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ABSTRACT

In earlier work we assembled a database of classical pharmacokinetic parameters (e.g., elimination half lives; volumes of distribution) in children and adults.  These data were then analyzed to define mean differences between adults and children of various age groups.  In this paper we first analyze the variability in half-life observations where individual data exist.  The major findings are: 

· The age groups defined in the earlier analysis of arithmetic mean data (0-1 week premature; 0-1 week full term; 1 week to 2 months; 2-6 months; 6 months to 2 years; 2-12 years and 12-18 years) are reasonable for depicting child/adult pharmacokinetic differences, but data for some of the earliest age groups are highly variable.

· The fraction of individual children’s half-lives observed to exceed the adult mean half-life by more than the 3.2 fold uncertainty factor commonly attributed to inter-individual pharmacokinetic variability is 27% (16/59) for the 0-1 week age group, and 19% (5/26) in the 1 week – 2 month age group, compared to 0/87 for all the other age groups combined between 2 months and 18 years.  

· Children within specific age groups appear to differ from adults with respect to the amount of variability and the form of the distribution of half-lives across the population.  The data indicate departure from simple unimodal distributions, particularly in the 1 week to 2 month age group, suggesting that key developmental steps affecting drug removal tend to occur in that period.

Finally, in preparation for age-dependent physiologically-based pharmacokinetic modeling, nationally-representative NHANES III data are analyzed for distributions of body size and fat content.  The data from about age 3 to age 10 reveal important departures from simple unimodal distributional forms—in the direction suggesting a subpopulation of children that are markedly heavier than those in the major mode.  For risk assessment modeling, this means that analysts will need to consider “mixed” distributions (e.g. two or more normal or lognormal modes) in which the proportions of children falling within the major vs high-weight/fat modes in the mixture changes as a function of age.  Biologically, the most natural interpretation of this is that these subpopulations represent children who have or have not yet received particular signals for change in growth pattern.  These apparently distinct subpopulations would be expected to exhibit different disposition of xenobiotics, particularly those which are highly lipophilic and poorly metabolized.
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INTRODUCTION

1.1 Goals and Issues for Analysis

This paper is one of a series of efforts to understand differences between children and adults in pharmacokinetic determinants of susceptibility to toxicants. In earlier work(
) we assembled a database of classical pharmacokinetic parameters (e.g., elimination half lives; volumes of distribution) in children and adults.  These data were then analyzed to define mean differences between adults and children of various age groups.  We have focused on pharmacokinetics in part because of the extensive data that are available in the published literature on classical pharmacokinetic parameters in children and adults for various drugs.  Drugs are not always ideally representative of environmental toxicants of interest for risk assessment modeling.  However basic processes of uptake, distribution, metabolism, and excretion of drugs are likely to bear a closer resemblance to the analogous toxicokinetic processes for environmental chemicals than may be the case in the toxicodynamic/toxicodynamic arena.  Other important opportunities for pharmacokinetic/ toxicokinetic study arise from the availability of nationally representative measurements(
) of body size and other characteristics relatable to body composition as a function of age.  Distributional analyses of these data can lay the groundwork for physiologically-based population toxicokinetic modeling for children of various ages in relation to adults.  Unexpectedly, as will be seen in more detail below, distributional analyses of these age-specific pharmacokinetic and anthropomorphic data appear to reveal patterns of maturational change in quantitative parameters that may have relevance to pharmacodynamic as well as pharmacokinetic determinants of susceptibility during early life stages.

A risk analyst facing the task of analyzing the relative susceptibility of children and adults for an environmental toxicant with little or no chemical specific toxicokinetic information confronts variability issues at three levels: 

· How do key pharmacokinetic parameters differ across age groups, on average?

· How do those average age-specific differences vary among chemicals?  

· For a specific chemical or drug, how do individual children within various age groups differ from the median (50th percentile) child?

1.2 Background from Prior Work

The first issue and some aspects of the second issue defined by these bullets are the subjects of the first paper in our series.(1)  Briefly, we assembled a database of group average measurements of various pharmacokinetic parameters (including elimination half lives, clearances, volumes of distribution), categorized into a series of age groups.  In all, our database includes information on 44 chemicals and 340 total “data groups” (each consisting of a group average measurement for children with an average age in a defined age group).  

We then analyzed the group mean data for each pharmacokinetic parameter with regression equations of the following form:

Log(Mean) = B0 (intercept) + B1*(1 or 0 for chemical 1) + B2*(1 or 0 for chemical 2) + … 



+ Ba*(1 or 0 for age group 1) + Bb*(1 or 0 for age group 2) + …

(1)

In this model, the chemical-specific “B’s” correct for differences among chemicals in average clearance (or other parameter) relative to a specific reference chemical (e.g., Theophylline).  Similarly, the age-group-specific “B’s” assess the average log differences between each age group and the reference age group (adults).  This analytical technique allowed us to bring data from many different chemicals together to assess geometric mean ratios of the values seen for children of particular ages in relation to adults.  Table 1 shows antilog (geometric mean) results from this type of analysis for elimination half lives, together with ± 1 standard error uncertainty ranges, for the database as a whole, and for drugs sorted by their major elimination pathways.

Table I.  Geometric Mean Ratios of Child/Adult Elimination Half-Lives.  Data Represent  Regression Results from 135 Data Groups for 41 Drugs, Log(Arithmetic Mean Half-Life) Data

	Major Elimination Pathway
	Premature neonates
	Full term neonates
	1 wk -  2 mo
	2 - 6 mo
	6 mo - 2 yr
	2 -12 yr
	12 - 18 yr

	All pathways
	3.89

(2.8-5.4)a
	1.96

(1.7-2.3)
	1.93

(1.7-2.2)
	1.17

(1.0-1.3)
	0.79

(0.66-0.94)
	0.98

(0.89-1.1)
	1.11

(0.86-1.4)

	All CYP (P450 metabolism)
	4.52

(2.5-8.0)
	1.83

(1.4-2.3)
	3.51

(3.1-4.0)
	1.22

(0.96-1.6)
	0.51

(0.41-0.65)
	0.61

(0.52-0.72)
	0.73

(0.26-2.0)

	All Non-CYP
	3.43

(2.4-4.8)
	1.80

(1.5-2.1)
	1.46

(1.3-1.7)
	1.06

(0.91-1.2)
	0.98

(0.78-1.2)
	0.92

(0.81-1.03)
	1.11

(0.87-1.4)

	Unclassified
	
	
	
	
	1.00

(0.83-1.2)
	0.94

(0.94-1.06)
	

	more detailed classification:
	
	
	
	
	

	CYP1A2
	2.74

(0.9-7.6)
	9.45

(2.9-31)
	4.29

(3.8-4.9)
	1.24

(1.0-1.5)
	0.57

(0.44-0.72)
	0.54

(0.45-0.64)
	

	Renal
	
	2.78

(1.4-5.4)
	2.75

(1.8-4.1)
	1.15

(0.86-1.6)
	0.81

(0.60-1.1)
	0.60

(0.48-0.74)
	1.13

(0.73-1.7)

	Glucuronidation
	4.40

(4.1-4.7)
	2.98

(2.8-3.2)
	2.15

(1.7-2.7)
	0.98

(0.84-1.1)
	1.19

(1.0-1.4)
	1.36

(1.2-1.5)
	1.47

(1.3-1.7)

	CYP3A
	5.28

(2.7-10)
	2.08

(1.4-3.2)
	1.91

(1.5-2.5)
	
	0.41

(0.27-0.63)
	0.61

(0.45-0.84)
	0.73

(0.25-2.1)

	CYP2C9
	
	2.19

(1.7-2.8)
	
	
	0.55

(0.39-0.79)
	0.77

(0.51-1.2)
	

	Other, mixed CYP's
	
	1.27

(0.7-2.3)
	
	
	
	1.08

(0.58-2.0)
	

	Other Non-CYP's (not renal, glucuronidation)
	0.41

(.03-5)
	1.22

(0.94-1.6)
	1.05

(0.80-1.4)
	0.77

(0.58-1.0)
	
	1.24

(0.94-1.6)
	1.41

(0.82-2.4)


aParentheses show the ± 1 standard error range.

1.3 Outline of the New Distributional Analyses in this Paper

The results in Table 1 capture some aspects of chemical-to-chemical variability in that the analysis sorted chemicals by major elimination pathways.  The similar trends seen across a number of these pathways suggest that “mechanism of removal” is not a large source of interchemical variability at the ages represented in our database.  This can be restated by saying that a number of metabolic and clearance pathways appear to mature along a generally similar time scale.  However other sources of chemical-to-chemical variability need to be studied with the aid of the residuals from equation (1)--the differences between the fitted model  “predictions” and the observed averages for individual chemicals within each age category.  In the balance of this paper we will first analyze the full distribution of chemical-specific residuals for different age groups for the analysis summarized in Table 1 (Section 2).  

Next, Section 3 will draw on the subset of our elimination half-life data where we have measurements for individual people of known ages to ask:

· Do the age groups we defined earlier for the analysis of mean data values seem appropriate for summarizing the results?

· What fraction of the observations within specific age groups are included within the approximately 3.2 fold factor traditionally allocated to pharmacokinetic differences?

· Does the distributional form, and overall amount, of individual variability indicated by the data differ between groups of children of various ages, and adults?

Finally, in preparation for detailed age-dependent physiologically-based pharmacokinetic modeling planned for later work, in Section 4 we analyze distributions of body size and fat content indicated by the nationally-representative NHANES III data.  Section 5 then draws some conclusions on the patterns of age-dependent change seen in these different types of observations.

DISTRIBUTIONS OF CHEMICAL-SPECIFIC REGRESSION MODEL RESIDUALS FOR ELIMINATION HALF-LIVES FOR VARIOUS CHEMICALS

Figure 1 shows probability plots of the differences between observations of log(mean elimination half life) for each chemical and corresponding model predictions for that chemical for specific age groups. Where data for more than one data set were available for a particular chemical within an age group, we calculated inverse-variance weighted averages of the children’s observations for that chemical within that age group before subtracting the model “prediction.”  The inverse variance weightings were the reciprocals of the square of the standard errors of each group mean half-life, as used for the regression analyses reported previously(1) and Table 1.  

In the type of plot(
,
,
) seen in Figure 1, the correspondence of the points to the line is a quick qualitative indicator of how well the lognormal or normal assumption describes the distribution of individual values.  The Z-Score is the number of standard deviations above or below the median of a cumulative normal or lognormal distribution.  The intercept and slope of the fitted regression lines for each age group are estimates of the median and standard deviation of the distribution of the plotted residuals.  A larger slope, corresponding to a larger standard deviation, indicates greater variability of the individual chemical observations from the model predictions for that age group.  

The plots in Figure 1 indicate the most substantial variability (largest regression slope), exists for the log residuals for the 1 week- 2 month age group.  This group also exhibits the greatest departures from the expected normal distribution of log residuals.  The suggestion is that the observations in this age group are more heterogeneous relative to model predictions than corresponding observations and model predictions for other age groups.  At older ages, there appears to be a trend toward lesser overall variability and closer correspondence of the distributions to normality.

DISTRIBUTIONAL FORMS AND AMOUNTS OF INTERINDIVIDUAL VARIABILITY FOR CHILDREN OF VARIOUS AGE GROUPS VS ADULTS

The majority of the data that contribute to Table 1 and Figure 1 are group means.  In many cases the original investigators did not provide detailed data for individual subjects (in all, the elimination half-life data are based on observations in 1,860 subjects, including adolescents and adults).  However, in the cases of 158 subjects under age 10, observations of elimination half life for individual children are available.  We divided each of these individual observations by adult mean values for the corresponding chemicals, and then plotted the log10’s of these ratios in Figure 2a.  Figure 2b and 2c show similar plots of data for subjects in the first year and first 60 days of life, respectively.  Finally Figures 3a and 3b show the data broken down by particular categories of predominant elimination mechanisms, and Figure 4 shows the important effect of supplementing the individual data for Cyp1A2 elimination with some group mean data points (where individual data were not available).  In the case of Cyp1A2, the individual data that are available (Figure 3) are too limited to show the full range of variability, as evidenced in some of the group aggregate data (Figure 4).  In all, it appears that the rough age groupings we have constructed provide aggregates that do not significantly distort the data.  The age grouping used in Table 1 and Figure 1 do not aggregate across any obvious sharp break-points in the underlying observations, at least within the limits of detection possible from the amount of individual data available.

These figures also demonstrate that it is not uncommon for individual observations in the youngest age groups to differ from adult mean values by more than a half log.  This size factor has been allocated to interindividual pharmacokinetic differences in a recent adaptation of the classical 10-fold uncertainty factor for interindividual differences across the human population.(
)  Table II summarizes this finding in more quantitative terms.  Overall the individual data for the first two months of life indicate that over 15% of measurements exceed the 3.2 fold factor in the direction of longer half-life and a few percent at these young ages exceed the adult mean half life by over ten fold.  Figure 5 shows probability plots of the full distributions of the data within the different age groups, in the same format as was used for Figure 1.  As in Figure 1, the individual values of child/(mean adult) half life ratios show greater overall variability at younger ages, and the 1 week –2 month age group shows appreciable departures from the line representing a simple unimodal lognormal distribution (i. e. R2 values less than 0.9, combined with an apparently systematic pattern of departures with many points in a row on the same side of the regression line).

Table II. Fraction of the Individual Observations Within Various Multiples of Adult Mean Elimination Half-Lives

	Age Group
	Total Individual Observations
	<10X shorter
	<3.2X shorter
	
	>3.2X longer
	>10X longer

	Premature <7 d 
	10
	0
	0
	
	7 (70%)
	0

	Full term <7 d 
	49
	0
	1 (2%)
	
	9 (18%)
	4 (8%)

	7-60 days
	26
	0
	0
	
	5 (19%)
	2 (8%)

	61-180 days
	15
	0
	0
	
	0
	0

	181-730 days
	15
	0
	1 (7%)
	
	0
	0

	731-4380 days
	49
	0
	2 (4%)
	
	0
	0

	12-18 years
	8
	0
	0
	
	0
	0


DISTRIBUTIONAL FORMS AND AMOUNTS OF VARIABILITY IN BODY SIZE AND FAT CONTENT DURING CHILDHOOD

This section provides underlying data needed to begin the construction of age-dependent physiologically-based pharmacokinetic (PBPK) modeling in distributional forms capable of representing the diversity of the existing population of U.S. children.  Other groups have undertaken parallel efforts for average children of different ages.(
,
)  The present analysis is an advance by drawing on individual data for weight and measurements related to body fat content from a large representative sample of U.S. adults and children 2 months of age and older.(2)  This large data base allows us to analyze in detail the changes in the distributions of these parameters with age in children. 

The initial focus is on body weight and fat content for the following reasons:

·  Body weight is important for PBPK modeling not only because it provides the total to which all body components must sum, but because it can be expected to be associated with activity levels and metabolic rates.  These are in turn important kinetic features of the models that are necessarily associated with exposure rates via various media including air, water, and food intakes.  The rate of growth in body weight with age also predictably imposes requirements for food and other intakes that are larger than needed for maintenance of basal functions and support of voluntary activities. 

· Body fat content, and changes in body fat with age are likely to be important determinants of the storage and re-release of highly lipophilic and poorly metabolized environmental contaminants of concern such as dioxins and PCBs.  Careful distributional analysis of body fat  contents in children may offer insights into effective volumes of distribution and changes in tissue exposures from the ages at which lactational exposures are common to the ages at which potentially sensitive hormonal signals for sexual and other kinds of development occur.  Body fat distributions will also have implications for the pharmacokinetic modeling of lipophilic smaller molecular weight toxicants such as perchloroethylene.(
)
4.1 Distributions of Body Weight as a Function of Age in Children

To provide a convenient base for assessing distributions of body weight it was first important to develop population-weighted models for geometric mean body weights (Table III and Figure 6).  Statistical weights, as provided by NHANES III are used in the current modeling in 

Table III.  Population Weighted Polynomial Regression Models for Log(Body Weight) for 5,493 Boys and 5,522 Girls Using Data from NHANES III

Boys:

	Dependent Variable:
	log(BW)
	
	
	
	

	Summary of Fit
	.
	
	
	
	

	Rsquare
	0.874
	
	
	
	

	RSquare Adj
	0.874
	
	
	
	

	RMS error
	5.075
	
	
	
	

	Mean of Response
	1.323
	
	
	
	

	Observations (or Sum Wgts)
	23415850
	
	
	
	

	
	
	
	
	
	

	Parameter Estimates for Independent Variables:
	.
	
	
	
	

	Term
	
	Central Estimate of Regression Coefficienta
	Std Error
	t Ratio
	Prob>|t|

	Intercept
	
	0.8226341
	0.041
	20.09
	<.0001

	Log(Age)
	
	-0.212808
	0.162
	-1.31
	0.1894

	(log Age)2
	
	0.8350829
	0.214
	3.9
	<.0001

	(log Age) 3
	
	-0.612107
	0.115
	-5.31
	<.0001

	(log Age) 4
	
	0.1638196
	0.022
	7.52
	<.0001


Girls:

	Dependent Variable:
	log(BW)
	
	
	
	

	Summary of Fit
	.
	
	
	
	

	Rsquare
	0.870
	
	
	
	

	RSquare Adj
	0.870
	
	
	
	

	Root Mean Square Error
	5.336
	
	
	
	

	Mean of Response
	1.318
	
	
	
	

	Observations (or Sum Wgts)
	22252406
	
	
	
	

	
	
	
	
	
	

	Parameter Estimates for Independent Variables:
	.
	
	
	
	

	Term
	
	Central Estimate of Regression Coefficienta
	Std Error
	t Ratio
	Prob>|t|

	Intercept
	
	0.8128928
	0.041
	19.73
	<.0001

	Log(Age)
	
	-0.384926
	0.167
	-2.3
	0.0215

	(Log Age) 2
	
	1.106313
	0.224
	4.94
	<.0001

	(Log Age) 3
	
	-0.758429
	0.121
	-6.25
	<.0001

	(Log Age) 4
	
	0.1912602
	0.023
	8.31
	<.0001


aNote: these results are given to more significant figures than are justified by the standard errors in order to allow more exact replication of our central estimate results.

order to correct for the oversampling of some age and ethnic subgroups in the NHANES III study relative to the U.S. population as a whole.  The regression results in Table III and the plots in Figure 6 represent an unusual fourth degree log polynomial model form:

Log(weight) =  B + B*[Log(Age)] + B*[Log(Age)] 2 + B*[Log(Age)] 3 + B*[Log(Age)] 4
 (all the logarithms are base 10). Polynomial regressions based on untransformed body weight did much less well--for example even a fifth degree polynomial based on body weight itself had an R2 0.76 for males rather than the 0.87 seen for the males in these log fits.

The very large number of subjects studied in NHANES III offers a good opportunity to characterize the distributions of individual body weights in relation to the central model fits.  For each person we therefore calculated the difference between his or her log(Body Weight)  and the log(geometric mean) body weight “predicted” on the basis of the subject’s age.  We then did a series of log probability plots in which these differences were plotted vs Z-Scores as previously described(8) (Figures 7-12).  In these figures, plots of the data for males are presented in the upper panel, while data for females are shown in the lower panel.  The slopes of the regression lines are estimates of the standard deviation of the log(residuals)--analogous to the log(Geometric Standard Deviation) that we have previously calculated for pharmacokinetic and pharmacodynamic data.(
)  The intercept for the regression lines should be close to zero, and is an indication of any residual systematic difference between the geometric mean of the data for each age group and the model prediction.]  This was done month by month of age for each sex for babies between 2 and 12 months, with somewhat larger intervals thereafter.  

Based on our experience with the distributions of residuals the model of the means of the pharmacokinetic data (Figure 1) and the distributions of child/adult ratios (Figure 5) our original expectation was that the basic distributions of body weight residuals would be lognormal--with possibly some departures from lognormality in the very earliest age groups (e.g., infants 2 months of age).  It can be seen in Figures 7a-7d that for the first year or so of data, these expectations were borne out (with the possible exception, likely artifactual, of the plot for 7-8 month old female babies).  The 2 month infants show considerable departure from lognormality and generally  larger amounts of variability.  Month by month the distributions become more lognormal and tighter--lower slopes/standard deviations.  The first hint of trouble with this simple picture comes with the female residual plots for the 13-30 month age groups (Figure 7e).  Although the male plots for these groups are nearly perfectly lognormal, the female plots show a few cases at the right (heavier) end where a small proportion of the girls are markedly heavier than would be expected from the straight lognormal projections.  

What is hinted in the female 13-30 month plots expands to anomalies that are impossible to miss for both sexes in the next set of age groups (3-5 year old children--Figure 7f).  For the earliest age groups in this set, the departure from lognormality becomes apparent at about 2 standard deviations to the right of the geometric mean--corresponding to about 2% of the overall population--but as one proceeds to older ages the beginning of the clear anomaly moves to the left--meaning that a larger proportion of the population is involved.  The most natural interpretation of this is that a different growth pattern leading to heavier body weight for age appears to affect a relatively small proportion of 3-year olds, but by the time children are 5 the fraction affected by this influence expands.   The progression of the upward turn proceeds to the left in the 6-8 year age groups in both sexes (Figure 7g), as does the tendency toward larger overall amounts of variability in the population as seen in the slopes of the regression lines.  For the oldest (9-11 year) age groups (Figure 7h) the shape of the overall distribution tends to become more lognormal again, and the slope (standard deviation) stabilizes at the relatively high value of a bit over 0.1, compared to the 0.05 or so seen in the infants.  Further insights into these findings are provided by an evaluation of fat content in children, inferred from other measurements in the NHANES III sample data in the following section.

4.2 Distributions of the Fraction of Body Weight Represented by Body Fat

In this paper we use the term ‘body fat’ to mean the fraction of total body weight that is fat.  This definition provides the most natural interface for calculation of the relative size of the adipose tissue compartment in PBPK models. 

It is not entirely straightforward to make inferences about population distributions of percent body fat in children of various ages from the data provided by NHANES III.  A variety of methods have been applied to the direct measurement of body fat, but none of these are suitable for large-scale use in a broad population study.  (Such methods include underwater weighing, total body water determination with 2H or 18O, total body potassium determination with 40K, and bioelectrical impedance.)  Instead NHANES III contains the results of a number of less demanding measurements—particularly skinfold thicknesses and the “body mass index” (BMI--the weight in kilograms divided by the square of the height in meters(
)) which have been found in past studies to have strong correlations with more direct measurements of body fat.  A further complication is that because of the continuous changes in body shape between infancy and adulthood one cannot necessarily expect empirical relationships between simple measurements of BMI and skinfold thickness and total body fat to be entirely stable between age groups.

To surmount these difficulties we derived formulae to interpret age-specific NHANES III measurements in terms of body fat in the following steps:

· First, existing sophisticated studies of body fat content(11,
,
,
,
,
,
,
,
,
,
,
) were used to derive a series of empirical age- and gender-specific central estimate formulae for mean body fat as a function of age.  Essentially these empirical formulae serve the function of providing a smoothed weighted average body fat in relation to age and sex.

· Second, we took advantage of a single study of obese, overweight, and normal children ages 5-11 (Grund et al, 2000)(11) in which careful measurements were made of total body fat in relation to BMI and skinfold thicknesses.  These data were used to define relationships between the parameters measured in NHANES III and measured fat content capable of representing the distributional characteristics of fat content in unusually heavy children vs children in the normal range of fat content and body weight as a function of height.  

· Third, to derive distributions of individual body fat content from the NHANE III observations of skinfold and BMI, the relationships derived in the second step for the 5-11 year olds were calibrated against the central estiimates of fat content for specific ages and genders derived from the sophisticated studies of body fat summarized in the first step.

Finally, using these relationships, we analyze the population distribution of fat content as a function of age from the NHANES III data.  Briefly, appreciable departures from unimodal normal distributions appear in the data for older children and adolescents.  These distributions are reasonably described with mixtures of two normal modes when data from narrowly-defined age/gender groups are examined

Step 1:  Central Estimates of % Body Fat as a Function of Age.  The general pattern of change of fat content with age that emerges from the studies using sophisticated methods for measuring body fat is shown in Figure 8a (for children age 10 and under) and 8b (for the entire range of ages for which there are data).  A similar pattern was described by Fomon in the early 1980’s.(
)  Infants put on body fat until some point in the first year and then lose body fat until a nadir in the area of 5 to 8 years (Figure 8a).  This age marks the onset of what some researchers have dubbed ‘adiposity rebound’(19)--a gain in body fat that plateaus in adulthood, at a higher level in women than in men (Figure 8b).  The lines in these figures reflect empirical summary relationships derived from the data in specific age ranges with regressions weighted by the numbers of people in each data set.  Linear quadratic relationships were used in a series of age segments for the first 9-10 years of life, followed by logarithmic relationships for the approach to adult plateau levels of body weight:  

Age 0-6 months: 

% body fat = 12.205 + 5.912(age) - 0.641(age2)

(2)

Age 6-78 months:

% body fat = 27.48 – 0.304(age) + 0.0018(age2)

(3)

Age 78-105 months (M):
% body fat = 27.09 – 0.276(age) + 0.00155(age2)

(4)

Age 78-119 months (F):
% body fat = 27.91 – 0.345(age) + 0.0023(age2)

(5)

Age  105 months+ (M):
% body fat = 7.35 + 1.6956[ln(age)]



(6)
Age 119 months+ (F):

% body fat = -25.427 + 9.425[ln(age)]


(7)

It was impossible to detect a difference between young boys and girls, so we fit one curve for both groups up to age 78 months. At this point fit separate curves were fit for males and females. 

Step 2:  Defining Relationships Between Individual Values of % Body Fat and BMI and Skinfold  Measurements Available in NHANES III.  A key input to this step in the analysis was a set of observations published by Grund et al (2000).(11) This paper provided mean values of BMI, triceps and subscapular skinfold thicknesses as measured in NHANES III, and direct measurements of body fat for three groups of German children age 5 to 11, sorted by BMI: normal (10th to 90th percentile BMI), overweight (90th to 97th percentile BMI), and obese (over 97th percentile).  

Initially, following several previous papers in the literature, we fit linear quadratic models to the Grund et al observations of % body fat in relation to the sum of the relevant skinfold thicknesses.  We found, however , that fits with this form of the relationship implied unreasonable maximum values of % body fat at relatively high values of skinfold thickness.  This was because high values of skinfold thickness led to a complete offset of the positive linear term by the negative quadratic term in the model.  Reasonable monotonic behavior resulted from a fit of a power function to these data:

% body fat = 3.74 * (triceps skinfold + sunscapular skinfold)^0.55


(8)

(the .55 power has a standard error of ± .03)

For the BMI as a predictor of % body fat, a different form was found to describe the data:

% body fat = -77.3 + 78.4 * log(BMI)





(9)

(the 78.4 coefficient has a standard error of ± 5.8)

To make predictions of individual % body fat for individual children in the NHANES III data set the predicted % body fat from each of these equations was averaged.

To check the reasonableness of these prediction equations as applied to the NHANES III data, Figure 9 compares the means and ranges of the Grund et al. % body fat observations with the mean % body fat predicted for NHANES III children from the same percentile ranges of BMI and the same age range as were used in the Grund et al. study.  It can be seen that there is reasonable agreement, particularly at the high end of the range of BMI and body fat, indicating that model equations do not appear to produce biased estimates of % body fat, even for unusually obese children.  

Step 3:  Extension to Other Ages.  Finally, the results of applying equations (8) and (9) to the NHANES III skinfold and BMI data were adjusted (by the simple addition or subtraction of a constant) so that the population average predicted % body fat would correspond to the mean % body fat indicated by the direct measurements summarized in equations (2) through (7).  

Results:  Variability in % Body Fat for Children and Young Adults.  The process described above yielded body fat predictions for 28,000 NHANES III subjects; the final step was to analyze the variability of this parameter. Figure 10 shows this variability as a function of age, here quantified as the coefficient of variation in % body fat.  It appears that in males and females variability increases beginning around age 4 or 5.  This mirrors observations of changes in BMI and its variability with age (Figure 11).  Finally, Figures 12a-12c show probability plots of the distributions of body fat content in females of various ages (data for males show similar patterns).  As was seen for overall distributions of body weights in Figure 7, there is a transition from well-behaved unimodal distributions in infancy, to progressive departures from unimodality in mid-childhood.  The R2 value and the plot for fully grown 20 year olds, however, suggest a return to a unimodal distributional form. 

Recent literature on body composition and nutrition identifies an early age and high rate of “adiposity rebound” as a risk factor for the development of obesity in later life.(
,
,
)  As with general body weight, the patterns of departure from simple unimodal distributional behavior seen in Figures 12a-12c may result from an age-related change in growth pattern that occurs earlier in some individuals than in others.  The most natural way to represent this for purposes of quantitative modeling is to fit mixtures of two or more normal or lognormal modes to the data. Table IV show the results of fitting mixtures of two normal modes to the body fat data for males and females of various ages.  Overall, this approach appears to be reasonably successful in describing body fat distributions for age groups where unimodal distributions are conspicuously inadequate.

CONCLUSIONS

In this follow-up paper we drew on individual data for pharmacokinetic and anthropometric parameters to help define distributions that will be helpful for population distribution modeling of pharmacokinetic differences between children of various ages and adults.  The major findings are: 

· The age groups defined in the earlier analysis of arithmetic mean data (0-1 week premature; 0-1 week full term; 1 week to 2 months; 2-6 months; 6 months to 2 years; 2-12 years and 12-18 years) are reasonable for depicting child/adult pharmacokinetic differences, but data for some of the earliest age groups are highly variable.

Table IV. Fits a of Two-Component Normal Mixture Distributions to % Body Fat Estimates for NHANES III Subjects of Various Ages (± 2 months) and Genders

	Female
	
	
	
	
	
	

	age (yr)
	low mean % body fat
	low s.d. % body fat
	high mean % body fat
	high s.d. % body fat
	Fraction of people in low mode
	p-value of 2

	5
	14.3
	2.1
	23.9
	3.5
	0.83
	0.06

	6
	13.1
	2.3
	20.96
	3.7
	0.80
	0.60

	7
	14.6
	1.9
	23.2
	3.1
	0.80
	0.99

	8
	13.6
	2.4
	23.4
	4.1
	0.67
	0.11

	
	
	
	
	
	
	

	18
	21.2
	3.1
	29.8
	4.4
	0.58
	0.57

	
	
	
	
	
	
	

	Male
	
	
	
	
	
	

	age (yr)
	low mean % body fat
	low s.d. % body fat
	high mean % body fat
	high s.d. % body fat
	Fraction of people in low mode
	p-value of 2 (4 d.f.)

	5
	15.3
	1.8
	24.2
	2.8
	0.90
	0.07

	6
	14.5
	1.4
	18.4
	1.7
	0.75
	0.59

	7
	13.2
	1.8
	19.4
	2.6
	0.76
	0.21

	8
	11.8
	2.0
	20.8
	3.4
	0.78
	0.29

	
	
	
	
	
	
	

	18
	14.2
	3.4
	26.7
	6.3
	0.78
	0.54


aFor these fits, parameters (two means, two standard deviations, and the fraction of people in the “low” % fat mode) were optimized by minimizing chi-squared values of observe vs expected numbers of people in a series of “cells” representing successive ranges of % body fat, after grouping so that no cell was expected to contain fewer than five people.  Additionally, a constraint was imposed such that the coefficient of variation of % body fat in both modes was required to be the same, reducing the effective number of fitted parameters to four, rather than five.
· The fraction of individual children’s half-lives observed to exceed the adult mean half-life by more than the 3.2 fold uncertainty factor commonly attributed to inter-individual pharmacokinetic variability is 27% (16/59) for the 0-1 week age group, and 19% (5/26) in the 1 week – 2 month age group, compared to 0/87 for all the other age groups combined between 2 months and 18 years.  

· Children within specific age groups appear to differ from adults with respect to the amount of variability and the form of the distribution of half-lives across the population.  The data indicate departure from simple unimodal distributions, particularly in the 1 week to 2 month age group, suggesting that key developmental steps affecting drug removal tend to occur in that period.

· Finally, distributions of body weight and estimated body fat content have been assembled from nationally-representative NHANES III data. The data from about age 3 to age 10 reveal important departures from simple unimodal distributional forms—in the direction suggesting a subpopulation of children that are markedly heavier than those in the major mode.  For risk assessment modeling, this means that analysts will need to consider “mixed” distributions (e.g. two or more normal or lognormal modes) in which the proportions of children falling within the major vs high-weight/fat modes in the mixture changes as a function of age. Mixtures of two normal modes have been shown to be reasonable descriptions of the distributions of estimated body fat in children’s age groups that are not well fit by simple unimodal distributions.  Biologically, the most natural interpretation of this is that these subpopulations represent children who have or have not yet received particular signals for change in growth pattern.  These apparently distinct subpopulations would be expected to exhibit different disposition of xenobiotics, particularly those which are highly lipophilic and poorly metabolized.  
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