EFFECTS OF GASTEROID FRUITING BODY MORPHOLOGY ON DIVERSIFICATION RATES IN THREE INDEPENDENT CLADES OF FUNGI ESTIMATED USING BINARY STATE SPECIATION AND EXTINCTION ANALYSIS

Andrew W. Wilson,^{1,2,3} Manfred Binder,^{1,4} and David S. Hibbett^{1,5}

¹Department of Biology, Clark University, Worcester, Massachusetts 01610

²E-mail: awilson@chicagobotanic.org

⁴E-mail: mbinder@clarku.edu

⁵E-mail: dhibbett@clarku.edu

Received June 28, 2010 Accepted December 4, 2010

Gasteroid fungi include puffballs, stinkhorns, and other forms that produce their spores inside the fruiting body. Gasteroid taxa comprise about 8.4% of the Agaricomycetes (mushroom-forming fungi) and have evolved numerous times from nongasteroid ancestors, such as gilled mushrooms, polypores, and coral fungi, which produce spores on the surface of the fruiting body. Nongasteroid Agaricomycetes have a complex mechanism of forcible spore discharge that is lost in gasteroid lineages, making reversals to nongasteroid forms very unlikely. Our objective was to determine whether gasteromycetation affects the rate of diversification of lineages "trapped" in the gasteroid state. We assembled four datasets (the Sclerodermatineae, Boletales, Phallomycetidae, and Lycoperdaceae), representing unique origins of gasteroid fungi from nongasteroid ancestors and generated phylogenies using BEAST. Using the program Diversitree, we analyzed these phylogenies to estimate character-state-specific rates of speciation and extinction, and rates of transitions between nongasteroid and gasteroid forms. Most optimal models suggest that the net diversification rate of gasteroid forms exceeds that of nongasteroid forms, and that gasteroid forms will eventually come to predominate over nongasteroid forms in the clades in which they have arisen. The low frequency of gasteroid forms in the Agaricomycetes as a whole may reflect the recent origins of many gasteroid lineages.

KEY WORDS: BISSE, Diversitree, extinction rates, gasteroid fungi, gasteromycetation, irreversible evolution, puffballs, speciation rates.

The Agaricomycetes is a diverse group of fungi that produce elaborate reproductive structures such as mushrooms, coral fungi, and puffballs. These fruiting structures can fall within one of two major morphological categories. These are the morphologically diverse nongasteroid forms (e.g., mushrooms, boletes, poly-

³Plant Science and Conservation, Chicago Botanic Garden, Glencoe, Illinois, 60022. pores) and gasteroid forms (i.e., stomach-fungi or puffballs). The Agaricomycetes is largely composed of fungi with a nongasteroid morphology, which is the plesiomorphic condition for the group, whereas gasteroid fungi are sparsely distributed in numerous derived lineages (Thiers 1984; Bruns et al. 1989; Hibbett et al. 1997). Gasteroid fruiting bodies are thought to have evolved as an adaptation to animal dispersal and arid climates (Savile 1955, 1968; Thiers 1984; Bruns et al. 1989). Approximately 8.4% of Agaricomycetes are gasteroid whereas the rest are nongasteroid (Hawksworth et al. 1996).

In nongasteroid Agaricomycetes, spores develop externally on specialized cells called basidia, which grow in the hymenium, the fertile surface of the fungal fruiting body. Nongasteroid spores are launched from the hymenium by a process of forcible spore discharge, known as ballistospory. The mechanism of ballistospory involves rapid energy exchange through the surface tension that is released when two separate formations of liquid, one from the spore and one at the base of the spore, merge. The merging causes the fluid to jump over to the spore, and launches it from the basidium (Buller 1909; Ingold 1971; Turner and Webster 1991; Pringle et al. 2005). This mechanism requires asymmetrical spores with hilar appendages (a minute protuberance at the base of the spore), and curved apical sterigmata (stalks that bear the spores). None of these features are observed in gasteroid Agaricomycetes, which lack ballistospory. The gasteroid fungi also differ from nongasteroid fungi in that the hymenium has become enclosed and has evolved into a structure called the gleba, within which the spores mature. Reversals from gasteroid to nongasteroid forms are highly unlikely, because they would require reevolving a hymenium and the structures responsible for the complex mechanisms involved in ballistospory (Thiers 1984). The hypothesis of the irreversibility of gasteromycetation was tested by Hibbett (2004) in a phylogenetic context. Using a combination of binaryand multistate maximum likelihood analyses, he evaluated the rate of change between five Agaricomycete fruiting morphologies (four nongasteroid and one gasteroid). Models of fruiting body evolution in which the evolution of gasteroid forms is irreversible could not be rejected.

Gasteroid fungi represent a small fraction of the total number of species of Agaricomycetes, but they encompass a tremendous range of morphological diversity (Fig. 1). We focused on three clades that contain diverse gasteroid and nongasteroid taxa. The Sclerodermatineae (Figs. 1A-E) is a suborder within the large, and ecologically important Boletales (Binder and Bresinsky 2002), which includes the nongasteroid genera Boletinellus, Phlebopus, and Gyroporus and a variety of gasteroid genera such as Scleroderma (puffballs), Astraeus (earthstar), Calostoma (stipitate, gelatinized), and Pisolithus (a puffball in which the gleba has been fragmented into individual chambers). The Phallomycetidae (Figs. 1F-J) includes gasteroid genera such as Geastrum (earthstar), Sphaerobolus ("cannon-ball" fungus, with gleba "packets" that are forcibly ejected from the fruiting body), Hysterangium (gelatinized puffball), and Phallus (stinkhorn, gelatinized) (Hosaka et al. 2006). The Lycoperdaceae (Figs. 1K-N) is a lineage in the Agaricaceae, with four simple gasteroid genera Lycoperdon, Bovista, Calvatia, and Discisdea (Larsson and Jeppson 2008). In addition, other morphologically unique gasteroid lineages exist within the Agaricomycetes, such as the Tulostomataceae (stalked puffballs), the Nidulariaceae (birds nest fungi), and simple gasteroid bolete genera *Rhizopogon* and *Melanogaster*, to name a few. Clearly, the gasteroid condition does not preclude morphological diversification, even though gasteromycetation itself is irreversible. Indeed, the range of gasteroid morphologies that are observed in the Agaricomycetes (Fig. 1) suggests that gasteromycetation may offer opportunities to diversify in a new adaptive landscape.

We addressed whether the evolution of the gasteroid morphology affects the rate of diversification in lineages of Agaricomycetes. If gasteromycetation were to reduce diversification rates relative to nongasteroid lineages, then we would expect gasteroid clades to remain small (and therefore be more prone to extinction), compared to their nongasteroid relatives. This expectation is consistent with the current paucity of gasteroid forms across the Agaricomycetes as a whole. On the other hand, if gasteromycetation were to result in an increase in the rate of diversification over nongasteroid forms, then gasteromycetation would be an evolutionary key innovation. More generally, if the gasteroid rate of diversification is positive, but less than that of nongasteroid forms, then we still might expect the number of gasteroid lineages to increase, because transformations to gasteroid forms are irreversible.

To address the diversification consequences of gasteromycetation, we used Binary State Speciation and Extinction analysis (BiSSE; Maddison et al. 2007), which is implemented in Diversitree (FitzJohn et al. 2009). BiSSE estimates character statespecific speciation (μ) and extinction (λ) rates, and rates of transition (q) between binary character states (0 and 1), for a total of six rate parameters (λ_0 , λ_1 , μ_0 , μ_1 , q01, and q10). BiSSE allows any of the rate parameters to be constrained to evaluate different hypotheses about character-associated diversification. We focused on gasteromycete diversification in the Sclerodermatineae (Figs. 1A-E), with additional analyses on a more inclusive Boletales dataset, the Phallomycetidae (Figs. 1F-J), and the Lycoperdaceae (Figs. 1K-N). Analysis of multiple independent clades allowed us to assess the generality of results obtained in the Sclerodermatineae, whereas comparison of results from the nested Sclerodermatineae and Boletales datasets addressed the impact of taxon sampling within a single clade.

Materials and Methods **DATASETS**

We assembled five datasets representing both gasteroid and nongasteroid morphologies in different taxonomic groups of Agaricomycetes, including two datasets for the Sclerodermatineae with different proportions of gasteroid taxa. We generated original gene sequences to create the Sclerodermatineae datasets, whereas the

Figure 1. Nongasteroid and gasteroid fungal morphologies in the Agaricomycetes. The three rows correspond to the groups Sclerodermatineae (A–E), Phallomycetidae (F-J), and nongasteroid *Chlorophyllum molybdites* (K) with the Lycoperdaceae (L–N). Nongasteroid fungi: A, F, and K. Gasteroid fungi: B–E, G–J, and L–N. (A). *Gyroporus castaneus*, (B) *Astraeus* sp., (C) *Calostoma cinnabarinum*, (D) *Pisolithus tinctorius*, (E) *Scleroderma cepa*, (F) *Gomphus floccosus*, (G) *Trappea darkeri*, (H) *Sphaerobolus stellatus*, (I) *Geastrum floriforme*, (J) *Aseroe rubra*, (K) *Chlorophyllum molybdites*, (L) *Calvatia pachyderma*, (M) *Bovista pila*, (N) *Lycoperdon marginatum*. Photo Credits: A by P.B. Matheny; B–D and N by A.W. Wilson; E–G and K by M. Wood (Mykoweb.com); H, I, L, and M by F. Stevens (Mykoweb.com); J by D.E. Desjardin.

data for the remaining three datasets—the Boletales, the Phallomycetidae, and the Lycoperdaceae—were gathered from previous studies or assembled from sequence data available on Gen-Bank (http://www.ncbi.nlm.nih.gov/GenBank/index.html). We based the taxonomic sampling in each group on current estimates of species richness per genus from the Dictionary of the Fungi (Kirk et al. 2008). This information was used to adjust the numbers of taxa to approach the correct proportions of gasteroid fungi in each clade.

Sclerodermatineae

We extracted DNA from fresh fungal basidiomes and dried herbarium samples. Due to the large amount of pigmentation that is present in Sclerodermatineae species, we attempted a number of DNA extraction methods, including miniprep and maxiprep methods (protocols can be found at http://www.clarku.edu/faculty/ dhibbett/protocols.html) and the EZNA Fungal DNA Miniprep kit (Omega Bio-tek, Inc., Doraville, GA). We purified DNA using GeneClean glass milk (Q-BIOgene, www.qbiogene.com).

We used PCR to amplify the nuclear ribosomal 5.8S region with primers ITS1-F (Gardes and Bruns 1993) and ITS4 (White et al. 1990). To amplify the 5' end of the nrDNA large subunit (25S), we used primers LROR and LR5 (Vilgalys and Hester 1990). To amplify regions A through C of the protein-coding region ribosomal polymerase two, subunit one (RPB1), we used the published primers RPB1-Af and RPB1-Cr (Matheny et al. 2002), and the newly designed primers RPB1-sA1f (5'-AACT YWACTCGTTTYGCACCCC-3'), and RPB1-sA2r (5'-GCACC CACCTCCCAATTTCTGG-3'). To amplify and sequence ribosomal polymerase two, subunit two (RPB2), regions 5–7, we used various combinations of the published primers RPB2f5F, RPB2-b7R, RPB2–7R2, RPB2–7.1R, RPB2-a8.0R (Matheny 2005; Binder et al. 2010) along with the newly designed primers RPB2-s5.2F (5'-TGGGGGRGACCARAAGAARTC-3'), and RPB2-s7.1R (5'-CTGATTRTGGTC NGGGAAMGG-3'). To amplify and sequence translation elongation factor 1-alpha (ef1 α), we used primers EF1–983F, EF1–2218R, EF1–1953R, and EFcf (Rehner and Buckley 2005). PCR and sequencing conditions for the various genes were based on White et al. (1990, for rRNA genes), Matheny et al. (2002, RPB1), Matheny (2005, RPB2), and Rehner and Buckley (2005, ef1 α). Primer sequences and maps are available at the Hibbett lab website (http://www.clarku.edu/faculty/dhibbett/Protocols_Folder/Primers/Primers.pdf).

Nearly 40% of the sequences that we generated in this study had to be cloned due to intragenomic heterogeneity or weak amplification. We cloned PCR amplicons using the TA or TOPO TA Cloning Kits (Invitrogen, Carlsbad, CA). We ligated fresh, cleaned, PCR product to pCR 2.1 vectors that were then used to transform MAX efficiency DH5 α -T1 chemically competent cells of *Escherichia coli*. We incubated approximately 75 mL of cells in liquid SOC medium at 37°C for up to 24 h on Luria-Bertani (LB) agar prepared with 50 µg/mL of kanamycin and 50 µL of 50 mg/mL of X-gal in dimethylformamide. We screened transformed colonies with PCR using primers M13F and M13R followed by gel electrophoresis (1% agarose) with a 1 kb stepladder. Up to three amplicons of the expected size were chosen for sequencing.

We constructed two datasets for the Sclerodermatineae (Table 1). Sclerodermatineae dataset 1 represents 103 operational taxonomic units (OTUs) and is composed of 214 newly generated sequences (65 25S, 41 5.8S, 37 RPB1, 40 RPB2, 31 ef1 α) and 46 sequences acquired from GenBank (38 25S, 2 5.8S, 2 RPB1, 2 RPB2, 2 ef1 α). Both nuclear ribosomal DNA and protein-coding sequences are present in 43 OTUs. The remaining 60 OTUs are represented by 25S sequence data only. Sclerodermatineae dataset 2 is a reduced dataset of 76 OTUs where 27 OTUs, represented by 25S sequences, were removed from dataset 1 (Table 1).

Sixty-seven percent of the taxa in Sclerodermatineae dataset 1 are gasteroid (Table 2). This is about equal to the frequency of gasteroid taxa in the clade (68%) based on estimates in the Dictionary of the Fungi (Kirk et al. 2008). Seventy-two percent of the taxa in the Sclerodermatineae dataset 2 are gasteroid, which is slightly higher than the estimates from the Dictionary of the Fungi. Thus, the two Sclerodermatineae datasets represent slightly different proportions of gasteroid forms. It is possible that the Dictionary of the Fungi underestimates the diversity of gasteroid Sclerodermatineae, based on the amount of cryptic diversity that has been detected in the group. Studies of *Astraeus* (Phosri et al. 2007) and *Pisolithus* (Martín et al. 2002) report a surprising number of cryptic taxa in these gasteroid genera. This cryptic diversity is not limited to gasteroid forms as molecular analyses suggest that individual species of *Gyroporus* appear to represent multiple

Boletales

We used the dataset from Binder and Hibbett (2006), which consists of 485 nuclear ribosomal 25S sequences. This dataset contains approximately 15% gasteroid taxa, which is less than the 25% estimated using the Dictionary of the Fungi (Table 2). The Boletales dataset includes 31 species (6.4%) of Sclerodermatineae, with 402 species representing all of the other major clades of Boletales; the remaining 52 species represent outgroup taxa. 72 species (14.8%) in the Boletales dataset are gasteroid, including 19 species of Sclerodermatineae, with the remainder distributed among the Suillineae (32 species), Boletineae (15 species), Serpulaceae (three species), and the outgroup taxa (three species).

Phallomycetidae

For analyses of the Phallomycetidae, we modified the dataset of Hosaka et al. (2006), which consists of nrLSU, mtSSU, atp6, RPB2, EF1 α sequence data for 213 taxa. For this study, we removed 89 taxa representing the gasteroid morphology from the original Hosaka et al. (2006) dataset, which brought the dataset to 52% gasteroid fungi, and making it slightly greater than the estimated 43.5% gasteroid fungi in the Phallomycetidae (Table 2).

Lycoperdaceae

This dataset comprises 25S sequences from GenBank and is largely based on the Lycoperdaceae sensu Larsson and Jeppson (2008). We included additional 25S sequences for nongasteroid closely related to the Lycoperdaceae. The Lycoperdaceae dataset is approximately 50% gasteroid, which is greater than the 32% estimated using the Dictionary of the Fungi (Table 2).

PHYLOGENETIC ANALYSES

We generated ultrametric trees for each dataset using BEAST version 1.4.6 (Drummond and Rambaut 2007). We used BEAUTi version 1.4.6 to create XML files with the following analytical settings: GTR model, uncorrelated relaxed clock with lognormal rate distribution; Tree Prior set to Yule Process speciation; running 10 million generations, sampling every 1000th tree. For the Boletales dataset, we removed the operators subtreeSlide, narrowExchange, wideExchange, and wilsonBalding from the XML file to estimate branch lengths without branch swapping. By removing these functions, BEAST will only make adjustments to the branch lengths and not the topology of the starting tree, which was supplied by the Binder and Hibbett (2006) study. As a result, we were able to limit the computational difficulty in analyzing such a

Astractis Igeometricus MD 5-029 Messchasts US X EUT1805 F13-665	Genus	Species	D	Location	Dataset 1	Dataset 2	5.8S	25S	RPB1	RPB2	eflα
	Astraeus	hygrometricus	MB 05–029	Massachusetts USA	x	х	EU718087	DQ682996	FJ536586	FJ536623	FJ536663
bygrometricus PDD85633 xxx RUT38658 FI356587 FI3565687 FI3565687 FI356629		hygrometricus	MEL2238785		Х	Х		EU718157			
		hygrometricus	PDD88503		Х	Х		EU718158			
aistictus Arena 00-121 Thailand x EUT18009 D564153 D435453 E153663 E1536633 E1536633 <the153663< th=""> <the153663< th=""> E</the153663<></the153663<>		pteridis	Ashy 3	Switzerland	Х	x	EU718088	AF336238	FJ536587	FJ536624	FJ536664
sp. Avon 00-17 x x x DQ51145 Comp315 DQ435803 DQ365813 1 remuloide NB 102-109 Masachusetu USA x x DQ30622 AY3613 DQ36581 romp6li NNV168 Mahysia x x EU718199 FJ33659 P33663 af berkeleyii AWW156 Mahysia x x NS54064 AY36903 D365519 aff cimabariuun AWW156 Mahysia x x NS54064 AY36903 AY55054 aff cimabariuun AWW136 MesenhustuSA x x XS54064 AY36903 AY55054 aff cimabariuun AWW136 MesenhustuSA x x XS54064 AY36903 AY55054 aff cimabariuun AWW136 Wesen Austulia x x EU71809 EU71809 EU71803 E135650 F336630 fuscun DD01011 Apan x x EU718092 EU71803 EU71803 EU71803 EU7180		asiaticus	Arora 02–121	Thailand	Х	х	EU718089	DQ644199	FJ536588	FJ536625	FJ536665
Instruction MB 02-199 Massachusetts USA x DQ405002 AV64153 DQ458001 BQ366281 a berkelogi NWU268 Malaysia x x BU718128 FJ36509 FJ36605 berkelogi JFK7 Malaysia x x BU718128 FJ36509 FJ36605 berkelogi JFK7 Malaysia x x AV84504 A789039 A789039 A789039 A785091 berkelogi JFK76 Malaysia x x A764504 A764503 A789039 A785091 fiscum PDD70771 western Australia x x EU718105 FJ36505 FJ36628 fiscum PD070771 Taniand x EU718105 E1718125 FJ36629 fiscum PD070771 Taniand x EU718105 E1736505 FJ36628 fiscum PD060216 Area EU718105 EU718125 FJ36629 FJ36629 fiscum PC0751616 X EU		sp.	Arora 00–17		Х	x		DQ517425			
nonpelit No 1192 X	Boletinellus	merulioides	MB 02–199	Massachusetts USA	Х	Х	DQ200922	AY684153	DQ435803	DQ366281	DQ056287
a brekleyi AWV268 Malaysia x t EU71800 EU71800 E135650		rompelii	No 1192		х	Х		EU718159			
	Calostoma	berkeleyii	AWW268	Malaysia	Х	x	EU718090	EU718128	FJ536589	FJ536626	FJ536666
cimabarium AWW136 Massachusetts USA x AY854064 AY645054 AY780939 AY857979 aff. cimabarium F1120877 China x x EU71809 F153660 AV85797 fascum DD70777 China x x EU71809 F153660 F153662 fascum DD70777 China x x EU71809 F153662 F153662 fascum DD70777 x x x EU718092 EU71819 F1536629 japolicum TKG-SC-40701 Japan x x EU718092 EU718192 F1536629 japolicum TKG-SC-40701 Japan x x EU718192 EU718192 F1536629 japolicum TKG-SC-40701 Japan x EU718192 EU718192 F1536629 F1536629 japolicum TKG-SC-40701 Japan x EU718192 EU718192 F1536629 F1536629 japolicum TKG-SC-40701 Avrt Cuiliu 462		berkeleyi	JFK77	Malaysia	x			FJ710204			
aff. cimabarium H120877 China x EU71810 F135650 F13667 fascum 0KM 23918 Western Australia x EU718091 EU71813 F135650 F135650 fascum NKG-SC-40701 Apan x x EU71813 F153653 F153653 japonicum TKG-SC-40701 Apan x x EU71803 EU71813 F153653 japonicum 0KM23412 x x x EU71803 EU71813 F153653 japonicum 0KM23412 x x EU71803 EU71813 F153659 F153653 japonicum 0KM23119 x x EU71803 EU71813 F153659 japonicum 0KM23119 x x x EU71813 F153659 inschant 510 North Carolina US x x EU71813 F153659 inschant 510 North Carolina US x x EU71813 F153659 inschant 610		cinnabarinum	AWW136	Massachusetts USA	х	x	AY854064	AY645054	AY780939	AY857979	AY879117
		aff. cinnabarinum	F1120877	China	x			EU718160			
		fuscum	OKM 23918	Western Australia	х	x	EU718091	EU718129	FJ536590	FJ536627	
		fuscum	PDD70777		Х	x		EU718161			
		insignis	Arora 98–31	Thailand	х	х	EU718092	EU718130		FJ536628	
		japonicum	TKG-SC-40701	Japan	х	Х	EU718093	EU718131	FJ536591	FJ536629	
		japonicum	OKM22412		Х			EU718162			
		junghuhnii	VC 1151		х	Х		EU718163			
orindra HKAS32119 x x x EU718165 FJ336592 FJ336592 FJ336592 FJ336592 FJ336592 FJ336592 FJ336592 FJ36630 ravenelli 462 xurdiau USA x x EU718194 EU718132 FJ365392 FJ36630 ravenelli 462 xurdiau USA x x EU718195 EU718134 FJ356592 FJ36631 ravenelli 462 xurdiau x x EU718195 EU718134 FJ356592 FJ36631 ravenelli 462 xurdiau x x EU718095 EU718134 FJ356534 FJ36631 ravenili DED7660 Malaysia x EU718095 EU718134 FJ36634 FJ36631 sarasinii DED7660 Malaysia x EU718095 EU718134 FJ36634 FJ36634 sarasinii DED7640 x EU718097 EU718136 FJ36634 FJ36634 sp. HKAS38133 China x EU71		lutescens	1329		x	x		EU718164			
ravenelli 510 North Carolina USA x x EU718165 FJ536592 FJ536630 ravenelli 462 x x x EU718166 EU718156 FJ536630 ravenelli 462 New Zealand x x EU718136 FJ536630 FJ536630 rodwayi PDD69216 New Zealand x x EU718095 EU718136 FJ536630 rodwayi PDD71749 x x x EU718095 EU718136 FJ536630 rodwayi PDD71749 x x x EU718096 EU718136 FJ536632 FJ536632 sarasini DED7660 Malaysia x EU718096 EU718136 FJ536633 FJ536633 sarasini AWW244 x x EU718096 EU718136 FJ536633 FJ536633 sarasini AWW244 x x EU718096 EU718136 FJ536633 sp. HKAS38139 China x x EU718096		orirubra	HKAS32119		x	x		EU718165			
ravenelli 462 xEU718166EU718166rodwayi $GMM 7572$ New ZealandxxEU718095EU718133rodwayii $PDD69216$ xxxFJ00321FJ536632rodwayii $PDD71749$ xxEU718096EU718136FJ536632rodwayii $PDD71749$ xxEU718096EU718136FJ536632sarasinii $DED7660$ MalaysiaxxEU718096EU718136FJ536632sarasinii $AWW244$ xxEU718096EU718136FJ536633FJ536633sarasinii $AWW244$ xxEU718096EU718136FJ536633FJ536633sp.HKAS38139ChinaxxEU718097EU718136FJ536633sp.HKAS38139ChinaxxEU718097EU718136FJ536633sp.PDD71264bxxEU718097EU718136FJ536634sp.PDD71264bxxEU718097EU718136FJ536634sp.PDD71264bxxEU718097EU718136FJ536634sp.PDD71264bxxEU718097EU718136FJ536634sp.PDD71264bxxEU718097EU718136FJ536634sp.wightiiDH2002xxEU718097EU718037wightiiDH2002xxxAAst.xxxAAst.xx<		ravenellii	510	North Carolina USA	х	Х	EU718094	EU718132	FJ536592	FJ536630	FJ536667
		ravenellii	462		Х			EU718166			
		rodwayi	GMM 7572	New Zealand	Х	x	EU718095	EU718133		FJ536631	
rodwayiiPDD71749xFJ71026sarasiniiDED7660MalaysiaxxEU718134FJ536539FJ536632sarasiniiAWW244xxEU718096EU718136FJ536634sp.HKAS38133ChinaxxEU718096EU718136FJ536634sp.HKAS38139ChinaxxEU718096EU718136FJ536634sp.HKAS38139ChinaxxEU718098EU718136FJ536634sp.PDD71264bxxEU718098EU718136FJ536634sp.PDD71264bxxEU718098EU718136FJ536634sp.PDD71264bxxEU718098EU718136FJ536634sp.PDD71264bxxEU718098EU718136FJ536634sp.MightiiAnglxxEU718098FJ536534wightiiPH2002xxEU718098FJ536534FJ536534wightiiPH2012xxAD0644134AwightiiPR4718xxAA634655AwrightiiPR4718xxAAF336239Amerulioides22/98xxAAAmerulioidesNCJ12xxAANCJ12XxXXAA		rodwayii	PDD69216		Х	x		FJ600321			
sarasini DED7660 Malaysia x x EU718096 EU718134 FJ536533 FJ536632 sarasini AWW244 x x x EU718096 EU718136 FJ536633 FJ536632 sp. HKAS38133 China x x EU718097 EU718136 FJ536634 sp. HKAS38139 China x x EU718098 EU718136 FJ536634 sp. PDD71264b x x EU718098 EU718136 FJ536634 sp. PDD71264b x x EU718098 EU718098 EU718136 sp. PDD71264b x x EU718098 EU718136 FJ536634 sp. Mighti Angl x X DQ644134 A wrighti PH2002 x x DQ644134 A A wrighti PR4718 x DQ644135 A A merulioides 22/98 X A A		rodwayii	PDD71749		Х			FJ710205			
sarasini AWW244 x FJ710206 sp. HKAS38133 China x EU718097 EU718135 sp. HKAS38139 China x x EU718097 EU718135 sp. HKAS38139 China x x EU718098 EU718135 sp. PDD71264b x x DQ644134 106644134 100644134 sp. DH2002 x x x DQ644134 100644135 wrightii DH2002 x x DQ644135 1006334665 1006334665 wrightii DH2002 x x DQ644135 100644135 wrightii DH2012 x x AF336239 136639 merulioides 22/98 x x AF336239 136639		sarasinii	DED7660	Malaysia	х	X	EU718096	EU718134	FJ536593	FJ536632	FJ536668
sp. HKAS38133 China x EU718097 EU718135 sp. HKAS38139 China x x EU718098 EU718135 sp. HKAS38139 China x x EU718098 EU718136 sp. PDD71264b x x EU718098 EU718136 FJ536594 sp. PDD71264b x x DQ644134 EU718098 EU718136 wrighti Angl x x x DQ644134 wrighti DH2002 x x DQ534665 DQ534665 wrighti PR4718 x x AF336239 DQ644135 merulioides 22/98 x x AF336239 AF336239		sarasinii	AWW244		x			FJ710206			
sp. HKAS38139 China x EU71808 EU71816 FJ536594 sp. PDD71264b x x EU718098 EU71816 FJ536594 sp. PDD71264b x x x x EU718056 FJ536594 vighti Angl x x x DQ644134 wrighti DH2002 x x DQ534665 wrighti PR4718 x DQ534665 merulioides 22/98 x AF336239 merulioides NCJ12 x AF336239		sp.	HKAS38133	China	х	X	EU718097	EU718135		FJ536633	
sp.PDD71264bxtiswrightiiAng1xwrightiiDH2002xwrightiiPR4718xmerulioides22/98xmerulioidesNCJ12xxxx		sp.	HKAS38139	China	x	x	EU718098	EU718136	FJ536594	FJ536634	
tis wrightii Angl X X X X X X X X X X X X X X X X X X X		sp.	PDD71264b		Х						
wrightiiDH2002xwrightiiPR4718xmerulioides22/98xmerulioidesNCJ12x	Diplocystis	wrightii	Ang1		х	x		DQ644134			
wrightii PR4718 x merulioides 22/98 x x x merulioides NCJ12 x x x		wrightii	DH2002		Х			DQ534665			
merulioides 22/98 x x x merulioides NCJ12 x x x		wrightii	PR4718		Х			DQ644135			
NCJ12 x x	Gyrodon	merulioides	22/98		x	х		AF336239			
		merulioides	NCJ12		х	Х		AY612807			

Table 1. Taxa sampled and GenBank accession numbers for Sclerodermatineae dataset.

Continued.

Germany x x EU71800 AF336252 USA x x EU718100 AF336253 USA x x EU718100 AF336253 USA x x EU718100 AF336253 Thailand x x EU718101 EU718167 x x x EU718102 EU718169 x x x EU718103 EU718169 x x x EU718169 EU718169 x x x EU718169 EU718169 x x x EU718169 EU718164 x x x EU718169 EU718164 x x x EU718164 EU718164 x x x X EU718164		FJ536595 FJ536635 FJ536596 FJ536636	FJ536669 F1536670
castameus 239-97 USA x x EU71810 EU73810 cestameus REH8804 Thaland x x EU71810 EU71810 cestameus RE0401812 x x EU71810 EU71810 cestameus RC2 x x EU71810 EU71810 castameus Gc2 x x EU71810 EU71810 aff. austrocastameu E3450 x x EU71810 EU71810 aff. austrocastameus E3450 x x EU71810 EU71810 aff. austrocastameus E3450 x x x EU71810 aff. austrocastameus E3450 x x EU71810 EU71813 aff. austrocastameus E3450 x x EU71810 EU71813 aff. austrocastameus E4810 x x EU71810 EU71813 aff. austrocastameus E4810 x x EU71810 EU71813 aff. austrocastameu			FI536670
castanetic REH8804 Thailand x x EU718101 castanetics Rora01 512 x x EU718101 EU718102 castanetics F006418 x x EU718102 EU718105 castanetics F1008418 x x EU718105 EU718105 castanetics E4600 x x x EU718105 EU718106 aff. austrocastanetic E4600 USA x x EU718102 EU718106 aff. austrocastanetic E4750 X x x EU718102 EU718102 castanetics E4819 X x x EU718102 EU718102 cyanescens E8758 X x EU718102 EU718102 aff. cyanescens E8758 X x EU718102 EU718102 aff. cyanescens E8758 X X EU718102 EU718102 aff. cyanescens E8758 X X EU718102 EU718102	ſ		LJUUUUL
castanaeusAronal0 512xcastanaeusE.7710.00castaneusGc.xxEU7181.05castaneusGc.xxEU7181.05castaneusGd.xxEU7181.05aff. austrocastaneusE4600xxEU7181.05aff. austrocastaneusE4600USAxEU7181.05aff. austrocastaneusE470.05xxEU7181.05aff. austrocastaneusE4800USAxEU7181.05cyanescensREH8819xxEU7181.05cyanescensREH8819Vestern AustraliaxEU7181.05aff. cyanescensE8736xxEU7181.05aff. cyanescensE8785xEU7181.05EU7181.05aff. cyanescensE8785xxEU7181.05aff. cyanescensE818759x <td></td> <td>FJ536597 FJ536637</td> <td>FJ536671</td>		FJ536597 FJ536637	FJ536671
castaneusF1086418xEU718167castaneusEd2xxEU718166aff austrocastaneusE479cxEU71816aff austrocastaneusE479cxEU71810aff austrocastaneusE479cxEU71813aff austrocastaneusE479cxEU71813aff austrocastaneusE479cxEU71813cyanescensRB4821Vestem AustraliaxEU71813cyanescensRB4819xxEU71813cyanescensE4782xEU71813aff cyanescensE47821Vestem AustraliaxEU71813aff cyanescensE4782xxEU71813aff cyanescensE4782xEU71813EU71813aff cyanescensE4783xxEU71813aff cyanescensE4783xxEU71814aff cyanescensE4783xxEU71814aff cyanescensE4783xxEU71814aff cyanescensE486xxXEU718143aff cyanescensE486xxxEU71814aff cyanescensE486xxxEU718143aff cyanescensE486xxxEU718143aff cyanescensE4783Mestem AustraliaxxEU718143aff cyanescensE4865xxxEU718143peudocyanescensE4865XxxEU718143 <t< th=""><td>FJ710209</td><td></td><td></td></t<>	FJ710209		
castaneusGc2xEU71816aff. autrocastaneusE4600xEU71810aff. autrocastaneusE479cxEU71817aff. autrocastaneusE479cxEU71817aff. autrocastaneusE479cxEU71817aff. autrocastaneusE479cxEU718170aff. autrocastaneusE479cxEU718170cyanescensEH8819xxEU718130cyanescensEH8819xxEU718130aff. cyanescensE47821Western AustraliaxEU718130aff. cyanescensE486xxEU718130aff. cyanescensE486xxEU718130aff. cyanescensE486xxEU718130aff. cyanescensE486xxEU718130aff. cyanescensE486xxEU718130aff. cyanescensE486xxEU718130aff. cyanescensE486xxEU718143aff. cyanescensE486xxEU718143aff. cyanescensE486xxEU718143aff. cyanescensE486xxEU718143aff. cyanescensE4863reacex3737ThailandXaff. cyanescensE4883ThailandxEU718146aff. cyanescensE4883ThailandxXaff. cyanescensE4883Eastern AustraliaxEU718166sp.E0000808057x <td< th=""><td>EU718167</td><td></td><td></td></td<>	EU718167		
aff austrocastaneusE4600xEU71810aff austrocastaneusE4350xxEU718110aff austrocastaneusE4350xxEU718130aff austrocastaneusE4350xxEU718130cyanescensRE48819xxEU718130cyanescensGo2xxEU718130cyanescensE48819xxEU718130aff cyanescensE78821Western AustraliaxEU718130aff cyanescensE78821Western AustraliaxEU718130aff cyanescensE3585XxEU718130aff cyanescensE3685xxEU718130aff cyanescensE3685XxEU718130aff cyanescensE3685XxEU718130aff cyanescensE3685XxEU718140aff cyanescensE3685XxEU718140aff cyanescensE3685XxEU718141peudocyanescensE3685XxEU718140propurinusE3685XxEU718140peudocyanescensE81895Yestern AustraliaxxpeudocyanescensE3685XXEU718146propurinusE3685XXEU718106EU718142spinPeudocyanescensE81835Yestern AustraliaXEU718106spinPeudocyanescensE81835E81855Yestern AustraliaXEU718145 </th <td>EU718168</td> <td></td> <td></td>	EU718168		
aff. austrocastaneus $E479c$ xx $E1710208$ if. austrocastaneus $E435c$ xx $E171208$ $E1711208$ if. austrocastaneus $E435c$ xx $E1718170$ $E1718136$ if. austrocastaneus $E43c$ xx $E1718170$ $E1718136$ if. austrocastaneus $E4812$ x x $E1718170$ $E1718170$ if. austrocastaneus $E4881$ xx $E1718170$ $E1718170$ if. cyanescens $E486$ xx $E1718170$ $E1718170$ if. cyanescens $E486$ xx x $E1718170$ if. cyanescens $E486$ xx $E1718170$ $E1718170$ if. cyanescens $E486$ xx $E1718106$ $E1718176$ sp. $REH8799$ Thalandx x $E1718106$ $E1718176$ sp. $REH8799$ $rano0-429$ $Tnaiande x$	EU718169		
aff. austrocastaneus $E43c$ $EUT8170$ $EUT8170$ edit. austrocastaneus $B05-001$ USA x $EUT8170$ $EUT8172$ eyanescens $By2$ x x $EUT8172$ $EUT8172$ eyanescens $REH821$ Western Australia x $EUT8172$ $EUT8172$ aff. cyanescens $E8758c$ x x $EUT8173$ $EUT8173$ aff. cyanescens $E8758c$ x x $EUT8143$ $EUT8143$ pupurinus $Leacox 3737$ Illinois, USA x x $EUT8143$ sp. $E18799$ $Thailand$ x x $EUT8143$ $EUT8143$ sp. $REH8799$ $Thailand$ x x $EUT8143$ $EUT8143$ sp	FJ710208		
cyanescens MB 05-001 USA x EU718102 EU718102 EU718133 cyanescens Gcy2 Cyanescens REH8819 x AF33654 cyanescens REH8819 x x EU71813 AF33654 aff. cyanescens REH8821 Western Australia x EU71813 EU71813 aff. cyanescens E3685 x x EU71813 EU71813 aff. cyanescens E3685 x x EU71813 EU71813 aff. cyanescens E3685 x x EU71814 EU71814 pseudocyanescens E486 x x EU71814 EU71814 pseudocyanescens E4865 x x EU71814 EU71814 pseudocyanescens DKM23719 Western Australia x EU718145 EU718146 pseudocyanescens DKM23719 Western Australia x EU718106 EU718146 pseudocyanescens DKM23719 Western Australia x EU718107 <	EU718170		
cyanescensGcy2xAF33624aff. cyanescensREH8819xx $CUT8173$ aff. cyanescensREH8819xx $CUT8173$ aff. cyanescensB8758c $E0718173$ $EU718173$ aff. cyanescensE8758c $E0718173$ $EU718173$ aff. cyanescensE8758c $X \times X$ $EU718104$ aff. cyanescensE3758c $X \times X$ $EU718104$ aff. cyanescensE365 $X \times X$ $EU718104$ pupurinusLeacock 3737Illinois, USA $X \times X$ $EU718104$ sp.Anora 00-429Zimbabwe $X \times X$ $EU718106$ $EU718143$ sp.Anora 00-429Endextalia $X \times X$ $EU718166$ $EU718143$ sp.Anora 00-429Endextalia $X \times X$ $EU718166$ $EU718146$		FJ536598 FJ536638	FJ536672
cyanescensREH8819xxLerEU718173aff. cyanescensREH8821Western AustraliaxxEU718173EU718173aff. cyanescensE8738cxxEU718103EU718173aff. cyanescensE486xxEU718104EU718174aff. cyanescensE5685xxxEU718104EU718144aff. cyanescensE5685Nestern AustraliaxxEU718104EU718144peudocyanescensE5685Nestern AustraliaxxxEU718104EU718144peudocyanescensCM23719Western AustraliaxxxEU718104EU718144sp.REH8799ThailandxxxEU718104EU718143sp.Arora 00-429ZimbabwexxxEU718106EU718143sp.Arora 00-429ZimbabwexxxEU718106EU718143sp.Arora 00-429ZimbabwexxxEU718106EU718143sp.Arora 00-429ZimbabwexxxEU718106EU718143sp.Arora 00-429ZimbabwexxxEU718106EU718143sp.Arora 00-429ZimbabwexxxEU718106EU718143sp.Arora 00-429ZimbabwexxxEU718106EU718143shalbellusOrtm0301Arora 00-429Arora 00-429Arora 00-429Arora 00-429<	AF336254		
aff. cyanescensREH821Western AustraliaxxEU718103EU71813aff. cyanescensE8758cxx x EU718103EU718113aff. cyanescensE8758cxx x EU718104EU718104aff. cyanescensE5685xx x EU718104EU718104aff. cyanescensE5685reacock 3737Illinois, USA x x EU718104EU718104pseudocyanescensE5685Thailand x x x EU718104EU718104pseudocyanescensDoKM23719Westem Australia x x x EU718104EU718104sp.REH8799Thailand x x x x x x x sp.REH8799Thailand x x x x x x x sp.REH8799Thailand x x x x x x x sp.REH8799Thailand x x x x x x x sp.REH8795Thailand x x x x x x x x sp.REH8795Thailand x	EU718172		
aff. cyanescensE8758cxEU718171aff. cyanescensE486xEU718174aff. cyanescensE5685xEU718104aff. cyanescensE5685xEU718104peudocyanescensE5685xEU718104purpurinusEacock 3737Ilinois, USAxEU718106purpurinusLeacock 3737Ilinois, USAxEU718106purpurinusE8155Xrora 00-429ZimbabwexEU718105sp.E8155Xrora 00-429ZimbabwexEU718105sp.E8155Xrora 00-429ZimbabwexEU718105sp.E8155Xrora 00-429ZimbabwexEU718105sp.E8155Xrora 00-429ZimbabwexEU718105sp.E8155Xrora 00-429ZimbabwexEU718105sp.E8155Xrora 00-429ZimbabwexEU718105sp.E8155Xrora 00-429ZimbabwexEU718105sp.E8155Xrora 00-429ZimbabwexEU718105beniensisOmon 98.015Texas, USAxEU718105beniensisOmon 98.015Texas, USAxXEU718105beniensisOmon 98.015XroraXEU718106EU718145beniensisOmon 98.015XXEU718109F133620portususpholXXXEU718105portususpholXXXAY012816 <td></td> <td>FJ536599 FJ536639</td> <td>FJ536673</td>		FJ536599 FJ536639	FJ536673
aff. cyanescensE486xxEU718173aff. cyanescensE5685xxEU718104EU718140peeudocyanescensOKM23719Western AustraliaxxEU718104EU718140perudocyanescensOKM23737Illinois, USAxxEU718105EU718140sp.Leacock 3737Illinois, USAxxEU718105EU718105EU718141sp.REH8799ThailandxxEU718105EU718105EU718105EU718142sp.AnoraAnora00-429ZimbabwexxEU718105EU718105EU718145sp.REH8705StantabwexxxEU718105EU718105EU718145sp.REH8805Com098.015Texas, USAxxEU718105EU718145benichsisOmo98.015Texas, USAxxEU718105EU718145benichsisOmo98.015Texas, USAxxEU718105EU718145benichsisOmo98.015Texas, USAxxEU718105EU718145benichsisOmo98.015Texas, USAxxEU718105EU718145benichsisOmo98.015Texas, USAxxEU718145XbenichsisOmo98.015Texas, USAxxEU718145XbenichsisOmo98.015Texas, USAxxEU718145XbenichsisOmo98.015XXXZZ<	EU718171		
aff. cyanescens E3685 x EU718174 peudocyanescens $OKM23719$ Western Australia x x EU718106 EU718140 peudocyanescens $OKM23719$ Western Australia x x EU718105 EU718141 sp. REH8799 Thailand x x EU718105 EU718143 sp. Anora 00-429 Zimbabwe x x EU718105 EU718143 sp. Anora 00-429 Zimbabwe x x EU718107 EU718143 sp. Anora 00-429 Zimbabwe x x EU718107 EU718143 sp. Anora 00-429 Zimbabwe x x EU718107 EU718143 sp. Neublellus OKM25477 Texas, USA x EU718107 EV7612814 beniensis Omon 98.015 Texas, USA x X EU718107 EV7612816 marginatus REH8833 Eastern Australia x X EU718101 F1500322	EU718173		
pseudocyanescens $OKM23719$ Western AustraliaxxEU718104EU718140purpurinusLeacock 3737Illinois, USAxxEU718106EU718143sp.REH8799ThailandxxEU718106EU718143sp.Arora 00-429ZimbabwexxEU718107EU718143sp.B8155Xrora 00-429ZimbabwexxEU718107EU718143sp.B8155Xrora 00-429ZimbabwexxEU718143EF561627sp.B8155Xrora 00-429ZimbabwexxEU718143EF561627sp.B8155CKM25477Texas, USAxxEU718145EF561627sp.REH8805CKM25477Texas, USAxxXEV718145beniensisOmon 98.015XXxxXXXbeniensisOmon 98.015XxxXXXXbeniensisOmon 98.015XXxxXXXbeniensisOmon 98.015XXxxXXXbeniensisOmon 98.015XXXXXXXbeniensisOmon 98.015XXXXXXXbeniensisMatylisKXXXXXXbeniensisMeTL2145841XXXXXXX	EU718174		
purpurinusLeacock 3737Illinois, USAxxEU718106EU718145sp.REH8799ThailandxxEU718106EU718145sp.Arora 00-429ZimbabwexxEU718106EU718145sp.E8155Xrora 00-429ZimbabwexEU718107EU718145sp.E8155XxEU718169EU718145sp.E8155XxXEU718169EU718145sp.E8155XXXXEU718169EU718145sp.E8155XXXXXXsp.E8155XXXXEU718109EU718145beniensisOmon 98.015XXXXXXbeniensisOmon 98.015XXXXXXmarginatusREH8883Eastern AustraliaXXXXXmarginatusMEL2145841XXXXXXXmarginatusMEL2145841XXXXXXXportentosusMEL2145841XXXXXXXportentosusMeL2145841XXXXXXXportentosusMeL2145841XXXXXXXportentosusMan2950MalaysiaXXXXXXXportentosus		FJ536600 FJ536640	
sp.sp.REH8799ThailandxxEU718106EU718143sp.Arora 00-429ZimbabwexxEU718107EU718143sp.Bs155xxEU718107EU718107EU718145sp.Bs155xxxEU718108EU718145sp.Bs155XxxEU718108EU718145subalbellusOKM25477Texas, USAxxEU718108EU718145beniensisOmon 98.015xxxAY612822marginatusREH8833Eastern AustraliaxxA7612822marginatusREH8833Eastern AustraliaxxA7612822marginatusREH8833Eastern AustraliaxxA7612822portentosusPhP1xxxA7612822portentosusPhP1xxxA7612822portentosusPhP1xxxA7612822portentosusPhP1xxxA7612822portentosusPhP1xxxA7612816portentosusPhP1xxxA7612816portentosusPhP1xxxxA7612816portentosusphP1xxxxA7612816portentosusphP1xxxxA7612816portentosusphP1xxxxA7612816portentosusphP1 <td></td> <td>FJ536601 FJ536641</td> <td>FJ536674</td>		FJ536601 FJ536641	FJ536674
sp. Arora $00-429$ Zimbabwe x EU718107 EU718107 EU718145 sp. E8155 x x EU718105 EV718175 sp. E8155 x x EU718108 EV718175 sp. REH8805 X x x EU718108 EU718145 beniensis Omon 98.015 x x x EU718108 EU718145 beniensis Omon 98.015 x x x EU718108 EU718145 beniensis Omon 98.015 Texas, USA x x EU718109 EU718145 marginatus REH8833 Eastern Australia x x EU718109 EU718145 marginatus MEL2145841 x x x EU718109 EV718145 marginatus MEL2145841 x x EU718109 EV718145 portentosus MEL2145841 x x EU718109 A7612822 portentosus Php1 x x <td>_</td> <td>FJ536602 FJ536642</td> <td>FJ536675</td>	_	FJ536602 FJ536642	FJ536675
sp.E8155xEF561627sp.REH8805xxEU718175subalbellus $OKM25477$ Texas, USAxEU718108EU718146beniensis $OKM25477$ Texas, USAxEU718108EU718146beniensis $Omo 98.015$ Texas, USAxEU718108EU718145beniensis $Omo 98.015$ Texas, USAxEU718108EU718146beniensis $Omo 98.015$ Texas, USAxEU718108EU718145marginatusREH8833Eastern AustraliaxxEU718110AF336260portentosusphplxxxEU718110AF336260portentosusphplxxxAF336260sp.CBS481.89ThailandxxAF336260sp.REH8795ThailandxxAF336260poutesp.OKM23801xxxAF336260albusPERTH4683xxxBU718110AF336260poutesp.OKM23801xxxAF316260albusPERTH4683xxxBU718110AF336260poutesp.OKM23801xxxBU718110albusSSSSxxxBU718110albusOSC27549xxxDQ682997antizusSSAW297MalaysiaxxAF336262antizusSSAW297		FJ536603 FJ536643	FJ536676
sp.sp.REH8805xEU718175subalbellus $OKM25477$ Texas, USAxEU718108EU718144beniensis $OKM25477$ Texas, USAxEU718108EU718145beniensis $Omon 98.015$ xx xEU718109EU718145marginatusREH8833Eastern AustraliaxxAF012822marginatusMEL2145841 xx xEU718109EU718145portentosusph1 xx xEU718109AF336260sudanicusDh91 xx xx xx AF336260sudanicusCBS481.89 xx xx xx AF336260sudanicusCBS481.89 xx xx xx AF336260sudanicusCBS481.89 xx xx xx $x73810$ sudanicusCBS481.89 xx xx xx $x73810$ sudanicusCBS481.89 xx xx xx $x738260$ sudanicusCBS481.89 xx xx xx $x738260$ sudanicusSp.CBS481.89 xx xx $x738260$ sudanicusSp.OKM23801 xx xx xx $x738260$ subusSp.OKM23801 xx xx xx $x718116$ subusSp.Ss8 xx xx xx $x738260$ subusSs8 xx xx xx $x738262$ subusSs8 xx xx xx $x738262$ sub	EF561627		
subalbellus $OKM25477$ Texas, USAxxEU718108EU718144beniensis $Omon 98.015$ xxxAY612822heniensis $Omon 98.015$ xx xEU718109EU718145marginatusREH8833Eastern AustraliaxxEU718109EU718145marginatusMEL2145841xxEU718109EU718169EU718145portentosusphp1xxxEU718110AF336260sudanicusCBS481.89xxxEU718110AF336261sudanicusCBS481.89xxxEU718110AF336261sudanicusCBS481.89xxxEU718110AF336261sudanicusCBS481.89xxxEU718110AF336261sudanicusSp.CBS481.89xxXAF336261sudanicusSp.CBS481.89xxEU718110AF336261sudanicusSp.OKM23801xxxAY612816porussp.OKM23801xxxD0682997albusOSC27549Sa8xxxD0682997antizusSa8AW297MalaysiaxxAF336262aurantioscabrosusAWW297MalaysiaxxD078112aurantioscabrosusAWW297MalaysiaxxAF33622	EU718175		
beniensis $Omon 98.015$ xxxAY612822marginatusREH8883Eastern AustraliaxxEU718109EU718145marginatusMEL2145841xxEU718109EU718145F 500322 portentosusph1xxxAF336261sudanicusCBS481.89xxEU718110AF336261sudanicusph1xxEU718110AF336261sp.CBS481.89ThailandxxEU718111F 1153623 porussp.CBS481.89ThailandxxEU718111F 1153623 porussp.CBX481.89ThailandxxEU718111F 1153623 porussp.OKM23801xxxEU718116AF336261albusPERTH4683xxxEU718116AF336262albusOSC27549xxxD 0682997 antizusS88xxxAF336262antizusS88XW297MalaysiaxxAF336262		FJ536604 FJ536644	FJ536677
marginatus REH8833 Eastern Australia x EU718109 EU718145 marginatus MEL2145841 x x EU718110 EJ0322 portentosus php1 x x EU718110 FJ600322 portentosus php1 x x EU718110 AF336260 sp. CBS481.89 x x EU718110 AF336261 sp. CBS481.89 x x EU718110 AF336261 sp. CBS481.89 x x EU718111 FJ153623 sp. CBS481.89 x x EU718111 FJ153623 sp. OKM23801 x x x EU718112 AY612816 albus PERTH4683 x x EU718112 PI53623 albus OSC27549 x x D0682997 arbusus S88 x x D0682997 auriticscabrous AW297 Malayia x N BU71812	AY612822		
marginatus MEL2145841 x x x FJ600322 portentosus php1 x x EU718110 AF336260 sudanicus CBS481.89 x x EU718110 AF336260 sp. CBS481.89 x x EU718110 AF336261 sp. CBS481.89 x x AF336261 AF336261 sp. CBS481.89 x x EU718111 FJ153623 sp. OKM23801 x x EU718111 AF133623 albus PERTH4683 x x EU718116 AF612816 albus DSC27549 x x x D0682997 albus OSC27549 x x X D0682997 anticus S88 x x X D0682997 auriticoscabrous AWV297 Malaysia x X AF33626		FJ536605 FJ536645	FJ536678
portentosus phl xxEU718110AF336260sudanicusCBS481.89xxxAF336261sp.CBS481.89xxxAF336261sp.REH8795ThailandxxAF336261sp.OKM23801xxxAF1111FJ153623sp.OKM23801xxxEU718111FJ153623albusPERTH4683xxxDQ682997albusOSC27549xxxAF336262arhizus588xxxAF336262aurantioscabrosusAW297MalaysiaxxEU718112EU718146			
sudanicus CBS481.89 x x AF336261 sp. REH8795 Thailand x EU718111 FJ153623 sp. OKM23801 x x EU718111 FJ153623 albus DKM23801 x x EU718111 FJ153623 albus DKM23801 x x D0682997 Ar612816 albus DSC27549 x x D0682997 arhizus S88 x x D0682997 aurantioscabrosus AWW297 Malaysia x x D13812		FJ536606 FJ536646	FJ536679
sp. REH8795 Thailand x x EU718111 FJ153623 sp. OKM23801 x x X AY612816 albus PERTH4683 x x EU718111 FJ153623 albus DSC27549 x x EU71816 albus S88 x x DQ682997 arhizus 588 x x AF33622 aurantioscabrosus AWW297 Malaysia x x BU718112 EU718112	AF336261		
sp. OKM23801 x x AY612816 albus PERTH4683 x x EU718176 albus OSC27549 x p068297 DQ68297 arhizus 588 x x AF33622 aurantioscabrosus AWW297 Malaysia x x AF33622		FJ536607 FJ536647	FJ536680
albus PERTH4683 x x EU718176 albus OSC27549 x x DQ68297 arhizus 588 x x AF33622 arnotioscabrosus AWW297 Malaysia x EU718112 EU718112	AY612816		
OSC27549 x x DQ68297 is 588 x x AF33622 ioscabrosus AWW297 Malaysia x x EU718112 EU718146	EU718176		
588 x x AF336262 AWW297 Malaysia x x EU718112 EU718146	DQ682997		
AWW297 Malaysia x x EU718112 EU718146	AF336262		
		FJ536608 FJ536648	FJ536681
California USA x x EU718113 EU718147	EU718113 EU718147	FJ536609 FJ536649	
.4888 x x x	_		
tinctorius AWW219 Massachusetts USA x x EU718114 EU718148 FJ53661		FJ536610 FJ536650	FJ536682

Continued.

6 EVOLUTION 2011

Table 1. Continued.

Scleroderma are are	J	n	Location	Dataset 1	Dataset 2	5.8S	25S	RPB1	RPB2	eflα
are	areolatum	AWW211	Massachusetts USA	x	x	EU718115	EU718149	FJ536611	FJ536651	FJ536683
	areolatum	PBM2208	W. Australia	х	х	EU718116	EU718150	FJ536612	FJ536652	FJ536684
are	areolatum	Sar1		х	x		AF336263			
po	bovista (laeve)	MCA242	North Carolina USA	x	x	EU718117	DQ677138	FJ536613	FJ536653	FJ536685
po	bovista	W#1149		x	x		AF336264			
pei	bermudense	BZ3961	Belize	Х	Х	EU718118	DQ644137	FJ536614	FJ536654	FJ536686
cepa	pa	184		x	x		AF336265			
cit	citrinum	AWW212	Massachusetts USA	x	x	EU718119	EU718151	FJ536615	FJ536655	FJ536687
cit	citrinum	SC1		×	x		AF336266			
col	columnare	JMCR77		x	Х		AF261533			
dic	dictyospora			x	x		AF336267			
ecl	echinatum	MS34		x	х		AF336268			
fus	fuscum	Trappe26575		х	Х		EU718178			
lae	laeve	OSC27936		x	х	EU718120	DQ683003	FJ536616		
me	meridionale	AWW218	Massachusetts USA	x	x	EU718121	EU718152	FJ536617	FJ536656	FJ536688
mc	mcalpinei	OSC 24605		x	x	EU718122	DQ682999		FJ536657	
od	polyrhizum	AWW216	Massachusetts USA	x	x	EU718123	EU718153	FJ536618	FJ536658	FJ536689
boi	polyrhizum	594		×	×		DQ683000			
Vei	verrucosum			x	x		AF336271			
sin	sinnamariensis	AWW254	Malaysia	x	x	EU718124	EU718154	FJ536619	FJ536659	FJ536690
sin	sinnamariensis			х			AF071531			
sp.	sp. White	AWW260	Malaysia	x	х	EU718125	EU718155	FJ536620	FJ536660	FJ536691
sp.	sp. Brown	AWW311	Malaysia	X	Х	EU718126	EU718156	FJ536621	FJ536661	FJ536692
sp.				×	×		DQ644136			
sp.		Arora 99–17		x	x		EU718179			
sp.		MCA2168		x	x		EU718180			
sp.		MEL2295738		x			EU718181			
sp.		HKAS43607		×			FJ710210			
Tremellogaster sur	surinamensis	MCA 1985	Guyana	x	x	EU718127	DQ534664	FJ536622	FJ536662	FJ536693
Veligaster col	columnaris			×			AF336273			
col	columnaris			х			DQ683002			

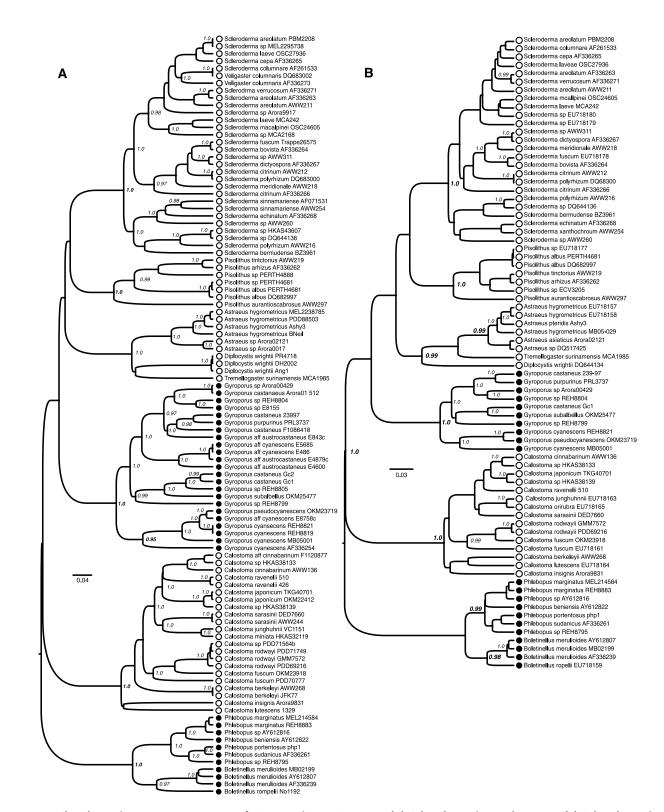
Table 1. Continued.

Original sequence created for this study appear in bold.

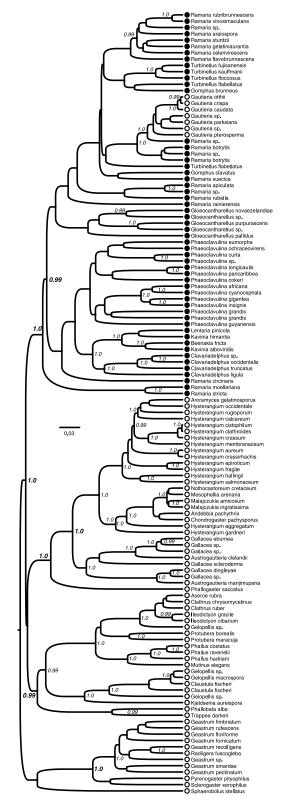
	Gasteroid	l frequencies				Non-gaste	roid frequenc	cies
	No. of Taxa	Gasteroid origins	Dataset	DoF	EQ freq ₁	Dataset	DoF	EQ freq ₀
Sclerodermatineae								
Dataset 1	103	2	67.0%	67.6%	100.0%	33.0%	32.4%	0.0%
Dataset 2	76	2	72.4%		100.0%	27.6%		0.0%
Boletales	485	21	15.2%	24.6%	100.0%	84.8%	75.4%	0.0%
Phallomycetidae	124	3	52.4%	43.5%	100.0%	47.6%	56.5%	0.0%
Lycoperdaceae	112	1	50.9%	32.1%	100.0%	49.1%	67.9%	0.0%

Table 2. Frequencies of gasteroid and nongasteroid forms in Sclerodermatineae, Boletales, Phallomycetidae, and Lycoperdaceae, based on sampled diversity (dataset), estimated diversity from Dictionary of the Fungi (DoF), and predicted equilibrium frequencies from BiSSE parameters under a model of no reversals (EQ freq).

large dataset by removing the complications of branch swapping. We used neighbor-joining analyses with maximum likelihood distances to generate starting trees for all datasets with the exception of the Boletales dataset which used the Bayesian consensus tree from Binder and Hibbett (2006) for the starting tree.


For each dataset in this study, we ran three separate BEAST analyses resulting in three tree files each containing 10,000 trees. For each tree file, we empirically estimated the trees to be removed as the burnin trees using Tracer version 1.4 (Drummond and Rambaut 2007) to identify the point at which trees reached a stable plateau of posterior likelihood values. We used LogCombiner version 1.4.6 (Drummond and Rambaut 2007) to remove the burnin trees and to combine all posterior trees from each of the three BEAST tree files. Using LogCombiner version 1.4.6, we resampled the combined posterior tree file to make a "BiSSE tree file" of 50 trees for analysis in BiSSE. We generated consensus trees for each of the BiSSE tree files using TreeAnnotator version 1.4.6 (Drummond and Rambaut 2007). Using these consensus trees, we determined the number of origins of the gasteromycete morphology assuming irreversibility under parsimony using Mac-Clade version 4.07 (Maddison and Maddison 2005).

DIVERSIFICATION ANALYSES


We used BiSSE (Maddison et al. 2007) to estimate the rate of speciation (λ) and extinction (μ) and state transformations (q01 and q10) associated with nongasteroid (state 0) and gasteroid (state 1) fruiting body forms. BiSSE analyses were implemented in Diversitree version 0.4–3 (FitzJohn et al. 2009), a package developed for the statistical application R (http://www.r-project.org/). We estimated parameters of unconstrained/"reversible" models, in which transformation rates between gasteroid and nongasteroid forms were unconstrained (i.e., q01 and q10 were allowed to take any value), and constrained/"irreversible" models, in which the rate of transformations from gasteroid to nongasteroid forms (q10) was restricted to 0 (q01 was unconstrained). Because these models are not nested, we used a difference of two units in log likelihood scores as a criterion for "strong" support of one model over another (Pagel 1999). The purpose of these comparisons was to assess whether we could reject our a priori assumption that the loss of gasteromycetation is irreversible.

Preliminary analyses using the Mesquite implementation of BiSSE (Maddison et al. 2007) generated unexpected results, in which the constrained models had superior likelihood scores compared to unconstrained models. These results (not shown) suggested that the parameter optimization elements of the Mesquite implementation of BiSSE are challenged by our datasets to find globally optimal parameter values. Therefore, we employed a twostep process using Markov chain Monte Carlo (MCMC) sampling followed by maximum likelihood (ML) optimization, which is intended to more effectively search model space for optimal parameters. In the MCMC step, we sampled rate parameters on each of the 50 trees from each BiSSE tree file. Each MCMC iteration samples a set of rate parameters and records the likelihood score for the model. We analyzed each Sclerodermatineae dataset with 10,000 iterations per tree. The same approach was used for the larger Boletales, Phallomycetidae and Lycoperdaceae datasets, except that we only performed 1000 iterations per tree. We removed the first one-fourth of the states sampled from each model/dataset/tree as part of the burnin and calculated the means and the 95% posterior densities for distributions of state-associated speciation and extinction parameters from the remaining states. In the second step of the analysis, we attempted to obtain optimal models, using the best models sampled during each of the 50 MCMC analyses as starting points for ML optimization. We then calculated the mean parameter values and likelihoods, and compared models using the Akaike information criterion (AIC). The likelihood scores given by Diversitree are proportional to the likelihood values (they are not negative log likelihoods, as are typically reported) but they can be used to calculate AIC scores so analyses of different models on the same dataset can be compared (R. Fitzjohn, pers. comm.).

The mean values for ML parameters were used to calculate the relative diversification rate (r_{rel}) between nongasteroid and

Figure 2. Sclerodermatineae consensus trees of 50 posterior BEAST trees. (A) Sclerodermatineae dataset 1. (B) Sclerodermatineae dataset 2. Closed circles represent nongasteroid forms whereas open circles represent gasteroid forms. Numbers indicate nodes with \geq 0.99 posterior probability.

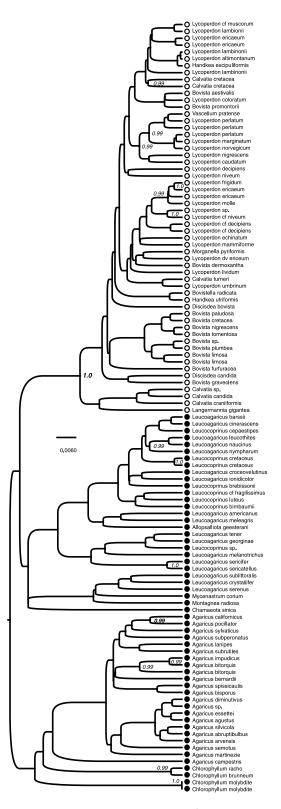
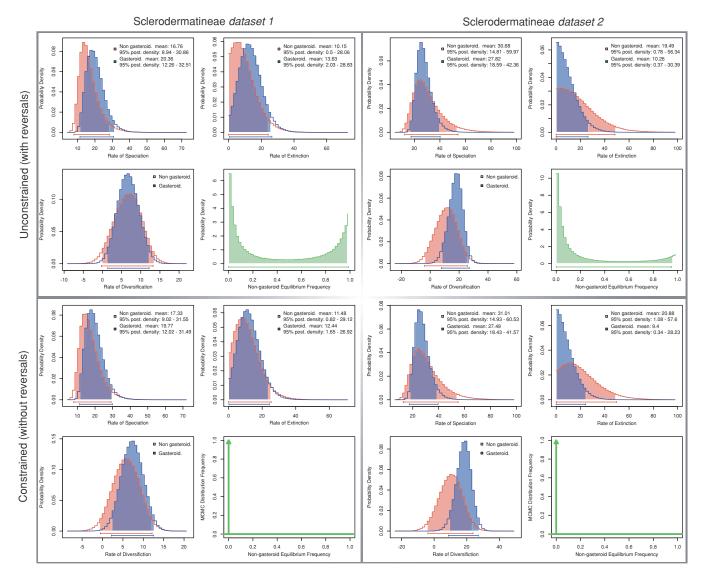
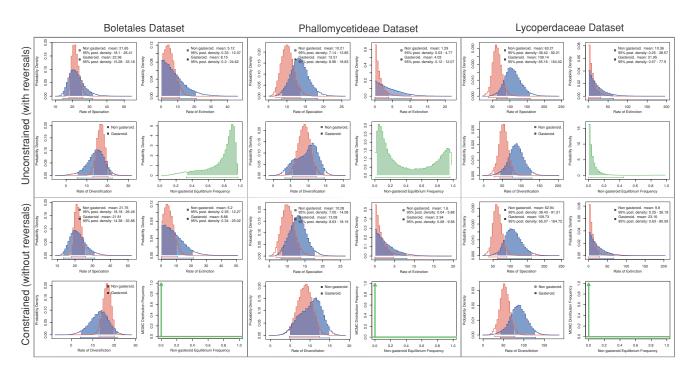



Figure 3. Phallomycetidae consensus tree of 50 posterior BEAST trees. Closed circles represent nongasteroid forms whereas open circles represent gasteroid forms. Numbers indicate nodes with \geq 0.99 posterior probability.

Figure 4. Lycoperdaceae consensus tree of 50 posterior BEAST trees. Closed circles represent nongasteroid forms whereas open circles represent gasteroid forms. Numbers indicate nodes with \geq 0.99 posterior probability.

Figure 5. Histograms of speciation, extinction, and diversification parameters for nongasteroid and gasteroid character states and equilibrium frequencies estimated from BiSSE MCMC analyses. Analyses under unconstrained (with reversals) and constrained (without reversals) models (rows) were performed on Sclerodermatineae datasets 1 and 2 (columns). Parameter 95% highest posterior densities for character states indicated by colored shading and horizontal bars below histogram.


gasteroid fruiting forms. This was calculated as the rate of diversification of nongasteroid lineages $(\lambda 0 - \mu 0 = r0)$ divided by the rate of diversification of gasteroid lineages $(\lambda 1 - \mu 1 = r1)$ (or $r0/r1 = r_{rel}$). A relative diversification rate greater than one would indicate that gasteroid forms have a lower rate of diversification than nongasteroid forms. Equilibrium state frequencies of gasteroid and nongasteroid forms were calculated according to equation (13) of Maddison et al. (2007). These frequencies were used to determine the potential effect of the estimated parameter rates on the composition of gasteroid and nongasteroid fungi in the Agaricomycetes, but these frequencies assume that the rates will remain constant over evolutionary time. The equilibrium frequency calculation was done using Diversitree's "diversitree:::bisse.stationary.freq" function.

Results

MOLECULAR DATA

The minimum and maximum length for sequences generated for the Sclerodermatineae datasets are described in online Supporting Information Table S1, along with intron lengths and identities (Hopple and Vilgalys 1999; Matheny et al. 2002, 2007). Sclerodermatineae dataset 1 is 4953 characters in length with a total of 2109 parsimony informative characters. Dataset 2 is 4948 characters long with 2073 parsimony informative characters.

Lengths for the other datasets used in this study are: 1071 characters for the Boletales (523 parsimony informative), 3543 characters for the Phallomycetidae (1533 parsimony informative), 775 characters for the Lycoperdaceae (118 parsimony

Figure 6. Histograms of speciation, extinction, and diversification parameters for nongasteroid and gasteroid character states and equilibrium frequencies estimated from BiSSE MCMC analyses. Analyses under unconstrained (with reversals) and constrained (without reversals) models (rows) were performed on Boletales, Phallomycetidae, and Lycoperdaceae datasets (columns). Parameter 95% highest posterior densities for character states indicated by colored shading and horizontal bars below histogram.

informative). Lists of included sequences and information on the taxonomic composition of each dataset can be found in online Supporting Information Tables S2a–c and S3a–d, respectively.

PHYLOGENETIC ANALYSES

The Sclerodermatineae (Fig. 2) phylogenetic trees are consistent with results of previous analyses by Binder and Bresinsky (2002) and separate analyses by A.W.W. (unpubl. data). The taxonomic significance of these results will be addressed elsewhere. Similarly, the topologies for the Boletales (not shown), Phallomycetidae (Fig. 3), and Lycoperdaceae (Fig. 4) are largely consistent with previous analyses in these groups (Binder and Hibbett 2006; Hosaka et al. 2006; Larsson and Jeppson 2008). The tree lengths calculated under parsimony suggest that anywhere from one (Lycoperdaceae) to 21 (Boletales) independent origins of the gasteroid morphology have occurred in the groups analyzed in this study (Table 2).

DIVERSIFICATION ANALYSES

The 95% highest posterior density distributions for state-specific speciation and extinction rates estimated with MCMC were largely overlapping in every dataset, with either the unconstrained (reversible) or constrained (irreversible) models of fruiting body evolution (Figs. 5 and 6). Following the MCMC analyses, optimal unconstrained and constrained models were estimated on each of the five datasets, using the best models obtained in each of 50

In the optimizations, likelihoods of unconstrained models were greater than those of constrained models, except in the Sclerodermatineae dataset 2 and Lycoperdaceae datasets, in which the constrained models had a slightly higher average likelihood than the unconstrained models (Tables 3 and 4). Six of the searches converged on similar optimal models, with modest variance in model parameters (Figs. 7 and 8, Table 4). However, four other searches (estimating unconstrained models for Sclerodermatineae datasets 1 and 2 and both constrained and unconstrained models for the Lycoperdaceae dataset) returned a set of models with high variance in parameter estimates (Figs. 7 and 8). AIC scores suggested that the constrained models are preferred for three datasets (Sclerodermatineae datasets 1 and 2 and Lycoperdaceae), whereas the unconstrained models are preferred for the Boletales and Phallomycetidae datasets (Tables 3 and 4). Two models were rejected $(\Delta \log L > 2)$, including the constrained models for the Boletales and Phallomycetidae datasets. Thus, a total of 10 models were generated in ML optimization, of which eight could not be rejected (Tables 3 and 4). Net diversification rates of gasteroid forms were higher than those of nongasteroid forms in all but one of the nonrejected models (Tables 3 and 4). Six of the nonrejected models predict that gasteroid forms will be more common than nongasteroid forms at equilibrium, including three of the unconstrained models, which suggested that the equilibrium frequencies of gasteroid forms will range from 85% to 100% (Tables 3 and 4).

MCMC searches as starting points for likelihood optimizations.

Model constraint	Rate parameters	Sclerodermatineae dataset 1	Sclerodermatineae dataset 2
None	-		
None	λ_0	12.89(5.05)	24.10(22.47)
	λ_1	19.15(3.90)	23.16(4.03)
	μ_0	4.67(17.61)	11.79(74.90)
	μ_1	12.66(10.00)	2.91(14.02)
	q01	$9.18E-2(2.30 \times 10^{-02})$	0.78(0.39)
	q10	$0.16(1.26 \times 10^{-02})$	0.24(0.10)
	r_0	8.23	12.32
	r_1	6.49	20.25
	r _{rel}	1.27	0.61
	AIC	-259.04	-270.73
	log L	135.5206	141.3645
	EQ freq ₀	0.95	0
q10=0	λ_0	$15.23(3.2 \times 10^{-06})$	24.50(3.01)
•	λ_1	$14.73(3.11 \times 10^{-06})$	21.83(0.41)
	μ_0	$8.19(5.99 \times 10^{-06})$	15.43(3.35)
	μ_1	$5.93(6.88 \times 10^{-06})$	$0.67(7.37 \times 10^{-02})$
	q01	$0.63(2.04 \times 10^{-08})$	$1.00(2.52 \times 10^{-03})$
	r_0	7.04	9.07
	r_1	8.80	21.17
	r _{rel}	0.80	0.43
	AIC	-260.50	-274.22
	log L	135.2490	142.1106
	Δlog L	0.2716	-0.7
	EQ freq ₀	0	0

Table 3. Means for BiSSE state-associated diversification parameters and related statistics under an unconstrained model and a model assuming irreversibility (q10=0). Values reported are means of 50 optimizations from maximum likelihood analyses. Parameter variances are in parentheses.

Bold values indicate the model supported by Akaike's information criterion.

Discussion

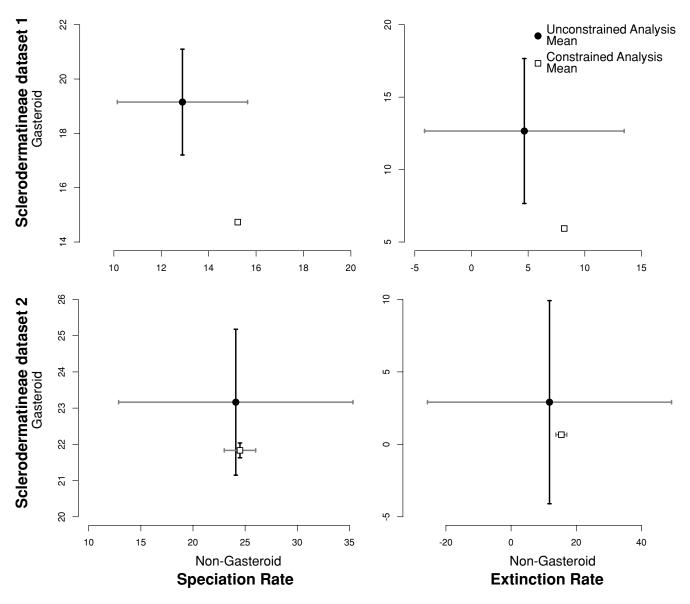
We used BiSSE, implemented in Diversitree, to estimate diversification rates of nongasteroid and gasteroid lineages in four clades of Agaricomycetes (two of which, the Boletales and Sclerodermatineae, are nested), with and without assuming irreversibility of the gasteroid condition. We used a two-step approach, utilizing MCMC sampling followed by ML optimization to search parameter space. Results of some ML searches (including the surprising finding that some constrained analyses produced models with likelihoods that were superior to those of competing unconstrained models) suggest that our analyses may not have discovered globally optimal models. Nonetheless, many aspects of our results are consistent across clades and analyses, and suggest that there are general evolutionary tendencies of gasteroid versus nongasteroid lineages.

None of the MCMC analyses suggested that there is a significant difference in speciation or extinction rates between gasteroid and nongasteroid lineages (Figs. 5 and 6). However, seven of the eight nonrejected ML models suggest that gasteroid forms have a higher net diversification rate than nongasteroid forms, and six of the nonrejected models suggest that gasteroid forms will come to predominate at equilibrium. These conclusions do not depend on an assumption of irreversibility of the gasteroid condition; all but one of the unconstrained models suggest that gasteroid forms diversify faster than nongasteroid forms, and three of these models suggest that gasteroid forms will come to represent 85–100% of the diversity in their clades at equilibrium. One model, the unconstrained model for Sclerodermatineae dataset 1, suggested that gasteroid forms represent evolutionary dead-ends that may be headed for extinction (the predicted equilibrium frequency of gasteroid forms is only 5%). However, the competing model assuming irreversible evolution of gasteroid forms could not be rejected (in fact, it is slightly superior according to the AIC).

Models suggesting irreversibility of gasteroid forms were rejected in two datasets, the Boletales and Phallomycetidae. Even in these cases, the unconstrained models suggest that gasteroid forms will comprise 37–85% of the diversity at equilibrium. In sum, we conclude that gasteromycetes are evolutionarily "successful"

Model constraint	Rate parameters	Boletales	Phallomycetidae	Lycoperdaceae
None	λ_0	$21.23(6.03 \times 10^{-02})$	9.49(0.80)	57.70(84.80)
	λ_1	21.19(0.47)	12.27(1.01)	98.54(290.46)
	μ_0	4.70(0.26)	$6.09 \times 10^{-03} (2.78 \times 10^{-04})$	1.28(1.70)
	μ_1	3.00(0.59)	1.77(4.90)	3.96(20.05)
	q01	$0.64(1.65 \times 10^{-04})$	$0.26(2.94 \times 10^{-03})$	1.19(0.11)
	q10	$2.11(1.40 \times 10^{-02})$	$0.19(1.25 \times 10^{-03})$	$1.75 \times 10^{-02} (1.39 \times 10^{-03})$
	r_0	16.26	9.49	56.36
	r_1	18.19	10.50	94.58
	r _{rel}	0.91	0.90	0.60
	AIC	-1701.66	-305.98	-747.43
	log L	856.83	158.99	379.7155
	EQ freq ₀	0.63	0.15	4.43×10^{-04}
q10=0	λ_0	21.21(0.21)	$10.45(7.82 \times 10^{-08})$	57.54(59.35)
	λ_1	20.75(2.35)	$12.23(6.35 \times 10^{-02})$	92.80(228.04)
	μ_0	4.39(0.71)	0	0.25(0.51)
	μ_1	4.53(2.85)	0	1.42(10.33)
	q01	$0.92(1.72 \times 10^{-03})$	$0.66(1.30 \times 10^{-09})$	$1.30(6.62 \times 10^{-02})$
	r_0	16.82	10.45	57.29
	r_1	16.23	12.23	91.38
	r _{rel}	1.04	0.85	0.63
	AIC	-1688.28	-302.49	-749.92
	log L	849.14	156.2463	379.9620
	∆log L	7.69	2.74	-0.2465
	EQ freq ₀	0	0	0

Table 4. Means for BiSSE state-associated diversification parameters and related statistics under an unconstrained model and a model assuming irreversibility (q10=0). Values reported are means of 50 optimizations from maximum likelihood analyses. Parameter variances are in parentheses.


Bold values indicate the model supported by Akaike's information criterion.

forms that, assuming the relative diversification rates between states remain constant, may eventually become dominant in most of the clades in which they have arisen.

In almost all of our analyses, the predicted equilibrium frequencies of gasteroid forms exceed the described proportions of gasteroid forms based on current taxonomy (the unconstrained Sclerodermatineae 1 analysis being the only exception) (Table 2). Taken at face value, the discrepancies between predicted and observed equilibrium frequencies imply that these clades have not yet reached equilibrium. Alternatively, errors in estimates of model parameters obtained with BiSSE could result in errors in equilibrium predictions. Our analysis does not permit us to assess the accuracy of rate parameter estimates from BiSSE. The program performed well in prior simulations, although μ was difficult to estimate (Maddison et al. 2007), and some aspects of our results suggest that our datasets provide difficult ML optimization challenges.

The two Sclerodermatineae datasets contain 103 and 76 species, with 67–72% gasteroid taxa, which compares well with

the documented diversity of the clade (Kirk et al. 2008), which has 74 described species, including 68% gasteroid taxa (online Supporting Information Table S3). The remaining three datasets, Boletales, Phallomycetidae, and Lycoperdaceae, contain between 23% (Lycoperdaceae) and 38% (Boletales) of the known diversity in each group. Sampling in these datasets was adjusted to approximate the actual proportions of the genera in each of the focal clades, based on the numbers of described species in each group (Kirk et al. 2008). Nonetheless, taxon sampling is a potential source of error in our analyses; none of our datasets includes all of the known species in the focal clade, and the proportions of gasteroid taxa sampled are not identical to the proportions of gasteroid taxa that have been described. Moreover, the actual diversity in each of the focal clades is not known, and, based on diversity estimates for fungi as a whole (Hawksworth 1991), the described diversity may underestimate the actual diversity in each group. Nevertheless, the relative diversification rates and predicted equilibrium frequencies are largely consistent across datasets, suggesting that our general conclusions about

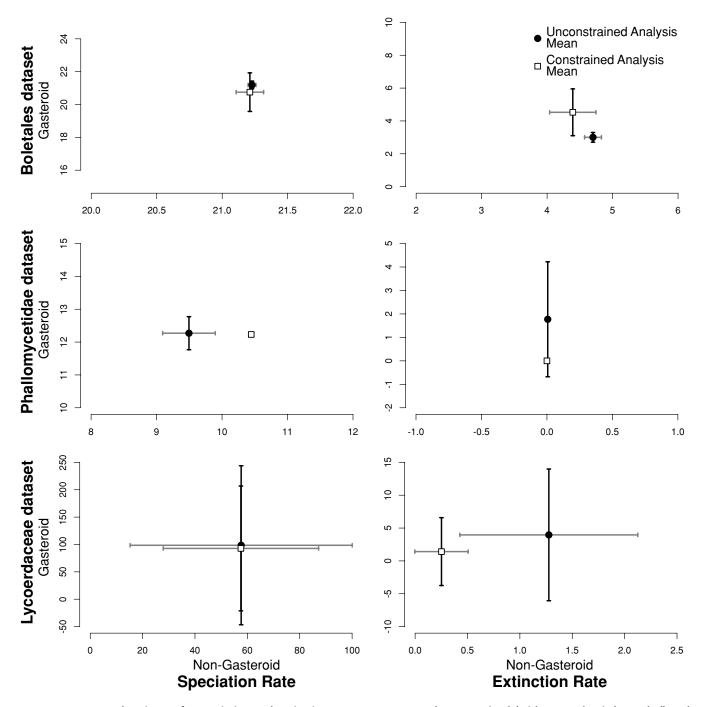


Figure 7. Means and variances for speciation and extinction rate parameters under unconstrained (without reversals; circle symbol) and constrained (with reversals; square symbol) models. Results are from 50 BiSSE maximum likelihood optimizations from Sclerodermatineae datasets 1 and 2. Variances for nongasteroid and gasteroid states indicated by gray and black bars, respectively.

diversification effects are relatively robust to modest variation in taxon sampling.

The predicted equilibrium frequencies for gasteroid forms in all four datasets are much higher than the observed 8.4% frequency of gasteroid forms across the entire Agaricomycetes. Again, one possible explanation for this discrepancy is simply that many of the gasteroid lineages outside of our focal clades are relatively young, and have not yet reached equilibrium. Indeed, many clades of gasteroid fungi are small groups that appear to be recently derived within clades of nongasteroid fungi (e.g., *Torrendia* within *Amanita*; *Thaxterogaster* within *Cortinarius* s. lat.; *Endoptychum* within *Agaricus*, etc).

Alternatively, the dynamics of diversification in the clades that we studied may not be representative of the evolutionary processes at work across the entire Agaricomycetes. Several analyses using molecular phylogenetic approaches and studies on heritability of fruiting body forms have suggested that the initial stages of the evolution of gasteroid forms may occur quickly and could have simple genetic bases (Bruns et al. 1989; Hibbett et al. 1994). The early stages of gasteromycetation are thought to involve "secotioid" forms, which have permanently enclosed spore-producing structures but in many cases have not yet lost ballistospory. Such intermediate forms have been described in multiple clades of Agaricomycetes (e.g., the secotioid form of *Lentinus tigrinus* in the Polyporales; *Gastrosuillus* in the Boletales; and *Podaxis* in the Coprinaceae). Secotioid forms, lacking both ballistospory and morphological adaptations to the gasteroid habit, could be at a selective disadvantage. The observation of a low frequency

Figure 8. Means and variances for speciation and extinction rate parameters under constrained (with reversals; circle symbol) and unconstrained (without reversals; square symbol) models. Results are from 50 BiSSE maximum likelihood optimizations from Bole-tales, Phallomycetidae, and Lycoperdaceae datasets. Variances for nongasteroid and gasteroid states indicated by gray and black bars, respectively.

of gasteroid forms across the Agaricomycetes is consistent with the view that recently derived gasteroid forms are at high risk for extinction. The clades that we focused on in this study include highly derived gasteroid taxa, with specialized nonballistosporic spore dispersal mechanisms (Fig. 1). Indeed, the gasteromycetes studied here represent some of the most morphologically complex forms in the fungi, often with multiple functionally distinct tissues in the fruiting body and complex developmental processes. These taxa may represent exceptionally successful gasteroid lineages that have passed through the secotioid bottleneck and are now diversifying at rates comparable to, or exceeding, those of their nongasteroid relatives.

ACKNOWLEDGMENTS

We are greatly indebted to R. Fitzjohn for his patience and assistance in helping AWW implement the BiSSE analyses in Diversitree. We would like to thank R. Ree for conceptual discussions early in the development of this study, as well as constructive comments involving the review. Also, we thank T. Bruns and another anonymous reviewer for their helpful comments in reviewing this manuscript. AWW thanks S. Wagenius and D. Larkin for their assistance with programming in the R environment. We wish to thank C. Aime, R. Beever, P. Buchanan, R. Halling, K. Hosaka, T. May, G. Mueller, C. Phosri, R. Watling, and Z. Yang for specimens, sequence data and/or knowledge that contributed to this study. AWW would like to thank, Prof. Vikiniswary, A. Chan, and T. Yee Shin at the University of Malaysia, D. Desjardin from SFSU, A. Hi Harun and R. C. Ong of the FRC in Sabah for their assistance in collecting Malaysian specimens. This study was funded in part by NSF DDIG awarded to AWW (DEB-0508716) and AFTOL grants awarded to DSH (DEB-0228657 and DEB-0732968)

LITERATURE CITED

- Binder, M., and A. Bresinsky. 2002. Derivation of a polymorphic lineage of Gasteromycetes from boletoid ancestors. Mycologia 94:85–98.
- Binder, M., and D. S. Hibbett. 2006. Molecular systematics and biological diversification of Boletales. Mycologia 98:971–983.
- Binder, M., K.-H. Larsson, B. P. Matheny, and D. S. Hibbett. 2010. Amylocorticiales ord. nov. and Jaapiales ord. nov.: early-diverging clades of Agaricomycetidae dominated by corticioid forms. Mycologia 102:865– 880.
- Bruns, T. D., R. Fogel, T. J. White, and J. D. Palmer. 1989. Accelerated evolution of a false-truffle from a mushroom ancestor. Nature 339:140– 142.
- Buller, A. 1909. Researches on fungi. Pp. 287 Longmans, Green & Co., London.
- Drummond, A. J., and A. Rambaut. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7:214.
- FitzJohn, R. G., W. P. Maddison, and S. P. Otto. 2009. Estimating traitdependent speciation and extinction rates from incompletely resolved phylogenies. Syst. Biol. 58:595–611.
- Gardes, M., and T. D. Bruns. 1993. ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol. Ecol. 2:113–118.
- Hawksworth, D. L. 1991. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol. Res. 95:641–655.
- Hawksworth, D. L., P. M. Kirk, B. C. Sutton, and D. N. Pegler. 1996. Dictionary of the fungi. CAB International, Wallingford, UK.
- Hibbett, D. S. 2004. Trends in morphological evolution in homobasidiomycetes inferred using maximum likelihood: a comparison of binary and multistate approaches. Syst. Biol. 53:889–903.
- Hibbett, D. S., A. Tsuneda, and S. Murakami. 1994. The secotioid form of *Lentinus tigrinus*: genetics and development of a fungal morphological innovation. Am. J. Bot. 81:466–487.
- Hibbett, D. S., E. M. Pine, E. Langer, G. Langer, and M. J. Donoghue. 1997. Evolution of gilled mushrooms and puffballs inferred from ribosomal DNA sequences. Proc. Natl. Acad. Sci. USA 94:12002–12006.
- Hopple, J. S., and R. Vilgalys. 1999. Phylogenetic relationships in the mushroom genus *Coprinus* and dark-spored allies based on sequence data from the nuclear gene coding for the large ribosomal subunit RNA: divergen domains, outgroups and monophyly. Mol. Phylogenet. Evol. 13:1–19.
- Hosaka, K., S. T. Bates, R. E. Beever, M. A. Castellano, W. Colgan III, L. S.

Domînguez, E. R. Nouhra, J. Geml, A. J. Giachini, S. R. Kenney, et al. 2006. Molecular phylogenetics of the gomphoid-phalloid fungi with an establishment of the new subclass Phallomycetidae and two new orders. Mycologia 98:949–959.

- Ingold, C. T. 1971. Fungal spores: their liberation and dispersal. Oxford Univ. Press, Oxford, UK.
- Kirk, P. M., P. F. Cannon, D. W. Minter, and J. A. Stalpers. 2008. Dictionary of the Fungi. Dictionary of the Fungi, Wallingford, UK.
- Læssøe, T., and L. M. Jalink. 2004. *Chlorogaster dipterocarpi*: a new peristomate gasteroid taxon of the Sclerodermataceae. Persoonia 18:421– 428.
- Larsson, E., and M. Jeppson. 2008. Phylogenetic relationships among species and genera of Lycoperdaceae based on ITS and LSU sequence data from north European taxa. Mycol. Res. 112:4–22.
- Maddison, D. R., and W. P. Maddison. 2005. MacClade 4. Sinaur, Sunderland, MA.
- Maddison, W. P., P. E. Midford, and S. P. Otto. 2007. Estimating a binary character's effect on speciation and extinction. Syst. Biol. 53:701–710.
- Martín, F., J. Díez, B. Dell, and C. Delaruelle. 2002. Phylogeography of the ectomycorrhizal *Pisolithus* species as inferred from nuclear ribosomal DNA ITS sequences. New Phytol. 153:345–357.
- Matheny, B. P. 2005. Improving phylogenetic inference of mushrooms with RPB1 and RPB2 nucleotide sequences (*Inocybe*; Agaricales). Mol. Phylogenet. Evol. 35:1–20.
- Matheny, B. P., Y. J. Liu, J. F. Ammirati, and B. D. Hall. 2002. Using RPB1 sequences to improve phyogenetic inference among mushrooms (*Inocybe*, Agaricales). Am. J. Bot. 89:688–698.
- Matheny, B. P., Z. Wang, M. Binder, J. M. Curtis, Y. W. Lim, R. H. Nilsson, K. W. Hughes, V. Hofstetter, J. F. Ammirati, C. L. Schoch, et al. 2007. Contributions of *rpb2* and *tef1* to the phylogeny of mushrooms and allies (Basidiomycota, Fungi). Mol. Phylogenet. Evol. 43:430–451.
- Pagel, M. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst. Biol. 48:612–622.
- Phosri, C., M. P. Martín, P. Sihanonth, A. J. S. Whalley, and R. Watling. 2007. Molecular study of the genus *Astraeus*. Mycol. Res. 111:275–286.
- Pringle, A., S. N. Patek, M. Fischer, J. Stolze, and N. P. Money. 2005. The captured launch of a ballistospore. Mycologia 97:866–871.
- Rehner, S. A., and E. Buckley. 2005. A *Beauveria* phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to *Cordycepts* teleomorphs. Mycologia 97:84–98.
- Savile, D. B. O. 1955. A phylogeny of the Basidiomycetes. Can. J. Bot. 33:60–104.
- 1968. Possible interrelationships between fungal groups. Pp. 649– 675 in G. C. Ainsworth and A. S. Sussman, eds. The fungi. An advanced treatise. Academic Press, New York.
- Thiers, H. D. 1984. The secotioid syndrome. Mycologia 92:1-8.
- Turner, J. C. R., and J. Webster. 1991. Mass and momentum transfer on the small scale: how do mushrooms shed their spores? Chemical Engineering Sci. 46:1145–1143.
- Vilgalys, R., and M. Hester. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 172:4238–4246.
- White, T. J., T. D. Bruns, S. Lee, and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phyogenies. Pp. 315–322 in M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White, eds. PCR protocols: a guide to methods and applications. Academic Press, San Diego.

Associate Editor: D. Posada

Supporting Information

The following supporting information is available for this article:

Table S1. Sequence length ranges of regions sequenced for this study.
Table S2a. Phallomycetidae dataset specimen Genbank ID numbers.
Table S2b. Lycoperdaceae dataset 25S Genbank ID numbers.
Table S2c. Boletales dataset from Binder and Hibbett (2006).
Table S3a. Taxonomic sampling of the Sclerodermatineae.
Table S3b. Taxonomic sampling of the Boletales (Binder and Hibbett 2006).
Table S3c. Taxonomic sampling of the Phallomycetidae (Hosaka, Bates et al. 2006).
Table S3d. Taxonomic sampling of the Lycoperdaceae sensu Larsson and Jeppson (2008).
Appendix S1. Testing convergence of parameters from BiSSE MCMC analyses.

Supporting Information may be found in the online version of this article.

Please note: Wiley-Blackwell is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.