Topic 19: Diets and Foraging

- What factors influence diet and foraging mode?
- Diets
 - What do amphibians and "reptiles" eat?
 - What are some adaptations for different diets?
 - How do specialists and generalists differ?
 - What is opportunism?
 - How can species vary in diet?
- Foraging mode
 - How do sit-and-wait & active foraging differ?
 - What are the ecological implications of these differences?
 - Examples

What factors influence diet and foraging mode?

- Diet refers to what an organism eats
- Foraging mode refers to how prey are obtained
- Many factors influence diet & foraging mode

Photos © PJB
What do herps eat?

- Amphibians and “Reptiles” are:
 - Most herps: ~90%
 - Mostly
 - Often viewed as generalists
 - Opportunism
 - Relatively few species
 - A number of important adaptations

Adaptations for Diet

- Species that eat large prey either have:
 - Relatively ____________
 - High ____________
 - Crocodilians
 - Robust teeth
 - Secondary palates
 - Death roll behavior

Adaptations for Diet

- Macrostomatan snakes
 - Eat large prey
 - Must be accommodated
 - Have stretchy ________, is large and stretches
 - Limits potential for armor, osteoderms, etc.
 - Have large ____________
 - Allows storage of bile
 - Emulsification of large sporadic quantities of fat

Adaptations for Diet

- To eat a prey item, it has to fit
 - Big mouths, wide heads for large prey
 - Small mouths, narrow heads for small prey

What are differences between generalists & specialists?

- Generalists eat a broad range of prey
 - Sometimes ____________
 - Not all generalists are omnivores

- Specialists eat specific types of prey
 - Often associated with adaptations for a specific type of prey

- This is a continuum
 - Most herps are insectivores
 - Is insectivory generalist or specialist?
Some herps have highly specialized diets, which may be poor at foraging for alternate food sources. Examples include:

- **Phelsuma**: Low emargination
- **Dermochelys**: __________
- **Ophiophagus**: __________
- **Dasypeltis**: __________

What are differences between generalists & specialists?

- Many generalists are __________
 - Will eat items outside their regular diet if given the chance
 - Often anecdotal evidence
 - Snakes, turtles eating carrion
 - Available protein source

What are differences between generalists & specialists?

- Some herps have highly specialized diets
 - May be poor at foraging for alternate food sources:
 - **Phelsuma**: Low emargination
 - **Dermochelys**: __________
 - **Ophiophagus**: __________
 - **Dasypeltis**: __________

How can a species vary in diet?

- _Ambystoma tigrinum_
 - In amphibians:
 - Only some individual larvae become cannibals
 - Triggered by environmental cues
 - High
 - Eating a __________
 - Results in different morphology that is carried over into adulthood
 - Longer head and mouth
 - Stronger jaws
 - Larger body size

How can a species vary in diet?

- Dietary shifts:
 - The larger you are, the larger your prey can be
 - **Varanus komodoensis**
 - Young are insectivores
 - Adults are carnivores
 - Adults also eat young
 - Young are arboreal
 - Adults are terrestrial

Photos © DA Northcott-Corbis; JD Parker; J Maentz; RDL Mastenbroek

Photos © J McDonald; MJ Connor; N Gribler

Pough et al. 2004, Fig 15-3

Pough et al. 2004, Fig 15-6
Ontogenetic dietary shifts
- Relates to larger body size
- Increase in range and maximum prey size
- Can shift in habitat use
- At ~50 cm SVL, *Nerodia erythrogaster* switch from eating fish to amphibians

Some young are more agile:
- *Iguana iguana*
 - Young are insectivores
 - Adults are herbivores
- *Basiliscus sp.*
 - Young are insectivores
 - Adults are omnivores

Relative Importance

Myrmecophagy coevolved with toxic skin and aposematic coloration in Dendrobatidae (traits 2-4)

These traits have been lost in *Epipedobates boulengeri*

Phyllobates has evolved further toxins (batrachotoxin)

Seasonal or yearly variation
- Depends on availability
- *Thamnophis elegans* in CA
 - Prefers young toads
 - Toads breed in wet conditions
 - 1976, 1977, 1979, 1980 were dry years

"Good years": ____________
"Bad years": ____________

How might one test these dietary scenarios more rigorously?

Two main foraging modes
- Sedentary animals
 - Wait for prey to come to them
 - Often stocky
- Constantly moving animals
 - Come to the prey
 - Often streamlined

Foraging Mode

Pough et al. 2004, Fig 15-5; Photo PJB

Pough et al. 2004, Fig 15-7; Photo © KP Bergmann

Pough et al. 2004, Fig 3-28, 15-9, 15-13, LA Coloma, AA Acevedo, wikipedia, PJB
Foraging Mode

Foraging behavior

<table>
<thead>
<tr>
<th>Character</th>
<th>Sit & Wait</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rate of movement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily energy use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sensory mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prey volume captured per day</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modified: Pough et al. 2004, Table 15-1; Huey & Pianka 1981; Photos © KP Bergmann

Foraging Mode

Physiology

<table>
<thead>
<tr>
<th>Character</th>
<th>Sit & Wait</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Endurance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprint speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerobic capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anaerobic cap.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heart mass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active body temp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modified: Pough et al. 2004, Table 15-1; Huey & Pianka 1981; Photos © PJB
Foraging Mode

- Predator-Prey interactions

<table>
<thead>
<tr>
<th>Character</th>
<th>Sit & Wait</th>
<th>Active</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prey type</td>
<td>Mobile</td>
<td>Sedentary/unpredictable</td>
</tr>
<tr>
<td>Predator type</td>
<td>Active</td>
<td>Sit & wait/Active</td>
</tr>
<tr>
<td>Predator defense</td>
<td>Crypsis, jump/sudden movement, venom</td>
<td>Flight, Skin toxins</td>
</tr>
</tbody>
</table>

What are the implications of this?

Modified: Rough et al. 2004, Table 15-1; Huey & Pianka 1981; Photos © KPB ??

Foraging Mode

- There are phylogenetic effects on foraging mode
 - Sit & wait foraging is ancestral for squamates
 - Iguania and Gekkota are primarily ___________ foragers
 - Other lizards tend to be active foragers
 - There are many exceptions
 - Snakes are all over the place (not on graphs)

Foraging Mode

- Are phylogenetic effects borne out?

- Adaptation for sit & wait foraging
 - Integration of _______ and morphology
 - Mechanism to bring prey to you instead of just waiting for it
 - Increases _______ with prey

Modified: Rough et al. 2004, Fig 15-10