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Gasteroid fungi include puffballs, stinkhorns, and other forms that produce their spores inside the fruiting body. Gasteroid taxa
comprise about 8.4% of the Agaricomycetes (mushroom-forming fungi) and have evolved numerous times from nongasteroid
ancestors, such as gilled mushrooms, polypores, and coral fungi, which produce spores on the surface of the fruiting body. Nongas-
teroid Agaricomycetes have a complex mechanism of forcible spore discharge that is lost in gasteroid lineages, making reversals
to nongasteroid forms very unlikely. Our objective was to determine whether gasteromycetation affects the rate of diversification
of lineages “trapped” in the gasteroid state. We assembled four datasets (the Sclerodermatineae, Boletales, Phallomycetidae, and
Lycoperdaceae), representing unique origins of gasteroid fungi from nongasteroid ancestors and generated phylogenies using
BEAST. Using the program Diversitree, we analyzed these phylogenies to estimate character-state-specific rates of speciation and
extinction, and rates of transitions between nongasteroid and gasteroid forms. Most optimal models suggest that the net diversi-
fication rate of gasteroid forms exceeds that of nongasteroid forms, and that gasteroid forms will eventually come to predominate
over nongasteroid forms in the clades in which they have arisen. The low frequency of gasteroid forms in the Agaricomycetes as
a whole may reflect the recent origins of many gasteroid lineages.

KEY WORDS: BiSSE, Diversitree, extinction rates, gasteroid fungi, gasteromycetation, irreversible evolution, puffballs, speciation
rates.

The Agaricomycetes is a diverse group of fungi that produce elab-
orate reproductive structures such as mushrooms, coral fungi,
and puffballs. These fruiting structures can fall within one of
two major morphological categories. These are the morphologi-
cally diverse nongasteroid forms (e.g., mushrooms, boletes, poly-
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pores) and gasteroid forms (i.e., stomach-fungi or puffballs). The
Agaricomycetes is largely composed of fungi with a nongasteroid
morphology, which is the plesiomorphic condition for the group,
whereas gasteroid fungi are sparsely distributed in numerous de-
rived lineages (Thiers 1984; Bruns et al. 1989; Hibbett et al.
1997). Gasteroid fruiting bodies are thought to have evolved as
an adaptation to animal dispersal and arid climates (Savile 1955,
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1968; Thiers 1984; Bruns et al. 1989). Approximately 8.4% of
Agaricomycetes are gasteroid whereas the rest are nongasteroid
(Hawksworth et al. 1996).

In nongasteroid Agaricomycetes, spores develop externally
on specialized cells called basidia, which grow in the hyme-
nium, the fertile surface of the fungal fruiting body. Nongasteroid
spores are launched from the hymenium by a process of forcible
spore discharge, known as ballistospory. The mechanism of bal-
listospory involves rapid energy exchange through the surface
tension that is released when two separate formations of liquid,
one from the spore and one at the base of the spore, merge. The
merging causes the fluid to jump over to the spore, and launches it
from the basidium (Buller 1909; Ingold 1971; Turner and Webster
1991; Pringle et al. 2005). This mechanism requires asymmetrical
spores with hilar appendages (a minute protuberance at the base
of the spore), and curved apical sterigmata (stalks that bear the
spores). None of these features are observed in gasteroid Agari-
comycetes, which lack ballistospory. The gasteroid fungi also
differ from nongasteroid fungi in that the hymenium has become
enclosed and has evolved into a structure called the gleba, within
which the spores mature. Reversals from gasteroid to nongasteroid
forms are highly unlikely, because they would require reevolving
a hymenium and the structures responsible for the complex mech-
anisms involved in ballistospory (Thiers 1984). The hypothesis
of the irreversibility of gasteromycetation was tested by Hibbett
(2004) in a phylogenetic context. Using a combination of binary-
and multistate maximum likelihood analyses, he evaluated the
rate of change between five Agaricomycete fruiting morphologies
(four nongasteroid and one gasteroid). Models of fruiting body
evolution in which the evolution of gasteroid forms is irreversible
could not be rejected.

Gasteroid fungi represent a small fraction of the total num-
ber of species of Agaricomycetes, but they encompass a tremen-
dous range of morphological diversity (Fig. 1). We focused on
three clades that contain diverse gasteroid and nongasteroid taxa.
The Sclerodermatineae (Figs. 1A-E) is a suborder within the
large, and ecologically important Boletales (Binder and Bresin-
sky 2002), which includes the nongasteroid genera Boletinel-
lus, Phlebopus, and Gyroporus and a variety of gasteroid genera
such as Scleroderma (puffballs), Astraeus (earthstar), Calostoma
(stipitate, gelatinized), and Pisolithus (a puftball in which the
gleba has been fragmented into individual chambers). The Phal-
lomycetidae (Figs. 1F-J) includes gasteroid genera such as Geas-
trum (earthstar), Sphaerobolus (“cannon-ball” fungus, with gleba
“packets” that are forcibly ejected from the fruiting body), Hys-
terangium (gelatinized puffball), and Phallus (stinkhorn, gela-
tinized) (Hosaka et al. 2006). The Lycoperdaceae (Figs. 1K-N) is
alineage in the Agaricaceae, with four simple gasteroid genera Ly-
coperdon, Bovista, Calvatia, and Discisdea (Larsson and Jeppson
2008). In addition, other morphologically unique gasteroid lin-
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eages exist within the Agaricomycetes, such as the Tulostomat-
aceae (stalked puffballs), the Nidulariaceae (birds nest fungi), and
simple gasteroid bolete genera Rhizopogon and Melanogaster, to
name a few. Clearly, the gasteroid condition does not preclude
morphological diversification, even though gasteromycetation it-
self is irreversible. Indeed, the range of gasteroid morphologies
that are observed in the Agaricomycetes (Fig. 1) suggests that
gasteromycetation may offer opportunities to diversify in a new
adaptive landscape.

We addressed whether the evolution of the gasteroid mor-
phology affects the rate of diversification in lineages of Agari-
comycetes. If gasteromycetation were to reduce diversification
rates relative to nongasteroid lineages, then we would expect gas-
teroid clades to remain small (and therefore be more prone to
extinction), compared to their nongasteroid relatives. This expec-
tation is consistent with the current paucity of gasteroid forms
across the Agaricomycetes as a whole. On the other hand, if
gasteromycetation were to result in an increase in the rate of
diversification over nongasteroid forms, then gasteromycetation
would be an evolutionary key innovation. More generally, if the
gasteroid rate of diversification is positive, but less than that of
nongasteroid forms, then we still might expect the number of gas-
teroid lineages to increase, because transformations to gasteroid
forms are irreversible.

To address the diversification consequences of gasteromyc-
etation, we used Binary State Speciation and Extinction analysis
(BiSSE; Maddison et al. 2007), which is implemented in Diver-
sitree (FitzJohn et al. 2009). BiSSE estimates character state-
specific speciation (j) and extinction ()\) rates, and rates of tran-
sition (g) between binary character states (0 and 1), for a total
of six rate parameters (Ao, N1, o, 11, qO01, and q10). BiSSE
allows any of the rate parameters to be constrained to evaluate
different hypotheses about character-associated diversification.
We focused on gasteromycete diversification in the Scleroder-
matineae (Figs. 1A-E), with additional analyses on a more inclu-
sive Boletales dataset, the Phallomycetidae (Figs. 1F-J), and the
Lycoperdaceae (Figs. 1K-N). Analysis of multiple independent
clades allowed us to assess the generality of results obtained in
the Sclerodermatineae, whereas comparison of results from the
nested Sclerodermatineae and Boletales datasets addressed the
impact of taxon sampling within a single clade.

Materials and Methods

DATASETS

We assembled five datasets representing both gasteroid and non-
gasteroid morphologies in different taxonomic groups of Agari-
comycetes, including two datasets for the Sclerodermatineae with
different proportions of gasteroid taxa. We generated original gene
sequences to create the Sclerodermatineae datasets, whereas the
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Figure 1. Nongasteroid and gasteroid fungal morphologies in the Agaricomycetes. The three rows correspond to the groups Sclero-
dermatineae (A-E), Phallomycetidae (F-J), and nongasteroid Chlorophyllum molybdites (K) with the Lycoperdaceae (L-N). Nongasteroid
fungi: A, F, and K. Gasteroid fungi: B-E, G-J, and L-N. (A). Gyroporus castaneus, (B) Astraeus sp., (C) Calostoma cinnabarinum, (D) Pisolithus
tinctorius, (E) Scleroderma cepa, (F) Gomphus floccosus, (G) Trappea darkeri, (H) Sphaerobolus stellatus, (1) Geastrum floriforme, (J) Aseroe
rubra, (K) Chlorophyllum molybdites, (L) Calvatia pachyderma, (M) Bovista pila, (N) Lycoperdon marginatum. Photo Credits: A by P.B.
Matheny; B-D and N by A.W. Wilson; E-G and K by M. Wood (Mykoweb.com); H, |, L, and M by F. Stevens (Mykoweb.com); J by D.E.

Desjardin.

data for the remaining three datasets—the Boletales, the Phal-
lomycetidae, and the Lycoperdaceae—were gathered from previ-
ous studies or assembled from sequence data available on Gen-
Bank (http://www.ncbi.nlm.nih.gov/GenBank/index.html). We
based the taxonomic sampling in each group on current estimates
of species richness per genus from the Dictionary of the Fungi
(Kirk et al. 2008). This information was used to adjust the num-
bers of taxa to approach the correct proportions of gasteroid fungi
in each clade.

Sclerodermatineae

We extracted DNA from fresh fungal basidiomes and dried herbar-
ium samples. Due to the large amount of pigmentation that is
present in Sclerodermatineae species, we attempted a number of
DNA extraction methods, including miniprep and maxiprep meth-
ods (protocols can be found at http://www.clarku.edu/faculty/

dhibbett/protocols.html) and the EZNA Fungal DNA Miniprep
kit (Omega Bio-tek, Inc., Doraville, GA). We purified DNA using
GeneClean glass milk (Q-BIOgene, www.gbiogene.com).

We used PCR to amplify the nuclear ribosomal 5.8S region
with primers ITS1-F (Gardes and Bruns 1993) and ITS4 (White
et al. 1990). To amplify the 5" end of the nrDNA large subunit
(25S), we used primers LROR and LRS5 (Vilgalys and Hester
1990). To amplify regions A through C of the protein-coding re-
gion ribosomal polymerase two, subunit one (RPB1), we used
the published primers RPB1-Af and RPB1-Cr (Matheny et al.
2002), and the newly designed primers RPB1-sAlf (5'-AACT
YWACTCGTTTYGCACCCC-3'), and RPB1-sA2r (5'-GCACC
CACCTCCCAATTTCTGG-3'). To amplify and sequence ribo-
somal polymerase two, subunit two (RPB2), regions 5-7, we
used various combinations of the published primers RPB2-
fSF,RPB2-b7R, RPB2-7R2, RPB2-7.1R, RPB2-a8.0R (Matheny
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2005; Binder et al. 2010) along with the newly designed
primers RPB2-s5.2F (5-TGGGGRGACCARAAGAARTC-3),
and RPB2-s7.1R (5-CTGATTRTGGTC NGGGAAMGG-3'). To
amplify and sequence translation elongation factor 1-alpha (efla),
we used primers EF1-983F, EF1-2218R, EF1-1953R, and EFcf
(Rehner and Buckley 2005). PCR and sequencing conditions for
the various genes were based on White et al. (1990, for rRNA
genes), Matheny et al. (2002, RPB1), Matheny (2005, RPB2),
and Rehner and Buckley (2005, ef1a). Primer sequences and maps
are available at the Hibbett lab website (http://www.clarku.edu/
faculty/dhibbett/Protocols_Folder/Primers/Primers.pdf).

Nearly 40% of the sequences that we generated in this study
had to be cloned due to intragenomic heterogeneity or weak am-
plification. We cloned PCR amplicons using the TA or TOPO
TA Cloning Kits (Invitrogen, Carlsbad, CA). We ligated fresh,
cleaned, PCR product to pCR 2.1 vectors that were then used
to transform MAX efficiency DH5a-T1 chemically competent
cells of Escherichia coli. We incubated approximately 75 mL of
cells in liquid SOC medium at 37°C for up to 24 h on Luria-
Bertani (LB) agar prepared with 50 pg/mL of kanamycin and
50 L of 50 mg/mL of X-gal in dimethylformamide. We screened
transformed colonies with PCR using primers M13F and M13R
followed by gel electrophoresis (1% agarose) with a 1 kb steplad-
der. Up to three amplicons of the expected size were chosen for
sequencing.

We constructed two datasets for the Sclerodermatineae
(Table 1). Sclerodermatineae dataset 1 represents 103 operational
taxonomic units (OTUs) and is composed of 214 newly generated
sequences (65 25S, 41 5.8S, 37 RPB1, 40 RPB2, 31 efla) and 46
sequences acquired from GenBank (38 25S, 2 5.8S, 2 RPBI1, 2
RPB2, 2 efla). Both nuclear ribosomal DNA and protein-coding
sequences are present in 43 OTUs. The remaining 60 OTUs are
represented by 25S sequence data only. Sclerodermatineae dataset
2 is a reduced dataset of 76 OTUs where 27 OTUs, represented
by 258 sequences, were removed from dataset 1 (Table 1).

Sixty-seven percent of the taxa in Sclerodermatineae dataset
1 are gasteroid (Table 2). This is about equal to the frequency
of gasteroid taxa in the clade (68%) based on estimates in the
Dictionary of the Fungi (Kirk et al. 2008). Seventy-two percent of
the taxa in the Sclerodermatineae dataset 2 are gasteroid, which is
slightly higher than the estimates from the Dictionary of the Fungi.
Thus, the two Sclerodermatineae datasets represent slightly dif-
ferent proportions of gasteroid forms. It is possible that the Dic-
tionary of the Fungi underestimates the diversity of gasteroid
Sclerodermatineae, based on the amount of cryptic diversity that
has been detected in the group. Studies of Astraeus (Phosri et al.
2007) and Pisolithus (Martin et al. 2002) report a surprising num-
ber of cryptic taxa in these gasteroid genera. This cryptic diversity
is not limited to gasteroid forms as molecular analyses suggest
that individual species of Gyroporus appear to represent multiple
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cryptic taxa (A.W.W., unpubl. data). Chlorogaster dipterocarpi
(Lessge and Jalink 2004) is a gasteroid species of Scleroder-
matineae that was not included in this study because of a lack of
sequence data.

Boletales

We used the dataset from Binder and Hibbett (2006), which
consists of 485 nuclear ribosomal 25S sequences. This dataset
contains approximately 15% gasteroid taxa, which is less than
the 25% estimated using the Dictionary of the Fungi (Table 2).
The Boletales dataset includes 31 species (6.4%) of Scleroder-
matineae, with 402 species representing all of the other major
clades of Boletales; the remaining 52 species represent outgroup
taxa. 72 species (14.8%) in the Boletales dataset are gasteroid,
including 19 species of Sclerodermatineae, with the remain-
der distributed among the Suillineae (32 species), Boletineae
(15 species), Serpulaceae (three species), and the outgroup taxa
(three species).

Phallomycetidae

For analyses of the Phallomycetidae, we modified the dataset of
Hosaka et al. (2006), which consists of nrLSU, mtSSU, atp6,
RPB2, EFla sequence data for 213 taxa. For this study, we re-
moved 89 taxa representing the gasteroid morphology from the
original Hosaka et al. (2006) dataset, which brought the dataset
to 52% gasteroid fungi, and making it slightly greater than the es-
timated 43.5% gasteroid fungi in the Phallomycetidae (Table 2).

Lycoperdaceae

This dataset comprises 25S sequences from GenBank and is
largely based on the Lycoperdaceae sensu Larsson and Jeppson
(2008). We included additional 25S sequences for nongasteroid
closely related to the Lycoperdaceae. The Lycoperdaceae dataset
is approximately 50% gasteroid, which is greater than the 32%
estimated using the Dictionary of the Fungi (Table 2).

PHYLOGENETIC ANALYSES

We generated ultrametric trees for each dataset using BEAST
version 1.4.6 (Drummond and Rambaut 2007). We used BEAUTi
version 1.4.6 to create XML files with the following analytical
settings: GTR model, uncorrelated relaxed clock with lognormal
rate distribution; Tree Prior set to Yule Process speciation; run-
ning 10 million generations, sampling every 1000th tree. For the
Boletales dataset, we removed the operators subtreeSlide, nar-
rowExchange, wideExchange, and wilsonBalding from the XML
file to estimate branch lengths without branch swapping. By re-
moving these functions, BEAST will only make adjustments to the
branch lengths and not the topology of the starting tree, which was
supplied by the Binder and Hibbett (2006) study. As a result, we
were able to limit the computational difficulty in analyzing such a
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Table 2. Frequencies of gasteroid and nongasteroid forms in Sclerodermatineae, Boletales, Phallomycetidae, and Lycoperdaceae, based
on sampled diversity (dataset), estimated diversity from Dictionary of the Fungi (DoF), and predicted equilibrium frequencies from BiSSE

parameters under a model of no reversals (EQ freq).

Gasteroid frequencies

Non-gasteroid frequencies

No. of Gasteroid Dataset DoF EQ freq; Dataset DoF EQ freqp
Taxa origins
Sclerodermatineae
Dataset 1 103 2 67.0% 67.6% 100.0% 33.0% 32.4% 0.0%
Dataset 2 76 2 72.4% 100.0% 27.6% 0.0%
Boletales 485 21 15.2% 24.6% 100.0% 84.8% 75.4% 0.0%
Phallomycetidae 124 3 52.4% 43.5% 100.0% 47.6% 56.5% 0.0%
Lycoperdaceae 112 1 50.9% 32.1% 100.0% 49.1% 67.9% 0.0%

large dataset by removing the complications of branch swapping.
We used neighbor-joining analyses with maximum likelihood dis-
tances to generate starting trees for all datasets with the exception
of the Boletales dataset which used the Bayesian consensus tree
from Binder and Hibbett (2006) for the starting tree.

For each dataset in this study, we ran three separate BEAST
analyses resulting in three tree files each containing 10,000 trees.
For each tree file, we empirically estimated the trees to be re-
moved as the burnin trees using Tracer version 1.4 (Drummond
and Rambaut 2007) to identify the point at which trees reached a
stable plateau of posterior likelihood values. We used LogCom-
biner version 1.4.6 (Drummond and Rambaut 2007) to remove
the burnin trees and to combine all posterior trees from each of
the three BEAST tree files. Using LogCombiner version 1.4.6, we
resampled the combined posterior tree file to make a “BiSSE tree
file” of 50 trees for analysis in BiSSE. We generated consensus
trees for each of the BiSSE tree files using Tree Annotator version
1.4.6 (Drummond and Rambaut 2007). Using these consensus
trees, we determined the number of origins of the gasteromycete
morphology assuming irreversibility under parsimony using Mac-
Clade version 4.07 (Maddison and Maddison 2005).

DIVERSIFICATION ANALYSES

We used BiSSE (Maddison et al. 2007) to estimate the rate of spe-
ciation () and extinction () and state transformations (q01 and
q10) associated with nongasteroid (state 0) and gasteroid (state 1)
fruiting body forms. BiSSE analyses were implemented in Diver-
sitree version 0.4-3 (FitzJohn et al. 2009), a package developed
for the statistical application R (http://www.r-project.org/). We
estimated parameters of unconstrained/“reversible” models, in
which transformation rates between gasteroid and nongasteroid
forms were unconstrained (i.e., q01 and q10 were allowed to
take any value), and constrained/“irreversible” models, in which
the rate of transformations from gasteroid to nongasteroid forms
(q10) was restricted to 0 (qO1 was unconstrained). Because these
models are not nested, we used a difference of two units in log
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likelihood scores as a criterion for “strong” support of one model
over another (Pagel 1999). The purpose of these comparisons was
to assess whether we could reject our a priori assumption that the
loss of gasteromycetation is irreversible.

Preliminary analyses using the Mesquite implementation of
BiSSE (Maddison et al. 2007) generated unexpected results, in
which the constrained models had superior likelihood scores com-
pared to unconstrained models. These results (not shown) sug-
gested that the parameter optimization elements of the Mesquite
implementation of BiSSE are challenged by our datasets to find
globally optimal parameter values. Therefore, we employed a two-
step process using Markov chain Monte Carlo (MCMC) sampling
followed by maximum likelihood (ML) optimization, which is in-
tended to more effectively search model space for optimal param-
eters. In the MCMC step, we sampled rate parameters on each of
the 50 trees from each BiSSE tree file. Each MCMC iteration sam-
ples a set of rate parameters and records the likelihood score for the
model. We analyzed each Sclerodermatineae dataset with 10,000
iterations per tree. The same approach was used for the larger Bo-
letales, Phallomycetidae and Lycoperdaceae datasets, except that
we only performed 1000 iterations per tree. We removed the first
one-fourth of the states sampled from each model/dataset/tree as
part of the burnin and calculated the means and the 95% posterior
densities for distributions of state-associated speciation and ex-
tinction parameters from the remaining states. In the second step
of the analysis, we attempted to obtain optimal models, using the
best models sampled during each of the 50 MCMC analyses as
starting points for ML optimization. We then calculated the mean
parameter values and likelihoods, and compared models using the
Akaike information criterion (AIC). The likelihood scores given
by Diversitree are proportional to the likelihood values (they are
not negative log likelihoods, as are typically reported) but they can
be used to calculate AIC scores so analyses of different models
on the same dataset can be compared (R. Fitzjohn, pers. comm.).

The mean values for ML parameters were used to calculate
the relative diversification rate (ry) between nongasteroid and
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Figure 2. Sclerodermatineae consensus trees of 50 posterior BEAST trees. (A) Sclerodermatineae dataset 1. (B) Sclerodermatineae
dataset 2. Closed circles represent nongasteroid forms whereas open circles represent gasteroid forms. Numbers indicate nodes with

>0.99 posterior probability.
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Figure 4. Lycoperdaceae consensus tree of 50 posterior BEAST
Figure 3. Phallomycetidae consensus tree of 50 posterior BEAST

trees. Closed circles represent nongasteroid forms whereas open
circles represent gasteroid forms. Numbers indicate nodes with
>0.99 posterior probability.

trees. Closed circles represent nongasteroid forms whereas open
circles represent gasteroid forms. Numbers indicate nodes with
>0.99 posterior probability.
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Figure 5. Histograms of speciation, extinction, and diversification parameters for nongasteroid and gasteroid character states and
equilibrium frequencies estimated from BiSSE MCMC analyses. Analyses under unconstrained (with reversals) and constrained (without
reversals) models (rows) were performed on Sclerodermatineae datasets 1 and 2 (columns). Parameter 95% highest posterior densities
for character states indicated by colored shading and horizontal bars below histogram.

gasteroid fruiting forms. This was calculated as the rate of di-
versification of nongasteroid lineages (A0 — n0 = r0) divided by
the rate of diversification of gasteroid lineages (Al — nl1 = rl)
(or r0/rl = ry). A relative diversification rate greater than one
would indicate that gasteroid forms have a lower rate of diversi-
fication than nongasteroid forms. Equilibrium state frequencies
of gasteroid and nongasteroid forms were calculated according
to equation (13) of Maddison et al. (2007). These frequencies
were used to determine the potential effect of the estimated pa-
rameter rates on the composition of gasteroid and nongasteroid
fungi in the Agaricomycetes, but these frequencies assume that
the rates will remain constant over evolutionary time. The equi-
librium frequency calculation was done using Diversitree’s “di-
versitree:::bisse.stationary.freq” function.

Results
MOLECULAR DATA
The minimum and maximum length for sequences generated for
the Sclerodermatineae datasets are described in online Support-
ing Information Table S1, along with intron lengths and identities
(Hopple and Vilgalys 1999; Matheny et al. 2002, 2007). Sclero-
dermatineae dataset 1 is 4953 characters in length with a total of
2109 parsimony informative characters. Dataset 2 is 4948 char-
acters long with 2073 parsimony informative characters.
Lengths for the other datasets used in this study are: 1071
characters for the Boletales (523 parsimony informative), 3543
characters for the Phallomycetidae (1533 parsimony informa-
tive), 775 characters for the Lycoperdaceae (118 parsimony
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Figure 6. Histograms of speciation, extinction, and diversification parameters for nongasteroid and gasteroid character states and

equilibrium frequencies estimated from BiSSE MCMC analyses. Analyses under unconstrained (with reversals) and constrained (without

reversals) models (rows) were performed on Boletales, Phallomycetidae, and Lycoperdaceae datasets (columns). Parameter 95% highest

posterior densities for character states indicated by colored shading and horizontal bars below histogram.

informative). Lists of included sequences and information on the
taxonomic composition of each dataset can be found in online
Supporting Information Tables S2a—c and S3a—d, respectively.

PHYLOGENETIC ANALYSES

The Sclerodermatineae (Fig. 2) phylogenetic trees are consis-
tent with results of previous analyses by Binder and Bresinsky
(2002) and separate analyses by A.W.W. (unpubl. data). The tax-
onomic significance of these results will be addressed elsewhere.
Similarly, the topologies for the Boletales (not shown), Phal-
lomycetidae (Fig. 3), and Lycoperdaceae (Fig. 4) are largely con-
sistent with previous analyses in these groups (Binder and Hibbett
2006; Hosaka et al. 2006; Larsson and Jeppson 2008). The tree
lengths calculated under parsimony suggest that anywhere from
one (Lycoperdaceae) to 21 (Boletales) independent origins of the
gasteroid morphology have occurred in the groups analyzed in
this study (Table 2).

DIVERSIFICATION ANALYSES

The 95% highest posterior density distributions for state-specific
speciation and extinction rates estimated with MCMC were
largely overlapping in every dataset, with either the unconstrained
(reversible) or constrained (irreversible) models of fruiting body
evolution (Figs. 5 and 6). Following the MCMC analyses, optimal
unconstrained and constrained models were estimated on each of
the five datasets, using the best models obtained in each of 50
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MCMC searches as starting points for likelihood optimizations.
In the optimizations, likelihoods of unconstrained models were
greater than those of constrained models, except in the Sclero-
dermatineae dataset 2 and Lycoperdaceae datasets, in which the
constrained models had a slightly higher average likelihood than
the unconstrained models (Tables 3 and 4). Six of the searches
converged on similar optimal models, with modest variance in
model parameters (Figs. 7 and 8, Table 4). However, four other
searches (estimating unconstrained models for Sclerodermatineae
datasets 1 and 2 and both constrained and unconstrained models
for the Lycoperdaceae dataset) returned a set of models with high
variance in parameter estimates (Figs. 7 and 8). AIC scores sug-
gested that the constrained models are preferred for three datasets
(Sclerodermatineae datasets 1 and 2 and Lycoperdaceae), whereas
the unconstrained models are preferred for the Boletales and Phal-
lomycetidae datasets (Tables 3 and 4). Two models were rejected
(AlogL > 2), including the constrained models for the Boletales
and Phallomycetidae datasets. Thus, a total of 10 models were
generated in ML optimization, of which eight could not be rejected
(Tables 3 and 4). Net diversification rates of gasteroid forms were
higher than those of nongasteroid forms in all but one of the non-
rejected models (Tables 3 and 4). Six of the nonrejected models
predict that gasteroid forms will be more common than nongas-
teroid forms at equilibrium, including three of the unconstrained
models, which suggested that the equilibrium frequencies of gas-
teroid forms will range from 85% to 100% (Tables 3 and 4).
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Table 3. Means for BiSSE state-associated diversification parameters and related statistics under an unconstrained model and a model
assuming irreversibility (q10=0). Values reported are means of 50 optimizations from maximum likelihood analyses. Parameter variances

are in parentheses.

Model Rate Sclerodermatineae Sclerodermatineae
constraint parameters dataset 1 dataset 2
None o 12.89(5.05) 24.10(22.47)
N 19.15(3.90) 23.16(4.03)
o 4.67(17.61) 11.79(74.90)
I 12.66(10.00) 2.91(14.02)
qo1 9.18E-2(2.30x10~2) 0.78(0.39)
qlo0 0.16(1.26x1079%) 0.24(0.10)
ro 8.23 12.32
r 6.49 20.25
Frel 1.27 0.61
AIC —259.04 —270.73
log L 135.5206 141.3645
EQ freqq 0.95 0
ql0=0 2o 15.23(3.2x107%) 24.50(3.01)
N 14.73(3.11x107%) 21.83(0.41)
o 8.19(5.99x 10~%) 15.43(3.35)
W 5.93(6.88x107%) 0.67(7.37x107%2)
qo1 0.63(2.04x 107%8) 1.00(2.52x107%)
ro 7.04 9.07
r 8.80 21.17
Frel 0.80 0.43
AIC —260.50 —274.22
log L 135.2490 142.1106
Alog L 0.2716 —0.7
EQ freqq 0 0

Bold values indicate the model supported by Akaike’s information criterion.

Discussion

We used BiSSE, implemented in Diversitree, to estimate
diversification rates of nongasteroid and gasteroid lineages in
four clades of Agaricomycetes (two of which, the Boletales
and Sclerodermatineae, are nested), with and without assuming
irreversibility of the gasteroid condition. We used a two-step
approach, utilizing MCMC sampling followed by ML optimiza-
tion to search parameter space. Results of some ML searches
(including the surprising finding that some constrained analyses
produced models with likelihoods that were superior to those of
competing unconstrained models) suggest that our analyses may
not have discovered globally optimal models. Nonetheless, many
aspects of our results are consistent across clades and analyses,
and suggest that there are general evolutionary tendencies of
gasteroid versus nongasteroid lineages.

None of the MCMC analyses suggested that there is a signifi-
cant difference in speciation or extinction rates between gasteroid
and nongasteroid lineages (Figs. 5 and 6). However, seven of the
eight nonrejected ML models suggest that gasteroid forms have

a higher net diversification rate than nongasteroid forms, and six
of the nonrejected models suggest that gasteroid forms will come
to predominate at equilibrium. These conclusions do not depend
on an assumption of irreversibility of the gasteroid condition; all
but one of the unconstrained models suggest that gasteroid forms
diversify faster than nongasteroid forms, and three of these mod-
els suggest that gasteroid forms will come to represent 85-100%
of the diversity in their clades at equilibrium. One model, the
unconstrained model for Sclerodermatineae dataset 1, suggested
that gasteroid forms represent evolutionary dead-ends that may
be headed for extinction (the predicted equilibrium frequency
of gasteroid forms is only 5%). However, the competing model
assuming irreversible evolution of gasteroid forms could not be
rejected (in fact, it is slightly superior according to the AIC).
Models suggesting irreversibility of gasteroid forms were re-
jected in two datasets, the Boletales and Phallomycetidae. Even in
these cases, the unconstrained models suggest that gasteroid forms
will comprise 37-85% of the diversity at equilibrium. In sum,
we conclude that gasteromycetes are evolutionarily “successful”

EVOLUTION 2011 13



ANDREW W. WILSON ET AL.

Table 4. Means for BiSSE state-associated diversification parameters and related statistics under an unconstrained model and a model

assuming irreversibility (q10=0). Values reported are means of 50 optimizations from maximum likelihood analyses. Parameter variances

are in parentheses.

Model Rate Boletales Phallomycetidae Lycoperdaceae
constraint parameters
None o 21.23(6.03x107%) 9.49(0.80) 57.70(84.80)
¥ 21.19(0.47) 12.27(1.01) 98.54(290.46)
o 4.70(0.26) 6.09x 1079 (2.78 x107%%) 1.28(1.70)
Wi 3.00(0.59) 1.77(4.90) 3.96(20.05)
qo01 0.64(1.65x107%) 0.26(2.94x1079) 1.19(0.11)
ql0 2.11(1.40x10792) 0.19(1.25x1079) 1.75x1079 (1.39x10~%)
ro 16.26 9.49 56.36
r 18.19 10.50 94.58
Frel 0.91 0.90 0.60
AIC —1701.66 —305.98 —747.43
log L 856.83 158.99 379.7155
EQ freqq 0.63 0.15 4.43x107%
ql0=0 o 21.21(0.21) 10.45(7.82x 107%) 57.54(59.35)
N 20.75(2.35) 12.23(6.35x107%%) 92.80(228.04)
o 4.39(0.71) 0 0.25(0.51)
W1 4.53(2.85) 0 1.42(10.33)
qo1 0.92(1.72x107%) 0.66(1.30x10%) 1.30(6.62x 10~92)
ro 16.82 10.45 57.29
r 16.23 12.23 91.38
Frel 1.04 0.85 0.63
AIC —1688.28 —302.49 —749.92
log L 849.14 156.2463 379.9620
Alog L 7.69 2.74 —0.2465
EQ freqp 0 0 0

Bold values indicate the model supported by Akaike’s information criterion.

forms that, assuming the relative diversification rates between
states remain constant, may eventually become dominant in most
of the clades in which they have arisen.

In almost all of our analyses, the predicted equilibrium fre-
quencies of gasteroid forms exceed the described proportions of
gasteroid forms based on current taxonomy (the unconstrained
Sclerodermatineae 1 analysis being the only exception) (Table 2).
Taken at face value, the discrepancies between predicted and
observed equilibrium frequencies imply that these clades have
not yet reached equilibrium. Alternatively, errors in estimates of
model parameters obtained with BiSSE could result in errors in
equilibrium predictions. Our analysis does not permit us to as-
sess the accuracy of rate parameter estimates from BiSSE. The
program performed well in prior simulations, although p was dif-
ficult to estimate (Maddison et al. 2007), and some aspects of our
results suggest that our datasets provide difficult ML optimization
challenges.

The two Sclerodermatineae datasets contain 103 and 76

species, with 67-72% gasteroid taxa, which compares well with
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the documented diversity of the clade (Kirk et al. 2008), which
has 74 described species, including 68% gasteroid taxa (online
Supporting Information Table S3). The remaining three datasets,
Boletales, Phallomycetidae, and Lycoperdaceae, contain between
23% (Lycoperdaceae) and 38% (Boletales) of the known diver-
sity in each group. Sampling in these datasets was adjusted to
approximate the actual proportions of the genera in each of the
focal clades, based on the numbers of described species in each
group (Kirk et al. 2008). Nonetheless, taxon sampling is a po-
tential source of error in our analyses; none of our datasets
includes all of the known species in the focal clade, and the
proportions of gasteroid taxa sampled are not identical to the pro-
portions of gasteroid taxa that have been described. Moreover,
the actual diversity in each of the focal clades is not known, and,
based on diversity estimates for fungi as a whole (Hawksworth
1991), the described diversity may underestimate the actual di-
versity in each group. Nevertheless, the relative diversification
rates and predicted equilibrium frequencies are largely consistent
across datasets, suggesting that our general conclusions about



EFFECTS OF FUNGAL MORPHOLOGY ON DIVERSIFICATION RATES

A ol o
- o
Q
[72)
©
p—
@
© & 1
o
® 35 ¢
g
=0
T8 21
£
1 .
[})
T
) © |
b L
2
[&]
(7)) O
34
[ T T T T 1
10 12 14 16 18 20
o & 7
)
3
[v] &
)
(]
T
Do J
®© 5
Q5
.E"J,' o _| 4
- N
8o
£
5 8- -
_o —
o
S
8 &
[&]
(7))
8¥
I T T T T 1
10 15 20 25 30 35

Non-Gasteroid
Speciation Rate

o _ . .
o o Unconstrained Analysis
Mean
g Constrained Analysis
Mean
1l-f_> -
3
9_ -
[m]
o
[ T T T 1
5 0 5 10 15
o _
o -
3
HH
o -
L(I) -
[ T T 1
-20 0 20 40

Non-Gasteroid
Extinction Rate

Figure 7. Means and variances for speciation and extinction rate parameters under unconstrained (without reversals; circle symbol) and

constrained (with reversals; square symbol) models. Results are from 50 BiSSE maximum likelihood optimizations from Sclerodermatineae
datasets 1 and 2. Variances for nongasteroid and gasteroid states indicated by gray and black bars, respectively.

diversification effects are relatively robust to modest variation in
taxon sampling.

The predicted equilibrium frequencies for gasteroid forms
in all four datasets are much higher than the observed 8.4%
frequency of gasteroid forms across the entire Agaricomycetes.
Again, one possible explanation for this discrepancy is simply
that many of the gasteroid lineages outside of our focal clades are
relatively young, and have not yet reached equilibrium. Indeed,
many clades of gasteroid fungi are small groups that appear to be
recently derived within clades of nongasteroid fungi (e.g., Tor-
rendia within Amanita; Thaxterogaster within Cortinarius s. lat.;
Endoptychum within Agaricus, etc).

Alternatively, the dynamics of diversification in the clades
that we studied may not be representative of the evolutionary pro-

cesses at work across the entire Agaricomycetes. Several analyses
using molecular phylogenetic approaches and studies on heritabil-
ity of fruiting body forms have suggested that the initial stages
of the evolution of gasteroid forms may occur quickly and could
have simple genetic bases (Bruns et al. 1989; Hibbett et al. 1994).
The early stages of gasteromycetation are thought to involve “sec-
otioid” forms, which have permanently enclosed spore-producing
structures but in many cases have not yet lost ballistospory. Such
intermediate forms have been described in multiple clades of
Agaricomycetes (e.g., the secotioid form of Lentinus tigrinus
in the Polyporales; Gastrosuillus in the Boletales; and Podaxis
in the Coprinaceae). Secotioid forms, lacking both ballistospory
and morphological adaptations to the gasteroid habit, could be
at a selective disadvantage. The observation of a low frequency
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respectively.

of gasteroid forms across the Agaricomycetes is consistent with
the view that recently derived gasteroid forms are at high risk for
extinction. The clades that we focused on in this study include
highly derived gasteroid taxa, with specialized nonballistosporic
spore dispersal mechanisms (Fig. 1). Indeed, the gasteromycetes
studied here represent some of the most morphologically complex
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forms in the fungi, often with multiple functionally distinct tis-
sues in the fruiting body and complex developmental processes.
These taxa may represent exceptionally successful gasteroid lin-
eages that have passed through the secotioid bottleneck and are
now diversifying at rates comparable to, or exceeding, those of
their nongasteroid relatives.
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