
	unknown
	unknown

	+/+
	29
	7.3
	6
	11
	13

	+/-
	50
	39
	36
	44
	46

	-/-
	21
	53
	58
	45
	41


1Genotype frequencies based upon data on null genotype frequencies as shown in Figure 1 (Ginsberg et al., 2003) and use of Hardy-Weinberg equations.

Table A-2

Population Distribution of Combined GSTM1, GSTT1 and

GSTP1Genotype Crosses

	Genotype
	African-American
	Caucasian


	Asian1


	M1 (+/+) 

T1 (+/+)

P1(Ile/Ile)
	9.1
	7.6
	2.85

	M1 (+/+) 

T1 (+/+)

P1(Ile/Val)
	12
	9.2
	1.3

	M1 (+/+) 

T1 (+/+)

P1(Val/Val)
	4.9
	1.3
	0.1

	M1 (+/+) 

T1 (+/-)

P1(Ile/Ile)
	13
	10
	13.4

	M1 (+/+) 

T1 (+/-)

P1(Ile/Val)
	17
	12
	6.0

	M1 (+/+) 

T1 (+/-)

P1(Val/Val)
	7
	1.7
	0.6

	M1 (+/+) 

T1 (-/-)

P1(Ile/Ile)
	5.6
	4.4
	16

	M1 (+/+) 

T1 (-/-)

P1(Ile/Val)
	7.4
	5.3
	7.2

	M1 (+/+) 

T1 (-/-)

P1(Val/Val)
	3
	0.7
	0.7

	M1 (-/-) 

T1 (+/+)

P1(Ile/Ile)
	1.9
	6.7
	2.8

	M1 (-/-) 

T1 (+/+)

P1(Ile/Val)
	2.5
	8.2
	1.3

	M1 (-/-) 

T1 (+/+)

P1(Val/Val)
	1.0
	1.1
	0.1

	M1 (-/-) 

T1 (+/-)

P1(Ile/Ile)
	3.5
	9.2
	14


Table A-1 (continued)

	Genotype
	African-American
	Caucasian


	Asian1


	M1 (-/-) 

T1 (+/-)

P1(Ile/Val)
	4.6
	11
	6.3

	M1 (-/-) 

T1 (+/-)

P1(Val/Val)
	1.9
	1.5
	0.6

	M1 (-/-) 

T1 (-/-)

P1(Ile/Ile)
	2
	4
	18

	M1 (-/-) 

T1 (-/-)

P1(Ile/Val)
	2.6
	4.9
	8.1

	M1 (-/-) 

T1 (-/-)

P1(Val/Val)
	1.1
	0.7
	0.8


Table A-3

U.S. Population by Racea,b
	Race
	July 1, 2002

	White
	80.7

	Black or African American
	12.7

12.7

	American Indian and Alaska Native
	1

	Asian
	4

	Native Hawaiian and other Pacific Islander
	0.2

	Two or more races
	1.5

	Total
	100.1


a. Source: Table NA-EST2002-ASRO-04 - National Population Estimates – Characteristics.  Population Division, U.S. Census Bureau Release Date: June 18, 2003.

b. Individuals of Latino or Hispanic descent may be included in multiple categories making the total population sum to greater than 100% (113%).  We have assumed that Latinos are distributed across race categories in proportion to the other primary races.

acrylamide





glycidamide





32%





6 %





19%








� Readers should be warned that their large size—12-25 megabytes—precludes sending them via ordinary email.


� Hemoglobin adduct concentrations can be converted into integrated concentration X time estimates with the aid of simple rate constants for the bimolecular reaction between acrylamide or glycidamide and hemoglobin.  Formulas for this are provided in Section 2.4.


� The key paper of Sumner et al. (1992) reports recovery of about 50.4% of the administered dose in their 24 hour urine collection.  Of this fraction of the total dose recovered as urinary metabolites, 32.6% consisted of metabolites derived from the P450/glycidamide pathway at the 50 mg/kg dose used.  Thus the minimum total fraction of acrylamide dose that must definitely be attributed to metabolism by non-P450 routes at the 50 mg/kg dose used is (1-0.326)*0.504 = 0.34.


a % of total eliminated by all routes.


a The tissue/blood partition coefficient multiplier of 3.2 for glycidamide (relative to partition coefficients for acrylamide was reduced to 1; all non-P450 metabolism rates for acrylamide were reduced to a quarter of their original values; additionally the Vmax and Km for acrylamide conversion to glycidamide were reduced to 0.7 times their original values, and all metabolism rates for glycidamide were reduced to half their former values.


a % of total eliminated by all routes.


a % of total eliminated by all routes.


* 4.5 mM-hr/(mM/kg) in humans vs. 3.7 mM-hr/(mM/kg) in rats, in the units used by Fennell and Friedman (2004). 


� The P3M model was created to use the anthropometric measurements in the NHANES III database (age, gender, race, height, weight, circumferences, etc.) to predict physiological parameters for each individual in the database using empirical equations describing these relationships in the published literature.  The objective behind the development of this model was to assist efforts to incorporate interindividual variability into PBTK modeling.  The databases generated using this program provide a set of internally consistent estimates of the physiological parameters needed for PBTK modeling for each individual in the database.  Estimates of interindividual variability based on sampling from independent distributions representing each physiological parameter have to specify the correlation structure for all parameters.  These correlations are inherently preserved in the individual records generated by P3M.


a On further analysis we found that this result for the glycidamide half life at very late time points was due to the continuing supply of glycidamide via conversion of acrylamide.  When the model is provided a simulated dose of glycidamide in the absence of acrylamide, the actual glycidamide half-life is found to be 3.04 hours.





� The CYP2E1 allele nomenclature and associated mutations are available online at � HYPERLINK "http://www.imm.ki.se/CYPalleles/cyp2e1.htm" ��http://www.imm.ki.se/CYPalleles/cyp2e1.htm�.


� It seems likely that, because ethnicity and CYP2E1 genotype are likely to be correlated, controlling for CYP2E1 genotype effectively eliminates the effect of ethnicity.


� The data set from this study was generously supplied to us by the authors.


� Snawder and Lipscomb, 2000 reported no significant differences in the fractional composition of cytochrome P450 with respect to CYP2E1 in human hepatic microsomes.  They also reported no significant differences in CYP2E1 specific activity between drinkers and non-drinkers.


�  Available at  � HYPERLINK "http://www.nikhef.nl/~keeshu/datathief/" ��http://www.nikhef.nl/~keeshu/datathief/� .


� We also estimated the GM and GSDs for the Vieira et al. data on 6 hyroxychoroxozone formation by CYP2E1.  While the developmental profile was similar (i.e. the ratio of GM in each age group to adult GM), the degree of variability differed primarily at the two youngest age groups.  The GSDs were similar to adult levels for all age groups.  Such differences are a further reflection of the uncertainty attending use of in vitro data to project in vivo levels of inter-individual variability.


� Personal communication with Ron Hines.


� Ginsberg et al. (2003 unpublished) estimated the frequency of individual GSTM1, T1 and P1 polymorphisms in various ethnic groups using available data on the frequency of null genotypes and Hardy-Weinberg equations.  See that report for details.


� Since the initial draft of this report, a third study by McCarver and Hines, (2002) was identified but we have not had the opportunity to incorporate the results of this study into our analysis.


� We have assumed they have assigned this subject the relative value of 1 meaning that the other values are the ratio of the individual subject’s EH protein level to the level for the reference subject.


� Since Asians make up a larger proportion of the population in certain states, this analysis will underestimate the impact on Asian populations in those states.


� The lognormal distribution was selected in the absence of sufficient data to fit distributions, for its biological plausibility and statistical properties (no non-zero values).


� Note that this does not mean that each age group is assumed to have the same amount of glutathione since the volume of liver tissue varies with age.
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