Out of Control – On Purpose:

DOE’s Dispersal of Radioactive Waste into Landfills and Consumer Products

Principal Authors:
Diane D’Arrigo
Mary Olson
Nuclear Information and Resource Service

Contributors
Dr. Marvin Resnikoff
Dan Guttman
Cynthia Folkers
Michael H. Gibson

May 14, 2007

Produced thanks to a grant from the Citizens’ Monitoring and Technical Assessment Fund

Nuclear Information and Resource Service
6930 Carroll Avenue, #340, Takoma Park, MD 20912
301-270-6477; fax: 301-270-4291; www.nirs.org
Table of Contents

- Executive Summary .. 5
- Introduction and Overview ... 7
- Ionizing Radiation .. 10
 - Radiation Units ... 10 -11
 - Radioactive Emissions ... 12
 - Radiation Risk .. 13

- Radiation Detection and Release .. 15

- Preventing vs. Justifying Radioactive Releases:
 - Reframing DOE’s Questions and Claims ... 20

- Timeline: Efforts to Let Nuclear Waste Out of Control .. 23

- Terms for Letting Radioactivity Out of Control ... 27

- DOE’s Orders, Guidance and Support Documents .. 28

- How it Gets Out and Where it Goes .. 35
 - Radiation Areas ... 42

- Where It Got Out in the Past and Is Causing Trouble Today: 3 Case Histories 47
 - Lowry Landfill, CO ... 47
 - Industrial Excess Landfill, Uniontown, OH ... 48
 - Witherspoon Radioactive Recycler, Knoxville, TN .. 49

- Processors of Radioactive Waste and Materials ... 52

- What We Did, What We Learned, What to Do Next .. 62
 - Questions posed at Site Visits .. 67 - 68
Appendices

A 1999 Tennessee Radioactive Materials/Waste Processors Chart
B 2006 Tennessee Radioactive Materials/Waste Processors Chart
C Department of Energy press release: Secretarial Announcement Blocking Nickel Recycling at Oak Ridge and “prohibiting the release of all volumetrically contaminated metals” January 12, 2000
E DOE Secretarial Memo on Release of Surplus and Scrap Materials July 13, 2000
F DOE Radiological Release of Property: Flow Chart
G 2001 Tennessee Department Environment and Conservation (TDEC) Division of Radiological Health White Paper streamlining accepting nuclear waste at landfills
H 2006 TDEC Memo of Agreement between Divisions of Solid Waste and Radiological Health allowing landfill disposal of radioactive waste as “special” without “permit-by-rule”
I DOE 5400.5 Surface Contamination Release Levels
J Excerpt from Nuclear Regulatory Commission Below Regulatory Concern policy on risks from radiation doses
L NIRS FOIA Request to DOE/NNSA re all Authorized and Supplemental Limits for Radioactive Release May 2007
M Concentrated Benefit over Diffuse Injury, by John W. Gofman, M.D., Ph.D., and Egan O’Connor
N Why Radioactive Wastes Should be Sequestered for the Full Duration of their Hazard: Considering the “MACS Effect,” by Judith Johnsrud, Ph.D
O References
EXECUTIVE SUMMARY

Background
Are the byproducts of building nuclear weapons—and generating atomic electric power—getting out-of-control—on purpose? Are they winding up in unregulated landfills and unrestricted re-uses, including consumer products? These questions inspired this study by Nuclear Information and Resource Service on the policies and practices for releasing radioactively contaminated wastes, properties and materials belonging to the U.S. Department of Energy in its vast nuclear weapons production complex.

The purpose of this project was to understand how much nuclear weapons-generated radioactive waste, material and property the Department of Energy (DOE) releases into the marketplace. We sought to identify how the radioactivity gets out, legally and practically, and to the extent possible, where it goes. Since the production of atomic power and weapons involves many of the same radioactive-waste generating facilities throughout the nuclear fuel chain, we also sought to understand the larger context in which this man-made radioactivity is managed and released into general commerce.

We reviewed DOE’s national and site-specific policies, guidance, rules and procedures which allow some radioactive contamination out of the weapons complex. This DOE-generated radioactivity can go directly to hazardous and solid waste facilities, to recyclers of scrap, concrete, plastics, soil, asphalt, rubble, paper, equipment and other media—none of which are intended to take Atomic Energy Act regulated radioactivity.

Since much basic information about ionizing radiation is written by those who seek to minimize concern about its impact, NIRS offers extensive framing of these issues including the difficulties of detecting radioactivity and concerns about bias and inadequacy of even the fundamental units of radiation. NIRS is mandated to work in the public interest, not the nuclear waste generators’ interest. Therefore, we emphasize the effects of small doses on the public and point to inadequacies of the “updated” radiation “protection standards.” The standards do not protect all phases of human development and instead assume that the recipient of radiation doses is an adult male, and do not consider all of the known, potential health effects from ionizing radiation.

A timeline of several decades of efforts by U.S. and international governmental and nuclear advocacy organizations to release and “justify” release of radioactive materials from control is presented. The key governance on continued control vs. release is reviewed. It is clear from this enumeration that there is, and has been for some time, a concerted and deliberate effort on the part of the Department of Energy to reduce and relieve the burden of radioactive waste that must be under institutional control.

The report is illustrated with a special focus on Tennessee, which leads the nation in nuclear waste processors, incinerators, radioactive “recycling” and release from control. It gives new meaning to the state’s chosen motto, “The Volunteer State,” since residents and downwinders are certainly at elevated risk for undisclosed, unmonitored and ongoing radiation exposure.

Key Findings and Recommendations
The key findings and recommendations of this report: *Out of Control – On Purpose: DOE’s Dispersal of Radioactive Waste into Landfills and Consumer Products* are:

- The US Department of Energy (DOE) on its own and in conjunction with other federal, state and international agencies is directly and indirectly releasing nuclear waste, materials and property from radioactive controls within the vast Department of Energy weapons complex, into the public realm.

- DOE is allowing some radioactivity generated by its activities to go to unregulated disposal, recycling and reuse using its internal orders and guidance. By permitting radioactivity to go directly to unregulated destinations and to licensed processors who subsequently release it, DOE is enabling manmade radioactivity to get out into the open marketplace, landfills, commercial recycling and into everyday consumer products, construction supplies and equipment, roads, piping, buildings, vehicles, playgrounds, basements, furniture, toys, zippers, personal items, without warning, notification or consent.

This dispersal of supposedly small amounts is being done without comprehensive complex-wide tracking, without routine public reporting of the releases from each site and processor and usually without independent verification that it is within the self-imposed limits.
The DOE has failed to “improve record keeping or reporting” as required in the Secretarial memo which announced the ban on recycling radioactive metal. No records were found “related to a Headquarters tracking system developed by the Office of Management and Administration” as promised in the 2000 Secretarial Memo. Thus, the answers to the public’s main questions about where contamination is going remain largely unanswered.

DOE should immediately implement clear, understandable reporting of all radioactive releases including amounts and types of radioactivity and the destinations, including those since the 2000 memo committing to doing so.

NIRS is submitting a new Freedom of Information Act request to the Department of Energy and National Nuclear Security Administration to identify and quantify how much nuclear weapons-generated radioactivity has been released, is being released and may be released and its destinations. Our previous efforts have only begun to answer these questions. We encourage the public to make efforts to track DOE’s releases from sites near them. We encourage the public to comment on the DOE’s current proposal for “restricted” recycling of radioactive metal.

Ideally, DOE should shift its policies to conform with the precautionary principle and work to prevent deliberate radioactive releases to uncontrolled destinations.

The federal policies that allow radioactive waste out of control, with the important exception of the ban on recycling radioactive metal, are resulting in increased potential for proliferation of radioactive releases into general commerce, unregulated disposal sites, reuse and recycle. The Timeline of Efforts to Let Nuclear Waste Out-of-Control reports on decades of the DOE and other nuclear establishment attempts to legalize releasing and dispersing nuclear waste into commerce and uncontrolled disposal. It also includes the successful prevention of those efforts by the concerned public, workers, local and state governments and affected industries.

Some state governments are not working to prevent releases however. The State of Tennessee is licensing processors that can make the determination to free release radioactive materials and wastes for reuse, recycling or regular landfills. The report reviews this and identifies some of the landfills that are receiving this waste. The report points out the need for residents of Tennessee and other states to investigate these practices. Other states could be doing the same.

The Department of Energy ban on radioactive metal recycling, in conjunction with active monitoring by the metal industries, appears to be successful in preventing radioactive metal from the weapons complex from getting into commerce in the United States. Most DOE sites we interviewed reported respecting the ban even if the requirements were not incorporated into the written procedural manuals, which is of concern. There are pathways that the commercial nuclear industry could be taking to release radioactive metal since it is not bound by the DOE ban. There are releases of radioactive metal from international sources that must be confronted. There are also loopholes and efforts to bypass the ban that require public vigilance and assertiveness to stop.

The public call has been for the radioactive metal recycling ban to be expanded to cover all nuclear wastes and contaminated materials, not only metals, and the loopholes plugged.

DOE has internal orders and guidance that provide a complicated roadmap to justify releasing radiactively contaminated waste, materials and property in violation of Congressional intent, public will and DOE Secretarial statements made to the public in 2000. The processes used to release radiactively contaminated materials from regulatory control are far from comprehensive, consistent, or protective. DOE provides itself varying release levels and methods of compliance including reliance on institutional memory about whether an object might have been exposed to radiation. The responsible action for DOE here is to use precaution and halt release of any potentially contaminated materials and wastes.

From the public perspective, more work needs to be done to track, identify, demand accountability and stop DOE’s radioactive releases. Public interest and environmental organizations along with affected industries especially recyclers and landfill associations, unions and local governments must also continue to track the Nuclear Regulatory Commission and the Environmental Protection Agency pathways for letting DOE and commercial nuclear waste out of control—on purpose. Public health, public interest, environmental organizations and the general public should join international allies in rejecting international recommendations that could lead to increased release of radioactive materials in the U.S. and around the world.
INTRODUCTION AND OVERVIEW

The objective of this study was to identify the national and site-specific policies, laws, regulations and procedures regarding the management and release (or clearance) of radioactive wastes, materials and property from the Department of Energy (DOE) nuclear weapons sites. The goal was to compare the national policies to the actual practices being carried out at several sites: some closing and some continuing operation, some with on-site or easy access to disposal capacity and some with more limited access.

The Questions
First, we wanted to get as much information on the question of what everyday products are likely to be contaminated with nuclear weapons or power waste. What steps does the waste take to get out-of-control and into the items we contact daily?

The commitment to greater public information on releases would be key to answering this but the promised information mechanisms are not materializing.

Second, we sought to identify the various ways that DOE lets nuclear waste out of its control, intentionally, directly, indirectly.

Another important question posed was whether DOE’s national bans put in place in January and July of 2000 (prohibiting the release of potentially radioactive metal into commercial metal recycling and requiring comprehensive and publicly available records) are being implemented at the sites. We intended to identify what impacts, if any, the national policies were having at the various sites.

We provide a timeline revealing the maneuvering of multiple entities: state, federal and international to legalize letting nuclear waste out-of-control.

The Findings
The most important finding of this project is that the US Department of Energy (DOE) on its own and in conjunction with other federal, state and international agencies is working to facilitate the direct and indirect release of nuclear waste, materials and property from radioactive controls within the vast Department of Energy facilities complex, into the public realm. DOE is allowing radioactivity generated by its own activities to go to unregulated disposal, recycling and reuse. By permitting radioactivity to go directly to unregulated destinations and to licensed processors who subsequently release it, manmade radioactivity could be getting into the open marketplace, commercial recycling and into everyday consumer products, construction supplies and equipment, roads, piping, buildings, vehicles, playgrounds, basements, furniture, toys, personal items, without warning, notification or consent. There are some important exceptions but the overall trend, guidance and pressure are increasing in the direction of “clearing” radioactivity from control rather than preventing release with a goal of isolation.

Even though there are many DOE and contractor staff who are sincere and dedicated, the incentive in the system in which they are working is designed to release radioactive waste, materials and property from regulatory control. Common sense incentives for recycling and reuse of non-contaminated materials are being inappropriately applied to radioactive wastes, materials and properties from DOE nuclear weapons production.

DOE has unilaterally chosen allowable radioactive contamination and public exposure levels to facilitate operations and “clean-up” at its sites.

Even though public opposition to release of radioactivity is clear and consistent in the United States, and Congress revoked the policies for deregulating nuclear wastes, materials, emissions and practices back in the 1990s, DOE is proceeding on its own and in conjunction with Tennessee-licensed facilities to release radioactive waste from radioactive controls by sending it to unregulated destinations—for disposal, recycling or reuse in everyday commerce.

The Radioactive Metal Recycling Bans
In 2000, the Secretary of Energy banned the commercial recycling of potentially radioactive metal. (see Appendices). Although the ban leaves several loopholes for radioactive metal to get out, and there have been efforts within DOE to circumvent these bans, nonetheless, it is likely that much less radioactive metal is making it into the marketplace than otherwise would have absent the moratorium and suspension. But this could change without notice.

The secretarial bans do not apply to metal disposal or to reuse of metal equipment, components, pipes, or to the disposal, reuse or recycling of other materials such as soil, concrete, asphalt, chemicals, carbon for filtration, wood, plastic, equipment, buildings, land, or any other substances or properties. DOE is now (2007) interpreting that the bans do not apply to “restricted” recycling of radioactive metal even though the restrictions may not keep the metal out of commerce as was the intent. DOE is reviewing “expressions of interest”
by companies that would recycle DOE radioactive metal for supposedly “restricted” use with no guarantees it would stay restricted for as long as it is radioactively contaminated.

Some mixed radioactive and hazardous wastes are being disposed at hazardous waste sites with no controls or regulations to protect from radioactivity. A previous DOE ban from the early 1990s that prohibited DOE sending potentially radioactive waste to hazardous waste sites, has apparently been reversed. In other words, DOE has determined that some amount of radioactive contamination is acceptable and can be sent to hazardous waste sites not designed to receive or isolate it.

DOE is also “flexible” for better or worse. The allowable contamination levels are custom fit for each site and each waste stream to facilitate their release or “clearance.” This flexibility makes assessing DOE policy on the release of radioactivity and its application extremely challenging and complex. This report shares some of the information on how DOE controls, and releases from control, excess property, material and waste that could be radioactive.

Independent Verification—or lack of it

We discovered in the course of this examination that judgments on the disposition of wastes, materials and properties and on whether to do ‘independent’ verification are left to individuals with conflicting responsibilities and motivations. Especially at sites that are closing, managers with incentives to quickly release the entire site from restrictions and controls have the option of choosing to have their measurements and procedures “independently” verified at their own expense or, alternately, to skip that step. They, with budget restrictions and profit incentives, are the final decision makers on whether to pay to send wastes to radioactive disposal sites, donate it or to sell it into “recycling” and commerce.

We observed some of the procedures needed to detect radioactivity and learned of situations in which it was not detected on materials that had been released.

The Sites

We reviewed seven DOE/NNSA sites with varying levels of detail. These sites were Oak Ridge, Tennessee; Mound, Ohio; Fernald, Ohio; Rocky Flats, Colorado; Los Alamos, New Mexico; Paducah, Kentucky and West Valley, New York.

Although metal from radiological areas is prohibited from going to commercial recycling we questioned whether it was getting into recycling via loopholes such as being sent to waste sites not regulated for radioactivity where it could be scavenged, or being sent to facilities with licensed radioactive processors who could subsequently release it to recycling.

Several agreement-state licensed processors in Tennessee have permits to make their own determinations on releasing or clearing radioactive materials, wastes and sites from regulatory control.

There is also the loophole permitting reuse of radioactive materials within the nuclear industry—DOE, NNSA, NRC and Agreement-state licensees—but not requiring it to be treated as radioactive, setting the stage for secondary or subsequent release to unregulated destinations.

Another question of great concern is if and how non-metal radioactive wastes, materials, equipment and properties (none subject to the year 2000 national prohibition on commercial recycling of metal) are being released, to unregulated destinations such as solid and hazardous waste sites, commercial recycling, or directly or indirectly reused as if not radioactive. Concrete, asphalt, chemicals, soil and other substances are being free released if they are not in controlled areas or they are determined to be within DOE’s unilaterally “acceptable” calculated doses or surface contamination levels. Equipment, furniture, buildings, areas and rooms can be released for public reuse, sometimes relying on institutional memory that they were never exposed to contamination or, if they were, that they meet the criteria for free release.

Finally, efforts were made to determine whether the national requirements for improved record keeping across the board at DOE and NNSA are being implemented. We traced how “clean” materials are managed and released. We also tracked how and by whom the determination is made about what is “clean,” or rather how much radioactive contamination is allowed on “clean” waste, materials, properties and equipment that is released to unrestricted destinations. Some sites demonstrated scanning procedures.

Our exploration delved into who decides what is contaminated and how hard they look—DOE screening and scanning procedural guidance clearly encourages and incorporates the concept of releasing rather than isolating radioactively contaminated wastes, materials, property, equipment and sites.
The project was originally intended to observe and track releases with independent monitoring equipment such as a multi-channel analyzer. This proved to be very expensive, complicated and difficult, leading to reaffirmation of that the burden of proof should fall to the generators of radioactive waste to prove the absence of radioactive contamination from the DOE’s activities rather than on the public to prove the presence.

The chapters on radioactivity describe some of the characteristics of radiation and radioactivity. The conclusions and where we go from here identify suspected avenues that will lead to more radioactive waste getting out-of-control and suggesting closer scrutiny by the public to prevent that from happening.

The Team
Nuclear Information and Resource Service (NIRS) has been tracking U.S. and international efforts by nuclear waste generators and regulators to deregulate radioactive wastes and materials since the 1980s. Several NIRS staff experts participated in this project, including Diane D’Arrigo, Radioactive Waste Project; Mary Fox Olson, NIRS Southeast Office Director; and Cynthia Folkers, Health and Environment Project. NIRS developed the project, compiled, reviewed and analyzed the DOE documents, pursued independent research and participated in the headquarters and site specific interviews.

Dr. Marvin Resnikoff, PhD., nuclear physicist and principle of Radioactive Waste Management Associates, and Amanda Schneider, former associate, provided radiological and technical expertise regarding the project scope and implementation. They provided important input regarding the types of radioactivity at DOE sites and at off-site locations suspected to have received DOE-generated radioactive wastes and materials.

Michael Gibson, former electrician at the US DOE Mound facility, presidential appointee to the Energy Employees Occupational Illness Compensation Program Act Federal Advisory Board on Radiation and Worker Health, and former officer of the Paper, Allied-Industrial, Chemical and Energy International Union local and Atomic Energy Workers Council, trained in use of the detection instrument and participated in the interviews at Mound and Fernald.

Dan Guttman, attorney, educator, advisor to government and NGOs, former commissioner to the U.S. Occupational Safety and Health Review Commission and executive director of the Presidential Advisory Committee on Human Radiation Experiments was instrumental in the development of the project scope, organization and initial research. Due to relocation as a Fulbright Scholar in China, he did not participate beyond the early stages.

Residents and safety advocates in the vicinity of some of the DOE sites and near sites that are believed to have received radioactive materials or wastes from DOE provided input, perspective, historical knowledge and encouragement.

Funding for this project was provided by the Citizens’ Monitoring and Technical Assessment Fund.
IONIZING RADIATION

Since this report explores the addition of radiation doses from man-made radioactivity to “background” radiation exposures received from sources in nature, it is important to offer the reader some basic information on the distinction as well as new perspectives.

Radioactivity refers to unstable atoms (elements) that emit particles and waves of energy from the nucleus, called *ionizing radiation*.

Radiation refers to the particles and waves of energy already emitted from a radioactive element.

Radioactivity occurs naturally in the Earth, since when the planet was formed, some of the matter was radioactive. Extraterrestrial radioactivity arrives on Earth with meteors and other objects, and penetrates the atmosphere from the sun and other sources in outer space.

Ionizing radiation means that the energy in the particles and waves is great enough to change the electric charge of atoms and molecules it hits, and therefore its chemical nature. Disruption of electrical and chemical processes in living systems takes its toll. Ionizing radiation, particularly alpha particles, can cause physical, structural damage to cell components including chromosomes. Radiation can initiate, or contribute to, mutations in genes. Genetic damage can cause a large array of health impacts in the individual—notably cancer; it can also produce birth and other defects in subsequent generations.

Uranium is bound in rocks and typically lies underground. To make nuclear power and weapons it is dug up, extracted from the rocks, crushed, processed and separated from the other elements in the natural ore.

Uranium is sought because the nucleus of the uranium 235 atom can be split—or fissioned—in a self-sustaining reaction. Splitting the atom releases energy in the form of heat, neutrons and smaller radioactive and non-radioactive nuclides. Since there is a lot of binding energy in each uranium atom, it is a very concentrated power source. A portion (~30%) of the heat from fission is harnessed to make electric power, or unleashed to destroy whole cities in a microsecond. Heat or thermal pollution (~70%) is a byproduct of all fission, in addition to radiation and radioactive waste.

Splitting atoms is called fission. Traces of non-androgenic (not man-made) fission have been found in the most concentrated uranium deposits, but for the most part, fission occurs because of human activity in

RADIATION UNITS

RADIOACTIVITY UNITS

In general, a *disintegration* is an alpha or beta particle or gamma ray being forcefully emitted from the nucleus of an atom. (Other subatomic particles including neutrons, protons, positrons and electrons can burst from the nucleus.)

Becquerel (Bq)

1 Bq = 1 disintegration per second; 1 Bq = 27 picoCuries (see below).

The Becquerel was named for Henri Becquerel who shared the Nobel Prize with the Curies for the discovery of radioactivity.

Curie (Ci)

1 Ci = 37 billion disintegrations per second = 37,000,000,000 Bq = 3.7×10^{10} Bq

The Curie was named for Marie Curie, co-discoverer of radioactivity. One Curie is a very large unit. One gram of radium emits one Curie. Fractions of a Curie are reported in metric subunits: milliCuries (1 mCi = 10^{-3} Ci) a thousandth of a curie = 37,000,000 Bq microCuries (1 uCi = 10^{-6} Ci) a millionth of a curie = 37,000 Bq nanocuries (1 nCi = 10^{-9} Ci) a billionth of a curie = 37 Bq picocuries (1 pCi = 10^{-12} Ci) a trillionth of a curie = .037 Bq

Each alpha or beta particle or gamma ray has a characteristic amount of energy as it hurls from the nucleus of an atom. These energetic particles and rays zoom out hitting other atoms (that comprise air, water, solids, living tissue, etc.) and *ionizing* them (changing their charge) by knocking their electrons out of orbit. This can disrupt cell functions and initiate disease. The amount of energy imparted on a target such as a plant or animal tissue can be measured but requires a destructive assay. When living tissue is hit, it is not possible to actually measure the energy absorbed or damage done, so calculations are done to estimate dose. To convert from amount of radiation to amount of damage requires knowing which particles or rays imparted their energy at what angle. It can be a complicated calculation. Studies now indicate that cells that are not directly hit can also be damaged. This additional injury is not included in dose calculations.
operating nuclear power and weapons reactors, or with the detonation of a nuclear weapon.

Splitting atoms results in radioactive elements known as fission products that are the lighter atoms that form, literally, from the fragments of the larger atom. Many of these elements are present on Earth in non-radioactive, stable forms. The radioactive forms of these elements, known as radioisotopes or radionuclides, include cesium-137, strontium-90, and an alphabet soup of others. [See box on Fission Products.]

Plutonium, americium, and other elements heavier than uranium, called transuranics (TRU), are formed when neutrons are absorbed and electrons emitted from the nucleus of the type of uranium (U-238) that does not easily split or fission. Neither radioactive fission products nor transuranics can be found concentrated in large quantities except as a byproduct of human activity; therefore they are termed androgenic (man-made) radioactivity rather than naturally occurring.

Radioactive elements decay. ‘Decay’ is the term for each emission of radiation that an unstable atomic nucleus gives off in its own unique journey towards stability. Each decay event produces either energetic particles or waves of energy and also results in a transition of the atom to a new elemental form. Uranium decays through a very long sequence of 15 steps; in the end uranium becomes stable lead.

Radioactive emissions from decay processes are typically lower energy than those generated in the moment of atomic fission. Decay is generally described in terms of the time it takes—each atom decays spontaneously, however each radioactive isotope has a characteristic period of time it takes for half of a given quantity to undergo decay. Some half-lives are so short as to be nearly instantaneous, while others, like the most common form of uranium (4.5 billion years) are so long that Earth is just now completing the first half-life.

One Dose Is Never the Same as Another

Many documents describing radiation assume that all radiation doses are the same. A classic assertion is that “radiation is radiation” or “a rem is a rem.” Dr. Donnell Boardman, a physician who treated many radiation workers during his career, made the case that it is physically impossible for any two radiation doses to be “the same.” Dr. Boardman’s point was that the impact of the radiation will always have as much to do with the health and unique genetic make-up of the recipient, as of the radioactivity itself.

RADIATION UNITS (continued)

DOSE UNITS

Rad (r) -- an absorbed dose of radiation; an amount of ionizing energy deposited per unit mass in matter (such as tissue); 1 Rad = 0.01 joule of energy absorbed per kilogram of matter; 1 Rad = 1/100^6 Gray = 10 milliGray; RAD stands for Radiation Absorbed Dose; used in the U.S.

Gray (Gy) – an absorbed dose of radiation; an amount of ionizing energy deposited per unit mass in matter (such as tissue); 1 Gy = 1 joule of energy absorbed per kilogram of matter; 1 Gray = 100 Rads; Gray is the international unit, named for a pioneer of radiobiology.

Rem (r) – a calculated unit expressing the amount of biological damage to tissue from absorbed ionizing radiation; it is calculated by multiplying the amount of energy absorbed (in Rads) by a factor for the amount of damage inflicted by the kind of radiation absorbed; 1 rem = 1 rad x “biological efficiency” (varies for type of radiation)

Alpha particles do 5 to 20 times or more damage than gamma rays to tissues they hit, so give higher doses in rems than gamma. The rem is a large unit, often reported in subunits such as millirems (mr). 1 rem = 1,000 mr = 10^3 mr; 1 rem = 0.01Sv = 10mSv; 1 mr = 10 uSv

Sievert (Sv) – an expression of biological damage to tissue from ionizing radiation; a dimensionless derived unit expressing “equivalent dose” which is the absorbed dose (in Grays) multiplied by a factor that accounts for biological harm. “For beta, gamma and X-rays, 1 Gy is the same as 1 Sv, but neutrons and alpha rays are more damaging and, for these, 1 Gy is worth between 5 Sv and 20 Sv.”

1 Sv = 1 gray x radiation quality factor (specific to radiation source); 1 Sv = 100 rems; 10 microSieverts = 1 milirem

This (10 uSv or 1 millirem) is the annual dose that some in the radiation establishment claim is an “acceptable” risk or trivial exposure from an unlimited number of deregulated nuclear waste streams. Some say it is not. Most have never been asked.

1 derived from UK National Physics Laboratory –Beginner’s Guide to Measurement-Ionising Radiation
http://www.npl.co.uk/publications/ionising_radiation/#instruments
accessed 3/23/07

2 UK National Physical Laboratory Beginners Guides to Measurement - Ionising Radiation
http://www.npl.co.uk/publications/ionising_radiation/#units
accessed 3/23/07
Radioactive Emissions

Radioisotopes or radionuclides are atoms with unstable nuclei, which emit energy in the form of particles or waves while becoming more stable. The nucleus of an atom is composed of protons and neutrons; an electron field surrounds it. The energetic particles and waves are formed as they are emitted and are the result of changes in the protons, neutrons or electrons.

Radioactivity is the event—the emission of the particle or wave of energy from the radioisotope. It also refers to the unstable atoms themselves which, depending on their location and origin may be termed “radioactive waste,” “radioactive emission,” “radioactive contamination,” etc.

Radiation is the particle or wave of energy once it has been discharged from the unstable atom and is traveling/impacting a target.

Ionizing Radiation—both particles and waves resulting from radioactive decay or fission have sufficient force to knock an electron off atoms in the target, leaving behind an ion or electrically charged atom or molecule, potentially resulting in chemical changes within the system. This is not the only type of damage that particle and wave radiation can inflict on living cells and tissues. Particularly in the case of particle emissions, damage resulting from radiation exposure may include structural damage to biological building blocks such as chromosomes, DNA itself, complex biochemical molecules and other cellular components. This may lead to cancer or genetic effects to offspring.

Ionizing Energy Wave Emissions
The electromagnetic spectrum describes energy that has no mass, and includes heat, light, and higher energies called “rays.” Rays are composed of energy moving in very short wavelengths, in a linear fashion, with directionality. X rays and gamma rays pack sufficient force to chemically alter other atoms, and to damage biological structures. The term ionizing applies because these energy rays have sufficient force to knock an electron off another atom. The loss of an electron in the target leaves it in a charged, or ionic, state thereby changing its reactivity, and likely its biochemical functionality.

X Rays—originate from the electron field of an atom. Medical X rays are produced by a machine, and do not result in radioactive waste. Most X rays resulting from non-medical activity are the result of the bombardment of certain shielding materials (e.g. lead) by an intensely radioactive source.

Gamma Rays—originate from the nucleus of an atom that has too much energy. The gamma ray is released as the nucleus becomes more stable. Often gamma emissions come after the release of a beta particle.

Gamma and X rays have a similar quality of impact on living tissue. Both X rays and gamma rays are officially assigned the “biological effectiveness” or “quality” factor of “1” in dose calculations, such that 1 Rad = 1 Rem.

Ionizing Particle Emissions
The laws of our universe (the second law of thermodynamics, to be exact) dictate that all matter will move towards its lowest energy state, unless there is an input of energy that reverses this process. In the case of unstable radioactive atoms, there is too much energy in the nucleus (this may be the result of the fission of a larger atom) or it is not balanced. The movement to lower energy can be seen as a dance and each type of matter has its own steps and tempo. Particle emissions are key in this dance since the particle is an enormous block of energy. The departure of a particle from the nucleus leaves a new configuration of protons and neutrons, and therefore a new atomic (or isotopic) identity; the atom that was there is gone, and what is there is a different atom.

Alpha—Alpha particles are made up of 2 protons and 2 neutrons. Except for the extra energy expressed as motion, alphas are the same as the nucleus of a helium atom. Alpha particles are enormous by comparison to beta particles—on the order of 8000 times larger. Since the loss of an alpha particle removes protons from the source nucleus, atomic transformation occurs and a different element emerges. Only the heavier elements emit alpha radiation. Both uranium and plutonium emit alpha particles. Due to the large size of the particle, the alpha cannot penetrate skin, however if emitted by a radioisotope inside the body, alpha radiation is the most damaging form of radiation. Some studies focusing on damage to individual cells have found that it takes as many as 1000 x-rays to inflict the same level of damage inflicted by a single alpha particle.

Alpha particle emissions, like waves, travel with directionality in a linear path. Since they have both mass and velocity, they exert a much greater force on any target than gamma or X-rays, and are therefore potentially more destructive. Radiation from alpha particles
and neutrons has a “biological effectiveness” or “quality factor” greater than 1, so 1 Rad ≠ 1 Rem if the radiation exposure includes alpha particle emissions. Peer-reviewed research suggests that current official values for “biological effectiveness,” (damage) are not accurate, that radiation is more damaging than currently acknowledged, and therefore even our fundamental units of dose may not accurately reflect what is really happening.\(^1\)

Beta – Beta particles emerge from the atomic nucleus when a neutron transforms into a proton. Essentially a turbo-charged electron, the beta particle is ~ 1/2000th the size of the proton that is left behind in the nucleus as it departs. Since atomic identity is determined by the number of protons in the atom’s nucleus, the departure of a beta particle means that elemental transformation has occurred. Often additional energy is discharged by the nucleus in the form of a gamma ray after the beta particle leaves. Beta particles can travel at a wide range of speeds, reflecting the amount of additional energy they carry. High-energy beta particles can penetrate skin, whereas lower-energy betas bounce off. Nonetheless, any beta particle is more damaging if it is emitted inside the body. Internal exposures result from radioactive food, water, inhalation of gases and particles, or by injection.

Neutron – single neutrons are emitted from an unstable nucleus. Neutrons are about ¼ the size of an alpha particle, and may occur as part of the natural decay processes. Most intense neutron radiation occurs as the result of atomic fission. Nuclear reactor operation, nuclear weapons detonation, or any other self-sustaining nuclear chain event, result in massive neutron release. Neutron radiation also dominates the doses to workers and proximal public during the transportation of irradiated nuclear fuel. Neutron bombardment can activate metal—making it radioactive.

Collateral Damage: Biochemical Nonsense

Radioactive decay—particularly the steps that result in one atom transforming into another—has the potential for biochemical “collateral damage” that is rarely discussed in primers on radiation. In addition to the destructive force of the particles and rays, there is also the matter of the chemical attributes of the “parent” atom vs. the chemical attributes of the “progeny” atom. If the radioactive element in question is already incorporated into a biological structure—or complex molecule active in a living system—then the consequences of this atomic transformation may have additional biological impact.

\(^1\) Committee Examining Radiation Risks of Internal Emitters, London; www.cerrie.org; ISBN 0-85951-545-1; October 2004

RADIATION RISK:

Even though radiation causes myriad more health effects than cancer, radiation risk typically is expressed as the number of cancers or fatal cancers in a population exposed at a given dose or dose rate, or the likelihood one will get cancer if exposed at a given dose or dose rate.

According to the US National Academy Sciences’ most recent reports on radiation risks (Biological Effects of Ionizing Radiation: BEIR V and VII), there is approximately a 1 in 1000 chance of getting cancer when exposed to 1,000 millirads (mr) or 1 in a million at a millirad.

Specifically, according to BEIR V (National Academy of Sciences 1990) and EPA FGR 13 Federal Radiation Guidance, the risk of getting cancer is \(8.46 \text{ per } 10,000 \text{ population at } 1000 \text{ millirads. BEIR VII}^{**}\) came out in 2005 and reported that the risks were about 30% higher. The projection is that there will be \(11.41 \text{ cancers per } 10,000 \text{ population at } 1000 \text{ millirads.}^{**}\) The new risks are higher, but there is much uncertainty so in general the risk rounds out to about 10 per 10,000 at 1000 millirads or 1 in 1000 at 1000 millirads or 1 a million per millirad.

But the release rates are a millirad or a few millirads per year so multiply times the number of years of exposure…

That means if a person gets a millirad a year for 35 years that they have 35 in a million or 1 in 28,571 chance of getting cancer from that exposure. Over 70 years the risk is 1 in 14,286. The general rule in calculating cancer risks is that half the cancers induced will be fatal. We can easily be exposed to more than one of these releases and for continuing duration…and DOE permits “a few millirads per year” for an unlimited number of releases. There is no meaningful verification or enforcement of the millirad or a-few-millirad or even the 25 to 100 millirad levels that DOE permits for public exposure to ionizing radiation.

Even natural background radiation from cosmic rays and rocks with uranium decay products in them increase our risks but those are generally unavoidable risks. Additional exposures (no matter what percent or multiple of the background they may be) add additional risks.

* Millirads are about the same as millirems when the exposure is from gamma rays and beta particles. Alpha particles cause more damage – more millirems per millirad—because they pack more punch in the shorter distance they travel.

A simple example is a radioactive phosphorus (P32) atom bound in a sugar molecule: When the phosphorus decays it emits a beta particle, and becomes sulfur 32. In addition to the potential damage from the beta particle, the sugar molecule will be transformed thanks to changes in the chemical characteristics of sulfur. The resulting biochemical nonsense may or may not be significant, but is the direct consequence of internal radioactive emissions.
RADIATION DETECTION AND RELEASE

It is expensive and difficult to monitor and detect all the forms and levels of ionizing radioactivity that are being and could be released and recycled. Although man-made radioactivity can be distinguished from naturally occurring if enough effort and expense are expended, this is not the routine.

Human beings cannot sense radioactivity. Unlike dirty pollution that people can see, smell and taste, radioactive emissions are invisible. While some extremely high levels of radioactivity can cause a “glow in the dark” effect, lower levels don’t glow but still pose a life-threatening hazard. There is no level of radioactivity that is safe, as even naturally-occurring background radiation at background levels causes some cancer, birth defects and other radiation health effects. DOE and other generators of radioactive wastes, materials and emissions are attempting to codify and implement rules, procedures and guidelines that allow them to release radioactivity and emit radiation that adds to the ongoing health impacts that originate from natural background radiation.

Key to the justification of these releases of radioactive material, waste and property from the nuclear weapons complex is the technical challenge of detecting radioactivity. It bears repeating: we cannot sense radioactivity or radiation. It was the Mescalero Apaches, once targets for a high-level nuclear waste dump, who coined the phrase “invisible bullets” to describe radioactivity. A compounding factor in the discussion (primarily in justification of costs) is the fact that most radiation health impacts are not immediate or immediately visible—they can occur well after the radiation exposure or exposures. Even extremely small radiation doses have the potential to cause cancer but the effects of such an exposure may not be seen for several years (latency periods can range from 2 to more than 20 years). Causing cancer by such preventable exposures has been called the “perfect crime.”

The inability to detect radioactivity with our own built-in sensory apparatus means that we must turn to engineered detection devices. These instruments must be maintained, calibrated and used by trained, experienced people in a system designed to detect the kind of radiation that is present. Historical knowledge, if accurate, can help but can also be incorrect. This means that time, and therefore money, must be expended. Radiation detection can be costly and complicated.

Since the health consequences of this increased radiation exposure are not easily identifiable and quantifiable, they are basically ignored or denied. Isolation and management of the waste as radioactive is proclaimed to cost too much. Meanwhile DOE, its contractors, processors and community-reuse organizations (which hope to receive some of the revenue) focus on profits to be made from the sale, “recycling,” and reuse of contaminated property and materials while denying the presence of radioactivity or the health dangers or both.

When the radiation source is strong--concentrated and penetrating--detection is not as difficult. Hot spots can elude detection, though, if the process is not thorough. When radioactivity is weaker, slower decaying or well shielded, then “picking it up” is more challenging, and requires multiple readings and more time. The collection, management and analysis of multiple data points become very demanding if done properly.

In addition, measurements are confounded by the fact that radioactivity is not a static parameter—it is a series of events (see section on radioactive emissions)--each of which may require different detection strategies. Some detection systems record gamma and x-rays but cannot detect alpha and beta particle emissions at all; others will detect some alpha and beta particles, but not as reliably. There is no one instrument that can detect all of the manmade radioactivity present since all detectors can detect only the radioactive emissions that actually hit the probe device. All of it is a matter of sampling.

Taken together these issues reveal that aspects of radiation detection are fundamentally institutional issues, and the veracity of the finding rests on basic questions like:

- Who decides what type of radioactivity to look for?
- On what basis is that decision made?
- Who does the data collection -- are they trained? Do they have experience?
- Is there motivation or incentive to find or to miss the radioactivity?
- Is the appropriate monitoring equipment being used?
- How is it calibrated?
- What are the budget and budgetary pressures?
- How much time is allowed?
- How is data collected and stored?
- What models are applied to the data during analysis?
In other words, how do we believe a statement about detected radiation if the protocol used during detection is not credible? Any radiation survey is subject to issues of credibility if it does not address parameters like these in a systematic way.

Radiation detection is an effort to count the number of disintegrations from the nuclei of radioactive material. Some simply measure gamma hits. With a sensitive window, some can count alpha and beta particles. Some instruments (multi-channel analyzers) can identify the type and amount of radionuclides by the characteristics of the gamma rays emitted.

Some extrapolation and a variable level of uncertainty are involved with all the instruments and methods. The uncertainties compound when a radiation dose is then calculated from the measurement.

Radiation workers, victims and the public are left in a realm where it is very difficult to get “hard information.” Indeed, in a very famous case, the victims of Three Mile Island were left with no recovery of any damages in a court proceeding that required that they prove that they had received a radiation dose above a certain level. The court upheld the finding offered on behalf of the dose perpetrators that it was impossible for any victim to prove any level of radiation dose at all, thus forcing the victims to bear all the liability.

One of the first radiation detection instruments invented was the Geiger counter. This type of instrument is portable and depending on the design of the probe may be able to detect both energy ray emissions and particle emissions. The Geiger counter is one of the most sensitive forms of field probe, able to read even a single radioactive decay, if it enters the device. Alpha particles, for example, cannot penetrate the metal liner of the Geiger tube so won’t be counted, unless a special window is provided for alpha detection. The use of the counter creates a “sample” and may or may not be representative of all the radioactivity present.

In addition to Geiger counters, scintillators are commonly used. Radiation that impacts a sodium iodide crystal is converted to light and then amplified so that it can be counted. Further information about the energy spectrum and isotope identification can be derived from the amplitude of the light pulse.

Thermo Luminescent Dosimeter (TLD) films may be hung for a specified time period and the total radiation determined by the light emitted in a counting device. Workers often carry dosimeters that can be read in the field. A dosimeter stores the ions impinging on the device. Radioactive particles in air can be measured by devices that draw in air onto a filter. The filters can be read in a laboratory to determine the concentration of particles in air.

Many of these tools have sophisticated electronic interfaces and software designed to handle the collection and analysis of multiple readings. The level of data collection and display can be truly impressive. On the other hand, challenges of accurately representing the real situation remain. The amount of time that a worker takes to scan a particular item may determine the accuracy of the reading. In some cases a negative reading—apparently no radioactivity present—may simply be that the reading was taken too quickly.

In addition, since radiation moves in a directed, linear fashion, the orientation of the source with respect to the probe, scanner or sample may be critical. If the source material is positioned such that the particle or wave emissions are not “pointing” towards the detector, they may be missed, or under-reported. Examples include textured and also curved surfaces. The instruction books for these instruments flag these issues, but the implementation in the field is likely not 100% consistent on these points, and yet field scanning is a predominant form of check for radioactivity prior to release of wastes, materials and other property.

As an example of the challenges to comprehensive radiation detection, NIRS had the goal of independently verifying levels of radioactivity in wastes and materials that the DOE had “cleared” for release. The intention was to use different monitoring equipment than the DOE routinely uses, and to discern the level of compliance DOE practice has with DOE policy. NIRS did obtain a technically sophisticated monitor (a multi-channel analyzer) with training, but encountered insurmountable obstacles in implementation of this plan. Issues included difficulty getting access to DOE cleared materials, and the equipment itself, revolving around suspected factory calibration problems, outdated software and then subsequent breakage of the wiring in the probe. In any case the exercise was very instructive in demonstrating the challenges associated with radiation detection, especially isotope-specific detection.

A truly comprehensive evaluation of radioactive contamination would include independent verification. By definition, this step involves an additional expenditure of time and money, and is rarely accomplished, leaving the door open to the fact that most information about levels of radioactivity in or out of the DOE nuclear weapons complex are not independently verified or validated.
Within the Department of Energy weapons complex, the decisions about whether, how much and where to use "independent verification" are made at each site by the same official who is in charge of the clean-up and release. The same entity that is responsible for completing the project quickly at minimal cost decides whether to increase the credibility of the project by having it "independently" verified. If the decision is made to hire an Independent Verification Organization (IVO), the entity that does the hiring controls release of the results, so the public may never learn the IVO conclusions. This appears to be a structural concern and potential conflict of interest.

The most popular IVO within the DOE complex and among commercial and other government nuclear officials appears to be ORISE, the Oak Ridge Institute for Science and Education. ORISE (from its website http://orise.orau.gov) is "the primary independent verification contractor for all DOE cleanup projects and the only verification contractor for the NRC." "The Oak Ridge Institute for Science and Education (ORISE) is a U.S. Department of Energy (DOE) Institute. ORISE's mission is to address national needs in the assessment and analysis of the environmental and health effects of radiation, beryllium, and other hazardous materials; ..." The institute has collaborated on guidance documents for decommissioning release of contaminated property including development of MARSSIM (Multi-agency Radiation Survey and Site Investigation Manual for DOE, DOD, NRC and EPA).

Although ORISE sometimes has been critical of the sites it has been hired to verify, the results are not always made public and their oversight is limited. ORISE was hired to do independent verification of the large 1997 fixed-price DOE/BNL/SAIC contract at Oak Ridge's K-25 area which, as of 2000, had released 6.6 million pounds of metal for recycling. According to a DOE Inspector General Audit Report (DOE/IG-0481), inaccurate surveys, inadequately supervised surveyors and selective verification resulted in an "increased risk to the public that the contaminated metals were released from the site." The inspector general revealed this publicly, not the independent verification outfit.

Below detectable levels does not mean below harmful levels

All levels of ionizing radiation are potentially harmful, but they are not all economically detectable. Nuclear power and weapons-generated radioactivity can be present but elude detection. That is why it is hard to guarantee or prove the absence of man-made contamination. Since there is no safe exposure level the goal should be preventing release of any contamination. There is great variability in detection capability so it is important to use the best, appropriate equipment in the best system with an incentive to find contamination before letting suspect materials go. Today the technology exists to detect levels of radioactivity below natural background levels as well as to characterize the type of radioactivity (natural or manmade) in detail. These technologies require more time and money than waste generators can practically spend especially on the enormous volumes from decommissioning. Instead of careful complete monitoring of all released surfaces and materials, simple scans are performed on a small percentage of the materials released. Extrapolations and statistical guesses are made for entire batches and areas. The goal of releasing waste, material and property with residual radioactivity is to save money — and in some cases generate income. So the deck is stacked against the public in that the industry and DOE would need to spend more to do better detection and monitoring if they really wanted to be sure they were not releasing industry generated radioactivity or even they wanted to guarantee they were releasing below some measurable detection level. If they do find contamination, the waste would need to be considered radioactive and go to a more expensive radioactive waste site, not free released. That costs more than sending it to regular trash or selling into recycling. We cannot trust the waste generators themselves to spend more to find more of their own contamination because it would mean they could release less waste and make less profit.

A major goal of DOE and NRC in legalizing the release of radioactively contaminated materials is to assure that the generator is cleared of liability. In developing criteria to implement its Alternative Disposal Regulations 10 CFR 20.2002, NRC made clear that the priority is to remove liability from the nuclear waste generator as the waste is transferred to an unregulated/unlicensed recipient. Thus if the contamination is ever found and health effects can be proven, the generator cannot be held responsible. This NRC provision is being used by NRC-licensesees and agreement-state-licensesees to allow radioactively contaminated waste to go to hazardous or solid waste sites that were never intended to take nuclear power and weapons-generated radioactive materials (it is also used to allow burial onsite at reactors). The applications to NRC and decisions by NRC are not automatically made public although NRC provides information on the process on its website. It was necessary to use the Freedom of Information Act to get information on some of the 20.2002 petitions that NRC has considered.
One example of NRC’s 10 CFR 20.2002 provision being used to release radioactive waste was during the decommissioning of the Connecticut Yankee Haddan Neck nuclear power reactor. The Nuclear Regulatory Commission approved a large amount of decommissioning waste to go to the US Ecology hazardous waste disposal site near Grand View, Idaho. Public opposition in Idaho is believed to have persuaded the company to reject the waste, even though NRC had approved its release and dumping there. The company president had previously stated “The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (‘RCRA’) to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators.” ¹ But in 2005 US Ecology announced it would not take the reactor decommissioning waste from Connecticut Yankee. It has been approved to receive waste from other sites.

The Connecticut Yankee waste was redirected to a state-licensed radioactive waste processor, RACE, in Memphis, Tennessee. RACE, or Radiological Assistance, Engineering and Consulting, LLC, has since been purchased and is now called Studsvik/RACE. RACE has six licenses from the Tennessee Department of Environment and Conservation (TDEC) Radiological Health Division for BSFR--Bulk Survey for Release, permitting: Decontamination for Free Release, Survey for Free Release using Regulatory Guide 1.86 (surface contamination), Volumetric Free Release (to approved landfill), Free Release of Soil and Other Bulk Materials, Free Release of Equipment and Free Release of Concrete and Asphalt.

It would take some research into the TDEC files or an Open Records Act request to determine if, how much and to what destinations the decommissioning waste was released, as if not radioactive, and where it went. RACE has authorization (Amendments 5 and 21 of R-24003-D05, 3/05/01 and 11/13/01 respectively) from TDEC to send volumetrically-contaminated radioactive waste to the BFI North Shelby County Landfill near Nashville, Tennessee. RACE also has authority to import waste from international customers (Amendment 37, 7/16/03)

This is one of several companies in Tennessee with state licenses to free release radioactively contaminated wastes. Several nuclear reactor operators sent portions of their decommissioning wastes to processors in Tennessee. From their sites, the materials can be sold into recycling or disposed in Tennessee landfills which TDEC has approved for receipt of this special waste. A 2006 Memo of Agreement between the TDEC Solid Waste Management Division and Radiological Health Division streamlines this process and is in the appendix of this report. Although the DOE (as of 2000) is not permitting radioactive metal from its sites into commercial recycling, the commercial nuclear power industry has no such prohibition. TDEC gives licenses for processed metal to be free-released so there is a potential pathway for contaminated metal to be getting into commerce through Tennessee. The metal industries (except aluminum) have taken a strong stance opposing radioactive metal coming into their facilities and have erected gamma detectors at portals and throughout their facilities to prevent such materials from contaminating their processes, workers and products. They have formed the Metal Industries Recycling Coalition (MIRC) to express their opposition to DOE, NRC and Congress. Unfortunately detection can be imperfect, difficult and expensive. The burden of nuclear waste disposal is being shifted unfairly via Tennessee-licensed processors on to the metal industry.

There are many other types of radioactive materials that can be released from DOE sites and some are expressly permitted through Tennessee to be surveyed and released. TDEC gives permits for Bulk Survey for Release for concrete, asphalt, lead, soil, equipment and other bulk materials. It also allows radioactive metal melting. Metal, concrete, building rubble, asphalt, chemicals, wood, soil, plastic, equipment, pipes, glass, paper can all be contaminated but if “cleared” and “free released” can be sold or donated to avoid the costs of isolating, storing, managing or disposing of it as radioactive waste.

The NRC licenses a processor in Wampum, Pennsylvania, Alaron, permitting some releases from that site. Pennsylvanians are questioning the NRC’s authority to allow such releases but information flow is very slow. Alaron has or has had DOE contracts with facilities in Paducah, Kentucky and in Ohio for their radioactive materials. It is never explicit when a processor releases radioactive materials to unregulated destinations. Pennsylvania has a law requiring that all radioactive wastes be kept at licensed facilities but the State Department of Environmental Protection adopted regulations that permit radioactivity into those sites at higher than natural background levels.

The government and industries that make and have liability for radioactive wastes have an unfair advan-

tage in choosing a path other than public protection—it is difficult to catch illegal release and dispersal. Historically and according to common law, it is wrong to spoil the commons—to release poisons or dangerous substances into the shared resources. So if nuclear power or weapons industry (including DOE) radioactive contamination is discovered outside their facilities, the public expectation is that it is illegal. If the federal agencies succeed in their deregulation efforts, the generators of the contamination will be free of liability. Expanded interpretation of Reg Guide 1.86 (beyond its original intent) is being used to allow surface-contaminated releases. Authorized limits (from DOE) and alternative methods of disposal (via NRC 10 CFR 20.2002) are two ways now being implemented to allow volumetrically contaminated materials out to destinations that are not intended to take nuclear materials.

The Principle of Precaution should be applied since the released radioactivity is irretrievable and the decision is irreversible. Once the radioactive materials leave the licensed site or weapons-production facility into commerce, there is no further tracking or verification of contamination levels. The radioactivity can never be recaptured. The contaminated materials retain, spread or even reconcentrate the radioactivity making it effectively “forevermore.” The DOE handles and is currently releasing wastes, materials and other properties contaminated with:

<table>
<thead>
<tr>
<th>Radionuclide</th>
<th>Length of Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plutonium 239</td>
<td>240,000 to 480,000 Years</td>
</tr>
<tr>
<td>Iodine 129</td>
<td>170 to 340 Million Years</td>
</tr>
<tr>
<td>Strontium 90</td>
<td>280 to 560 Years</td>
</tr>
<tr>
<td>Cesium 137</td>
<td>300 to 600 Years</td>
</tr>
<tr>
<td>Cesium 135</td>
<td>230 to 460 Million Years</td>
</tr>
<tr>
<td>Tritium (Hydrogen 3)</td>
<td>120 to 240 Years</td>
</tr>
</tbody>
</table>

The “benefits” of nuclear activity have accrued to the present generation and our immediate forefathers, but the true costs and hazards will be with many, many generations to come.

Two major concerns about the weakness and difficulty of radiation detection are:

1. A release or clearance level, especially expressed as a dose limit, is not enforceable. It is impossible to identify the actual doses we receive; therefore there is no real ability to enforce any “legal” level of exposure.

2. There is no economic way to verify compliance. We are being asked to trust the same nuclear weapons and power producers and promoters that created the waste to release it at or below some specified levels they choose, using their own methods, equipment and statistical sampling, if any.
What does “clean-up” of a nuclear facility really mean?

Clean-up generally means to remove dirt. In the case of radioactivity, which is invisible, long-lasting, carcinogenic and expensive-to-detect, what does it mean? From a practical perspective, “clean-up” at nuclear sites has meant capturing the most intensely radioactive and hazardous material and moving it “somewhere else,” to another location onsite or offsite. The rest of the contamination is often left in place or dispersed, because it is difficult to detect and requires the correct expensive equipment, training and the proper procedures and motivation. Of course the problem with “somewhere else” is that nowhere is guaranteed to isolate long-lasting nuclear waste for as long as it is hazardous.

The Wrong Questions

In dealing with any challenge, it is important first, to define the problem. A major disconnect in the struggle to clean up the massive nuclear weapons complex is lack of good problem definition. Most often the issue is framed as needing to determine “how clean is clean?” That is the wrong question because if there is any industrially generated radioactivity remaining or “radioactivity added” it is simply not “clean.” The real question behind the stated inquiry is “how dirty can we say is clean?” Or “How dirty can we get away with leaving the place or the material?” The fundamental problem that is being addressed, but not stated, is the reduction of cost now and liability later in the event someone detects the contamination down the road.

Clean-up in the true sense would have a goal of capturing and isolating ALL of the waste and contamination generated by the processes. If this is not technically possible, not reasonable or practical, as most contend, then building nuclear facilities is effectively creating sacrifice zones—labeled or not. Further, the infeasibility of a real clean-up should be admitted before any new nuclear facility is opened. This information is rarely, if ever, provided when new nuclear sites are proposed—in fact, contamination is often denied by proponents.

Repeatedly the Department of Energy, Environmental Protection Agency and Nuclear Regulatory Commission have tried to “engage” the public in discussing an allowable level of contamination for release into unregulated commerce and disposal. The DOE and other agencies seek stakeholder input into the amount of exposure, above zero, we are willing to accept. In reality though, rather than “engage” the public, the DOE uses these occasions to lecture the public on the harmless-ness of radioactivity. DOE is not a disinterested observer, however. More clean-up means more cost. In every instance, the public, including the environmental, public interest, health and religious organizations, as well as metal industries and steel and landfill workers unions, has called for prevention of man-made radioactive releases at any level. The consistent public response has been to ask how we can prevent unnecessary intentional releases of man-made radioactivity.

The right question is “How can radioactive releases be prevented?” not “How much can be released?” or “How much risk are we willing to accept to save money on radioactive cleanups?”

Even more fundamental however is the false impression that the industry or regulators or DOE actually could limit our risks by imposing a regulatory release level. Part of why the concerned public has repeatedly rejected any regulatory framework that sets up “official release levels” or “clearance levels” is that setting generic release levels still allows unlimited numbers of releases. In other words, no matter how low the limit, an unlimited amount of radioactivity could be legally allowed out of regulatory control as long as it can be shown that it left control in small pieces.

For example, Oak Ridge is comprised of facilities given the code names X-10, Y-12 and K-25. Radioactive waste has amassed in many places throughout these areas and can be released in batches from each location at the authorized release levels. Each clean-up contract for portions of these areas can involve dismantlement and disposal of multiple enormous buildings and large amounts of waste. There is no limit on the number of batches or sources that can be released overall so an unlimited amount of radioactivity can get out. There are no publicly available records of the amount of radioactivity released from each job, each portion of the site or comprehensively from the entire Oak Ridge Reservation, let alone all of DOE. There is no publicly available comprehensive reporting of all the radioactive wastes and materials that have been and are being released under DOE’s “authorized release” processes. These processes involve some evaluation before the materials are released. Clearly no tracking or effort at tracking released materials is carried out to determine health consequences. People offsite could be exposed...
to multiple, additive, cumulative and synergistic radioactivity from various parts of Oak Ridge, other DOE sites and other NRC and Agreement-state licensed facilities.

Given industrial scale nuclear weapons operations, some DOE-generated radioactivity inevitably escapes the complex, even without deliberate allowable release levels. Intentionally permitting contaminated materials, wastes and properties out would result in much more radioactivity getting out. But the intentional release of potentially radioactive wastes, materials and properties is avoidable.

On the international level, no meaningful public input has been incorporated in setting allegedly “acceptable” contamination levels or “trivial” risks. There are no mechanisms for input from the “dose receptors,” as the public is often termed, into the work of most of the committees and subcommittees that develop the international recommendations. Representatives of the nuclear establishment in different nuclear nations comprise the international agencies and participate to create international recommendations which they bring home to adopt as national regulations. These national representatives are often from federal agencies that have failed to incorporate public concerns into their own standards and thus cannot be expected to reflect them in the international committees. The International Commission on Radiological Protection (ICRP) has begun sharing its drafts with the public, an improvement over past secrecy, but the organization is not structured in a way that is accountable to the public. Public opposition to clearance and free release of nuclear waste into commerce has been completely ignored, among many important radiation issues.

The ICRP, International Atomic Energy Agency (IAEA), and Euratom (the European Atomic Energy Community) on behalf of the European Commission have chosen risk and contamination levels that they consider acceptable and called them “consensus.” These bodies are self-appointing nuclear advocacy groups. Their function is to create recommendations that form the basis for national laws and regulations that allow the government and private industry to engage in nuclear technology. They do not represent those who are exposed and their committees, processes and reports are exclusive, generally closed from public participation. When public comments are sought, the public’s recommendations are regularly ignored, unless they are from the nuclear industry.

In May 1996, Euratom adopted its ‘Basic Safety Standards’ Directive on radiological protection (Council Directive 96/29/Euratom) which included provisions for recycling and reuse of radioactively contaminated wastes and materials at levels deemed economically worthwhile for the nuclear industry, especially as large decommissioning projects were about to begin. The public, including members of the European Parliament, was very disturbed that man-made radioactivity would be incorporated into consumer goods if the provision were implemented. They were also unhappy with the lack of democratic process over the adoption of that policy, which could affect human health. (As Euratom turns 50 in 2007, these concerns have only worsened.) In 1997, the European Committee on Radiation Risk (ECRR) was formed with Dr. Alice Stewart (famous for her brilliant research on radiation and childhood cancer) as the first chair. The 2003 Recommendations of the ECRR: The Health Effects of Ionizing Radiation Exposure at Low Doses and Low Dose Rates for Radiation Protection Purposes: Regulators’ Edition were released. One of the main findings is that the risk models used by the main international radiation advisory committees and national regulators are inadequate to reflect the risks from radiation and recommended that additional weighting factors be included in the calculation of effective dose. ICRP has not adopted these recommendations.

More Wrong Questions: Excuses
The fact that detecting radioactivity is a technically challenging activity gives DOE and other nuclear waste generators pretext about expense and time that may sound “reasonable” in policy discussions, debates and decisions on clean-up of the messes they have made.

The public is demanding prevention of man-made radiation exposures—prevention of more messes, while DOE, the nuclear industry and the nuclear “regulators” confuse the radiation discussion by making unsubstantiated claims and implications.

They:

1) Claim inability to distinguish between naturally occurring background radiation and the man-made radioactivity from nuclear industrial processes; whereas use of more sophisticated detection equipment and protocols make this level of distinction possible.

2) Imply that the presence of naturally-occurring radiation justifies additional man-made exposures; assuming the authority to increase the public’s risk without consent, while making uninformed value judgments about the public’s willingness to accept additional risks and exposures above background.

3) Claim that it is possible for DOE, its contractors and subcontractors to know the amount of radiation expo-
sure that anyone would receive from DOE-process-generated radioactivity released in addition to natural background; whereas all of these determinations are derived from processes with enormous uncertainties—starting with the characterization of the contamination and ending with only a generic assumption that the individual receiving the dose is a healthy adult male, with no details as to the circumstances or duration of the contact.

4) Claim that they can accurately predict the total amount of exposure from all DOE sources that anyone would receive; whereas the compounding of uncertainties in number 3 render this exercise absurd.

5) Claim that low levels of man-made ionizing radiation are harmless or even beneficial while dismissing statistically significant findings from population studies which show that low levels of radiation exposure are more damaging and dangerous per unit of dose than higher levels.

While these various claims from the industry and DOE are often diffuse, or well masked, they result in a level of self-contradiction that is unsupportable. The claim of inability to distinguish man-made from natural background radiation stands in direct contradiction to the assumption that it is possible to guarantee specific, “acceptable” doses delivered from the man-made radioactivity releases.

Burden of Proof and Precaution

From *Wikipedia*, the free encyclopedia:

The Precautionary Principle is a moral and political principle that states that if an action or policy might cause severe or irreversible harm to the public, in absence of a scientific consensus that harm would not ensue, the burden of proof falls on those who would advocate taking the action.

From the January 1998 Wingspread Statement on the Precautionary Principle:

When an activity raises threats of harm to human health or the environment, precautionary measures should be taken even if some cause-and-effect relationships are not fully established scientifically.
TIMELINE:
EFFORTS TO LET NUCLEAR WASTE OUT OF CONTROL

1962-1986 Atomic Energy Commission/ERDA/DOE at Paducah, KY. Smelter and machine shop recovered “large quantities of steel, nickel, aluminum, copper, monel, cobalt, gold and silver” from nuclear weapons, research reactors and other classified sources. Some of this was sold into commerce including radioactively contaminated gold and aluminum.¹

1970 US Environmental Protection Agency Created by Congress and directed to protect the public from radiation.²

1974 Atomic Energy Commission Regulatory Guide 1.86 GUIDANCE (not regulation) on terminating nuclear reactor operating licenses to possession-only or unrestricted release, setting allowable contamination levels for some categories of radionuclides remaining on building surfaces. Has been subsequently misused by DOE and NRC to release radioactively contaminated materials into commerce and regular landfills.

1980 NRC Draft Environmental Statement, part of proposed rulemaking to allow recycling radioactive metals in commercial recycling facilities, specifically smelted alloys containing residual technetium-99 and low-enriched uranium (NUREG-0518, October 1980). Opposition stopped official approval but DOE has let some materials out according to reports and knowledge of local observers, especially around uranium enrichment facilities.

1981 A Wall Street Journal article documents public opposition to the government proposal to recycle radioactive metal and includes a “satiric ad” for a ‘Fabulous 8-Piece Cookware Set that is Krypton clad– Now Every Household Can Be A Nuclear Family.’

1985 NRC publishes NUREG-1444, the Site Decommissioning Management Plan, reportedly incorporating the levels from the AEC’s 1974 Regulatory Guide 1.86 into cleanup for specific sites.

1986 NRC adopts the initial Below Regulatory Concern (BRC) Policy, which would have allowed some nuclear wastes to be treated as not radioactive. EPA estimated that 30 to 40% of the commercial “low-level” radioactive waste in the country would have been exempted from regulatory control, primarily from nuclear power.

1986 – 1992 Largely in response to the NRC’s proposed BRC policy 15 states: ME, VT, CT, OH, WI, PA, WV, IA, MN, OR, TX, NM, IL, SD, CO, passed laws or regulations that were stricter than federal, most requiring continued regulatory control over radioactive wastes and materials even if the federal government or other states exempted them from regulatory control. Three states passed similar resolutions in at least one of the state legislative bodies (OK, GA, VA).

1988 DOE adopts internal Order 5820.2A ‘Radioactive Waste Management,’ stating that DOE will use the federal BRC policy and incorporating the basic performance objectives of the Nuclear Regulatory Commission’s so-called “low-level” radioactive waste disposal rule promulgated at 10 CFR 61.

1989 RESRAD computer code issued by Argonne National Labs—funded by DOE to predict doses from RESidual RADioactivity; developed to implement DOE’s internal Order 5400.5 release of radioactivity and NRC’s decommissioning rule.

1990 NRC adopted its final, expanded Below Regulatory Concern (BRC) policy. In addition to some radioactive wastes some radioactive materials, emissions and practices would also be treated as not radioactive.

² “Under the terms of Reorganization Plan No.3 (July 9, 1970), the following would be moved to the new Environmental Protection Agency: …Certain functions respecting radiation criteria and standards now vested in the Atomic Energy Commission and the Federal Radiation Council [including] establishing generally applicable environmental standards for the protection of the general environment from radioactive material. As used herein, standards mean limits on radiation exposures or levels, or concentrations or quantities of radioactive material, in the general environment outside the boundaries of locations under the control of persons possessing or using radioactive material…[and]All functions of the Federal Radiation Council (42 U.S.C., 2021 (h)).”
1990 DOE quietly adopted Internal Order 5400.5 including Chapters 2 and 4 allowing radioactively contaminated materials to be released or cleared from DOE control at levels (100 millirems per year; up to 500 millirems a year on a temporary basis) far exceeding those in the NRC BRC policies. Release or “clearance” of items with residual radioactivity including shipment of radioactive waste to landfills and incinerators, as well as release of materials and properties for reuse and recycle.

1991 US House and Senate incorporate provisions to revoke the NRC BRC policies in pending legislation.

1991 Public Citizen, et al v. NRC challenges fact that NRC did not do formal rulemaking process to promulgate its final BRC policies. When Congress revoked the policies in 1992, the case ended without court ruling.

1991 NRC initiates a “consensus-building” process and invites environmental and public interest groups to participate on the condition that they not participate in legislative activity or litigation during the term of the process. All groups working on the BRC issue decline the invitation.

1992 NRC initiates the Enhanced Rulemaking on Residual Radioactivity (ERRR) to set new decommissioning site release standards. NRC tries to shift the question of “how much contamination can we deregulate (BRC)?” to “how clean is clean?” or “how dirty can we leave contaminated sites?” NRC provides a plush public and “stakeholder” participation process – all members of the public call for standards that require continued regulatory control over sites that would expose the public to additional radioactivity over and above natural background levels.

1992 NRC Begins strengthened effort to “develop” a technical basis for deregulating nuclear waste. Eventually expands promotional efforts to include staff in at least four divisions of the NRC and hires contractor SAIC to develop NUREG-1640 to justify deregulating metal and concrete. (Note SAIC simultaneously is hired for large DOE Oak Ridge cleanup contract.) NRC also seeks support from international nuclear advocacy organizations such as IAEA, European Atomic Energy Agency (EURATOM) and OECD NEA, to sway American opposition and later to force “harmonization.” Like NRC, the international allies are committed to the promotion of nuclear power and technology, not public protection from radiation—NRC staff and commissioners are active and highly influential in many of them. They actively participate in developing international policies exempting nuclear waste from regulatory control and allowing it into normal recycling streams and daily use items. These international recommendations are now being used as an additional rationale by the NRC to adopt policies that allow deregulation and dispersal of nuclear waste into the public sector and the environment.

1992 DOE caught by investigative journalist, sending mixed radioactive and hazardous waste to incinerators and cement kilns approved for burning hazardous waste only. DOE institutes a temporary ban on the practice.

1995 DOE Headquarters Air, Water and Radiation Division issues letter to Field Offices and Elements outlining how to release property and materials that are volumetrically contaminated with radioactivity… identifying up to 25 millirems per year per release as acceptable doses (pg 2). If doses are less than a millirem per year, DOE field office managers can approve the release; if more than a millirem, head of Office of Environment, Safety and Health—restructured in 2006 to Office of Health, Safety and Security must approve (was EH-I now HS-1).

Mid 1990's EPA signed on as technical contractor for DOE for analysis of radioactive metal recycling, to project doses to public and locations where metal processing would occur. Produced 1997 draft and 2001 final Technical Support Documents and Cost-Benefit Analysis on Potential Recycling of Scrap Metal from Nuclear Facilities.

1996 European Commission adopts European Council Directive 96/29/Euratom, the "Basic Safety Standards Directive" (OJ L159 29th June 1996), including provisions for radioactive clearance against public op-
position. Some members did not adopt the exemptions. Public and government concern led to formation of the independent radiation group, European Committee on Radiation Risk (ECRR). In 2007, the 50th anniversary of EURATOM, there is growing opposition throughout Europe to the power of EURATOM to direct pronuclear policy for member states.

1996-1998 EPA considered, published for public comment and rejected making a rule legalizing recycling of radioactive metals; decided to focus on capture of sealed sources instead. It was ironically called “clean metals.”

1996 DOE published “Closing the Circle on the Atom”, reflecting the shift during the Clinton administration of supporting the end of nuclear weapons production and commitment to characterizing the problems, wastes and other legacies and committing resources to clean-up. “Linking Legacies” was published in 1997, further documenting the clean-up challenge and this work.

1997 NRC publishes its License Termination Rule for decommissioning (10 CFR 20.1401-20.1406 Subpart E—Radiological Criteria for License Termination), with total disregard for the public consensus calling for complete clean-up before release of contaminated sites for unrestricted use. Despite the public consensus, documented in the 1992 EORRR process and officially designed to inform this decommissioning rule, NRC allows the “average member of the critical group” to be exposed to 25 millirems per year (TEDE) from unrestricted release of sites (or portions of sites 10 CFR 50.83) and to 100–500 millirems per year (TEDE) from restricted released sites (or portions of sites).

1997 DOE entered a $278 million “fixed price contract with BNFL and SAIC and others to gut 3 enormous uranium enrichment buildings at Oak Ridge K-25 site, including the sale and commercial recycling of radioactively contaminated metals. Move meets with opposition from metal industry, public, environmental organizations.

1998 NRC Commission issues SECY-98-028, Staff Requirements Memo, Regulatory Options for Setting Standards on Clearance of Materials and Equipment Having Residual Radioactivity, dubbed the “Smoking Gun” since it directs that NRC staff should “focus on the codified clearance levels above background for unrestricted use…based on scenarios of health effects from low doses that still allows quantities of materials to be released. The rule should be comprehensive and apply to all metals, equipment, and materials, including soil…” thus revealing NRC’s ongoing commitment to expanded deregulation of radioactivity.

1999 NRC announces scoping for Release of Solid (radioactive) Materials at Licensed Facilities 64FR125 June 30, 1999; public meetings boycotted by public interest and environmental groups because option of preventing release at all was not seriously considered.

1999 Health Physics Society and American National Standards Institute, without public input, develop proposed clearance levels for volumetric contamination. Later the National Academy of Sciences panel review criticizes the methods as not reproducible.

1999 IAEA adopts TSR-1 transport regulations that adjust exempt levels for transport to coincide with chosen levels to deregulate decommissioned nuclear facilities in Europe. Although the world is already unified on a preexisting exempt amount for transport, this new standard is adopted precisely to overcome the need to label and track levels (mostly higher than before) that IAEA wants to exempt to save money for the decommissioning nuclear industries. Also creates new exemptions and justifies it all by calling for international “harmonization.” Once UN transport agencies adopt it, member nations must and do. U.S. adopts in 2004, sued by critics.

1999 Federal District Court Judge Kessler, in OCAW et al v. Pena, et al. 62 F.Supp. 2d 1 (D.D.C. 1999) confirmed that DOE awarded its quarter billion dollar recycling contract to BNFL without regard for the basic requirements of environmental law and openness and found that the concerns raised by the union and environmental groups were valid.

2000-2003 NRC and DOT propose adoption of new transport regulations that exempt various levels of all

5 Statement of Dan Guttman to National Academies National Research Council, Committee on Alternatives for Controlling the Release of Solid Materials from Nuclear Regulatory Commission - Licensed Facilities, March 27, 2001) She stated that “The potential for environmental harm is great, especially given the unprecedented amount of hazardous materials which [DOE and BNFL] seek to release.”
radionuclides from regulatory control in transport, increasing the exempt amounts and initiating new exemptions. This is done under the guise of “harmonization” between the federal and international agencies.

2000 DOE put a moratorium on releasing volumetrically contaminated radioactive metal (January) and suspended the release of any metal from DOE radiological areas into commercial public recycling (July); began rulemaking to make the moratorium and suspension permanent in DOE Order 5400.5. In October “Control of Releases of Materials with Residual Radioactive Contamination from DOE Facilities” was published for comment.

2001 EPA adopted mixed waste rule that allows mixed radioactive/hazardous waste to be considered radioactive only, thus exempt from RCRA hazardous waste requirements for storage, treatment, disposal and transport; Specifically EPA adopted subpart N to 40 CFR part 266 “Conditional Exemption for Low-Level Mixed Waste Storage, Treatment, Transportation and Disposal” (66 FR 27218, May 16, 2001).

2001 DOE announces a halt to the proposed changes in its Order 5400.5 on contaminated material and metals and begins a Programmatic Environmental Impact Statement on Disposition of Scrap Metals (FR66 July 12, 2001 No 134), holds scoping meetings and opens public comment period. Denies public access to comments received. As of April 2007, DOE is reporting that the PEIS is “on hold.” SAIC was again hired by DOE at one point to carry out the PEIS but dropped due to repeated conflict-of-interest.

2001 DOE covertly circulates within its Field Management Council a memo that outlines ways for DOE site personnel to circumvent DOE’s own ban on the release and recycle of contaminated metal; a draft of the internal memo is obtained by metal industry and environmental community; strength of opposition causes item to be removed from an FMC meeting agenda.

2001-2002 National Academy of Sciences (NAS) hired by Nuclear Regulatory Commission to provide technical legitimacy for radioactive deregulation; *The Disposition Dilemma: Controlling the Release of Solid Materials from NRC-Licensed Facilities* (National Academy Press 2002) is produced recommending NRC deal more effectively with the public and public concerns.

2004 Department of Transportation (DOT) and NRC adopt proposed TSR-1 “harmonized” and weakened transport regulations, exempting more radioactivity.

2004 Nuclear Information and Resource Service, Public Citizen, Committee to Bridge the Gap, Redwood Alliance and Sierra Club sue DOT and NRC to stop increased exemption levels in transport. Rule defines higher levels of radioactivity that need not be labeled during transport. Since many solid waste facilities had used DOT levels as their cutoff to accept radioactively contaminated wastes, higher amounts of radioactivity could be getting into non-nuclear waste facilities, illegally, as a result of the change. In 2006 both cases end due to technicalities without review of merit of content.

2005 NRC announces decision to defer further action (for possibly 2 years) on Controlling the Disposition of Solid Materials rulemaking and to proceed with case-by-case exemptions under its alternative disposal provision 10 CFR 20.2002 and through technical specifications in licenses.

2006 DOE proposal appearing to weaken the definition of “contaminated area” (radiological area) by allowing DOE Order 5400.5 authorization limits to be codified into 10 CFR 835; *Federal Register* / Vol. 71, No. 154 / Thursday, August 10, 2006 / Proposed Rules).

2006 NRC sues SAIC over conflict of interest. SAIC was hired to develop NUREG 1640 to make it appear that radiation doses can be known and limited, giving the misimpression that there is a technical basis justifying deregulating nuclear waste. It was later revealed that the contractor (SAIC) that set up NRC’s technical justification for allowing radioactive metal and concrete to be released into general recycling to make everyday household items was actually part of the team hired by Dept of Energy to ‘recycle’ nuclear waste from the Oak Ridge K-25 site, the largest radioactive recycling project known. SAIC was fired by NRC due to the conflict of interest but the conflicted work prod-
uct is still in use today. Later NRC sued SAIC for not revealing the conflict of interest.

2007 DOE seeks Expressions of Interest from industry on restricted recycling of 15,300 tons of nickel scrap recovered from uranium enrichment process equipment and stored at Oak Ridge, TN, and Paducah, KY. Companies are being asked to propose declassifying the nickel, cleaning it and fabricating it into forms that will have restricted use under DOE, NRC or DOD Navy radiation control.

2007 DOE, DOD, NRC and EPA MARSAME Multi-Agency Radiological Survey and Assessment of Materials and Equipment Manual is open for public comment before finalization. Provides the direction on the procedures and equipment that make releasing radioactive soil, equipment and materials “acceptable” to all four federal entities.

TERMS for Letting Nuclear Waste Out of Control

International, federal and state agencies, regulators, private contractors, waste generators and academ-ics use many terms to describe and justify releasing man-made radioactivity to the public sector. Some have other meanings but are being applied for this purpose. Here are a few:

- BRC, Below Regulatory Concern
- Beneath Regulatory Control
- ‘Beneficial’ Reuse
- Clean
- Clearance, Clear
- Deminimus or “de minimis” (so minimal that it is not worth considering)
- Deregulation (DOE doesn’t regulate to begin with so can’t “deregulate.”)
- Dose-Based Standard
- Exempt, Exemptions
- Exempt from regulatory control
- Excluded from regulation (IAEA term for naturally occurring radioactivity)
- Health-based Standard
- Indistinguishable from Background (depends on detection equipment used)
- Free Release
- Law of Concentrated Benefit over Diffuse Injury (see appendix)
- Linguistic Detoxification
- Low Activity Radioactive Waste
- Low Activity Waste (new category being created to facilitate generic release)
- Non-detect (depends on detection equipment used)
- Non-regulatory approach to management of radioactive waste (EPA)
- Not Amenable to Control
- Not Radioactive
- Not Relevant to Radiation Protection Dispositions
- Optimization (cost benefit analysis carried out by waste generator)
- Out-of-Control—On Purpose
- Reclassification
- Recycling
- Release
- Restricted Release
- Restricted Reuse (usually over 1st reuse only)
- Risk-Based Standard
- Risk-informing or Risk-informed (analysis carried out by generator)
- Slightly Radioactive Scrap Metal or Material (SRSM)
- Slightly Radioactive Waste
- Special Waste
- Trivial (risk, dose, contamination)
- Very Low Level Radioactive Waste (VLLW)

NIRS has called it “Let’s pretend it’s not radioactive.” Let us know any other terms you hear or create and we will add them to the list.
DOE’S ORDERS, GUIDANCE AND SUPPORT DOCUMENTS

This section reviews the “rulebook” by which DOE is supposed to operate, as well as some of the other regulatory documents that have contributed to its guidance. Our discussion should not be interpreted as any endorsement of whether DOE actually implements these rules. The DOE is the generator of the radioactivity, the handler of it, the entity that must make the policies and also implement them. That is, DOE sets the rules, regulates itself and decides whether it is doing a good job. There is an inherent conflict of interest in the fact that there is no external regulation, assessment of compliance or enforcement. The reporting that DOE and its sites have done provide no confidence that the processes outlined in this chapter are, in fact followed.

Background

As a result of decommissioning their numerous nuclear facilities, DOE has to deal with large amounts of potentially contaminated material. In order to save cost, the department tries to sell (or give away for free) as much as possible, because every ounce of waste deposited in a radioactive waste facility costs money.

In the course of discussions with DOE staff, it has been stated repeatedly that DOE does not “deregulate” radioactivity—because they do not “regulate” it in the first place. Since DOE is a generator of radioactive waste, contaminated materials and properties, it is more correct to say that they act—sometimes to control, and sometimes to release radioactivity. In some cases DOE becomes subject to an external regulatory authority, such as the EPA, but this is primarily in the context of programs such as Superfund, and applies only to a subset of their operations. New regulatory relationships between DOE and the Nuclear Regulatory Commission are being explored for some DOE facilities—notably the proposed MOX factory that would use DOE surplus weapons grade plutonium to make Mixed Oxide plutonium fuel for commercial nuclear power reactors, but again, for the most part, NRC authority at the federal level does not apply.

Since release of residual radioactivity is sometimes a multi-step process—DOE may sell the material to or alternately pay a licensed commercial contractor to take material that is subsequently released by the licensed contractor. These commercial entities either have an NRC license, or where NRC authority has been delegated via the NRC Agreement States program, a state license. At these links in the chain of control and release, the terms “regulation” and “deregulation” do apply.

Contaminated material was routinely released by DOE under its own guidance and Orders until 2000, when former Energy Secretary Bill Richardson declared a moratorium on the commercial recycling of metal, first only of volumetrically contaminated and then also of surface contaminated metal. Release of other (non-metal) contaminated materials is ongoing.

The reader is directed to chapters in this report on radiation detection, broad issues of regulating radioactivity vs. radiation and our critiques of computer codes and ALARA in order to contextualize why “meeting the standards” does not necessarily ensure radiation protection.

DOE: Radioactive Recycling Contract followed by Bans on Radioactive Metal Recycling

In August 1997, the Department of Energy (DOE) entered into a noncompetitive contract with British Nuclear Fuels Ltd. (BNFL) at Oak Ridge, Tennessee to decommission three massive buildings formerly used to enrich uranium for atomic weapons and nuclear reactors. DOE gave BNFL incentives to process and sell more than 127,000 tons of radioactively contaminated nickel, aluminum, copper, and steel to commercial recyclers who provide metals for consumer products such as tableware, frying pans, orthodontic braces, furniture, batteries and automobiles. Consumer products made with metal that is contaminated by long-lasting radioactivity from DOE activities will not be labeled to alert producers or consumers that they are contaminated.

According to the DOE Inspector General Audit Report (DOE/IG-0481) on the BNFL contract, 6.6 million pounds of metal had been released for recycling from the site as of May 2000. Inaccurate surveys, inadequately supervised surveyors and selective verification have resulted in an “increased risk to the public that contaminated metals were released from the site.” Ineffective management has led to cost overruns and put the successful completion of the project in doubt.

Environmental groups (NIRS, NRDC, OREPA) and PACE, the DOE workers union, sued DOE over the contract because it allowed radioactive metal to be circulated into open commerce with no environmental impact statement or assessment. The court found that, “through use of the NRC’s offices, DOE and BNFL placed the public at unlawful and unexamined risk,” acknowledging and sharing “the many concerns raised
by the intervenors.”¹ The potential for environmental harm is great, especially given the unprecedented amount of hazardous materials which [DOE and BNFL] seek to release.

After continued public, union and metal industry opposition, in 2000 the Secretary of Energy took action, halting the release of metal for commercial recycling into consumer goods and the marketplace and clarifying improved record keeping and procedures at all DOE sites. (Press releases and memos to DOE offices from the Secretary are in the Appendix.)

In January 2000, a moratorium was placed on the release for commercial recycling of all surface contaminated metal. In July 2000 the ban was expanded to suspend the release for commercial recycling of any potentially contaminated metal (with surface or volumetric radioactive contamination) from any radiological control area. The DOE continued its efforts to release other radioactive materials, however, including concrete from its sites. Although the impression was given to the public that no contaminated metal would ever get out, the metal was stored at the sites with the expectation by the field offices that the suspension would be lifted or could be circumvented.

In late 2000, there was a proposed revision to DOE’s internal order 5400.5, Radiation Protection of the Public and Environment, that was purported to make the moratorium and suspension permanent—that is to ban the release of any potentially contaminated radioactive metal into commercial recycling. The language for the proposed change was opened to public comment, but because it did not effectively achieve the stated goal (make the metal release bans permanent), it was soundly rebuked by the public, unions and the metal industry. The field offices of DOE were reportedly critical as well, at least in part because of the requirements for tracking and record-keeping. So the proposed 2000 revision to DOE Order 5400.5 was not adopted. Instead, a Programmatic Environmental Impact Statement (PEIS) was proposed by DOE in 2001. Public hearings were held and comments received. The public called for making the bans on radioactive metal release permanent and for expanding them to cover nonmetal materials, wastes, and property including but not limited to concrete, asphalt, wood, plastic, soil, chemicals. There are strong concerns in the public and environmental sectors that completion of the PEIS process might result in the reversal of the suspension and moratorium on radioactive metal recycling.

In addition, in the intervening years since the 2001 PEIS was initiated, there have been attempts by DOE to circumvent the metal recycling bans. One such instance occurred in November 2001 when the Acting Director of the Office of Science, the Acting Deputy Administrator for Defense Programs and the Assistant Secretary for Environmental Management circulated a memo quietly, internally within DOE at the Field Manager level, proposed action to “…modify DOE’s current suspension on the unrestricted release for recycling of scrap metals from radiological areas in order to permit the recycling of those metals…” It was a secretly prepared proposal during the public PEIS process and a clear violation of the spirit of the ban. The item was dropped from the agenda when public and industry forces cried foul.

There are many definitions of radiological areas in the DOE orders and guidance and regulations. The 2000 bans prevent any metal from radiological areas from entering commercial recycling. The November 2001 effort involved possible changes in some of those areas.

More recently in August 2006, DOE proposed to adopt portions of DOE Order 5400.5 into its 10 CFR 835 regulations. The proposal appears to open another loophole in the DOE’s ability release property for unrestricted use, this time making it possible to do so with hotspots.

Regulatory Guide 1.86

Regulatory Guide 1.86 was Atomic Energy Commission guidance published in 1974 for the release of parts of buildings from the need to be cordoned off with yellow tape. It was never intended to define a level for the free release of radioactivity to the public, but after Congress revoked the NRC’s Below Regulatory Concern (BRC) policies in 1992, both DOE and NRC appear to have expanded its use as guidance for free release, decommissioning and deregulation of nuclear materials and properties.

The DOE adopted the fundamental approach of the Reg Guide and later promulgated its Order 5400.5 incorporating Reg Guide 1.86 into it. According to EPA comparisons the doses from the Reg Guide 1.86 concentrations would be higher in some cases than the BRC policies. These policies would have established a lower threshold below which radioactivity was considered unimportant, even while extensive research upholds the finding that there is no “safe” dose of radia-

tion. The government agencies and industry were happy to have some release level to use in the wake of the Congressional action.

But since Regulatory Guide 1.86 only gave concentrations for surface contamination, it could not clearly and simply be used to release materials and property with radioactive contamination throughout-volumetrically contaminated, leading to the complicated process of establishing and authorizing release levels described below.

DOE Order 5400.5

Policies and procedures for the release of materials contaminated with residual radioactivity are promulgated in DOE Order 5400.5, where “residual radioactive material” means contaminated soils, radon decay products in air, external radiation and surface contamination.\(^2\) It does not apply to volumetrically contaminated material, i.e., material that contains radionuclides in its matrix rather than just on the surface. Surface contaminant guidelines define both average and maximum allowable limits.\(^3\) The projected doses resulting from the surface contamination guidelines are expected to be well below the primary dose standard, which is stated at a total of 100 millirems/year or up to 500 millirems/year on a temporary basis. These levels allow an effective doubling of (or up to 5 times more than) ongoing daily radiation exposure since the level is over and above naturally occurring background that has been assessed as anywhere from 100–360 millirems a year. Natural background at 100 millirems is projected by NRC to result in a background rate of 1 fatal cancer in every 286 people.\(^4\)

The implementation of this policy is complex since day-by-day decisions of what does or does not meet the standard often require unique justifications for those decisions. The order defines a process of “authorized release” of residual radioactive material by workers and contractors at DOE sites, and elsewhere. On a case-by-case basis, limits for unrestricted release can be developed and material with contamination below these limits released. Authorized release limits can be developed at each site, using a prescribed approach, which is systematic, but leaves ample room for interpretation (see below). After development of the limits, they have to be approved by DOE before they can be implemented. The result, nonetheless, is a patchwork of site-specific and to some degree, release-specific authorizations.

Under IV-2.(d)(2), the Order states that “under normal circumstances expected at most properties, authorized limits for residual radioactive material are set equal to, or below guideline values. Exceptional conditions for which authorized limits might differ from guideline values are specified in paragraphs IV-5 and IV-7.” The guidelines mentioned are the surface contamination guidelines referred to in the Handbook and the Protocol. It can thus be taken from the Order that for release limits to be greater than the surface contamination guidelines, there must be a good reason.

This “good reason” is the determination that the guidelines are “inappropriate,” which by itself does not mean much. But the Order also states that any authorized limit has to provide that at the minimum, the basic dose limits of 100 and 500 mrem/y are not exceeded (IV-5.a). The authorized limits also have to be consistent with other applicable Federal or State law. Note that these are yearly limits and are not intended to limit the total dose to the population over the duration of hazard.

Supplemental limits can be derived if previously authorized limits or guidelines are not appropriate. However, the Order states again that no matter the situation, the supplemental limits have to ensure that the basic dose limits will not be exceeded. In other words, both authorized and supplemental limits can be greater than the surface contamination guidelines if these are not “appropriate”, but the resulting dose must still be below 100 mrem/y. In addition, the developed limits have to be put through the process of trade-offs called ALARA (As Low As Reasonable Achievable), which may (or may not) further lower the resulting dose. The 100 mrem/y is thus an upper bound. It must be noted that the intent of the Order is to supplement guidelines only where necessary (IV-7.c): “Every reasonable effort should be made to minimize the use of supplemental limits and exceptions.”

A comment is in order about DOE’s choice of terms. To call something an “authorized limit” asserts an authority that is looking out for others’ welfare. In the case of DOE “authorized limits” under 5400.5, it is implied that someone does, in fact, figure out what the total dose from all DOE modes and sources for any given individual will be—whereas that is simply impossible. The language of control and release of radioactivity is potent, and often misleading.

Process to Develop Authorized Limits under DOE Order 5400.5

\(^2\) DOE Order 5400.5 at IV-1.

\(^3\) DOE Order 5400.5 at I-3: The primary dose limit for exposures of the public is 100 mrem/y for limited periods of time and under unusual circumstances, a limit of 500 mrem/y can be used; and IV-6, figure IV-1 Surface contamination guidelines.

\(^4\) US NRC Expanded Below Regulatory Concern Policy of 1990, excerpt in Appendix J.
The Department issued a handbook to define the process of developing authorized release limits. It applies to everything besides sites and structures that contain “residual radioactive material,” a term defined as “Radioactive material that is in or on solid, liquid, or gaseous media, including soil, equipment, or structures, as a consequence of DOE activities.” The handbook lays out a 10-step process for releasing material as follows:

1. Describe property. Determine whether it can be certified as “not contaminated.” If it cannot, determine if contamination is detectable.
2. If it is detectable, determine whether “seemingly applicable release limits exist.”
3. If they do, go to step 8. If not, develop release limits needed.
5. Compile and submit application for DOE Operations Office approval.
7. Implement approved limits.
8. Conduct surveys/measurements.
9. Determine whether newly approved or pre-existing applicable limits are met.
10. If yes, release property. If not, determine whether supplemental limits should be developed, and, if so, go back to step 3.

There are some steps of this process that are not well clarified. For step 1, there is no definition of when contamination is “detectable”—what instrumentation must be used, or what level above background will be considered detectable. (There is, however, description of what percent of the area of materials must be surveyed.) It also isn’t clear how the decision should be made whether release limits are applicable or whether there is any oversight for this determination. The document implies that release limits can continue to be adjusted with new dose assumptions if it is found that the material is not releasable under existing limits. However, there is no explanation of who will choose these assumptions or what requirements apply to them. It must also be remembered that at no time will a member of the public be notified of these additional doses, nor will any doses to the public be monitored in an ongoing or integrated way, so all compliance is assessed by extrapolation and modeling.

The release limits must be such that the case can be made (with computer models like RESRAD) that no member of the public receives more than a total of 100 (or up to 500) mrem/year from all sources, in addition to background radiation, which is the primary dose limit (Order DOE 5400.5, Sec. II.1.a). Since this is difficult to determine, there is a “presumption of compliance” when it can be shown that the dose from all DOE sources is less than 30 mrem/year. There is no detailed explanation of how this is to be done or which other DOE dose sources are to be included in the analysis.

In addition, like all institutions that expose workers and the public to radiation and radioactivity in the course of operation, DOE subscribes to a program known as ALARA (As Low As Reasonably Achievable). While “as low as” sounds reassuring to the lay public, “reasonably achievable” is a virtual blank check for the waste generator to factor its costs in the decisions about how stringent to be in making and applying the rules. In the case of DOE it must, again, be emphasized that the “right hand” and the “left hand” of rule-maker and ruled are, in fact the same hand.

The ALARA process itself involves comparison of several alternatives, including release, disposal, and storage. Multiple release alternatives including different release limits are included. Some of these release alternatives may be for “restricted release,” although it is unclear how the future uses of the materials will be restricted. These alternatives are evaluated in terms of:

- Maximum dose to members of the public;
- Collective dose to the population;
- Doses to workers;
- Applicable alternative processes, such as alternative decontamination levels and methods;
- Doses for each alternative;
- Cost for each alternative;
- Examination of the changes in cost among alternatives; and
- Social and environmental effects (positive and negative) and non-radiological risks associated with each alternative.

While for individual members of the public both maximum and most-likely doses are to be evaluated, for collective dose only a most-likely dose scenario is to be evaluated.

There is no explanation of how the different evaluation criteria (cost, dose, social and environmental effects) are to be weighed against one another.

DOE has developed a computer model for metals that completes the ALARA process, including dose calculations using RESRAD-RECYCLE and cost comparisons. This program includes only 11 possible end products.

6 Development of DOE Complexwide Authorized Release Protocols for Radioactive Scrap Metals, S.Y. Chen, J. Amish,
There is a separate DOE document entitled “Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Sites.” This document does not define how to determine whether existing release levels are appropriate. It does, however, specify the alternatives that should be considered in the ALARA analysis. It also provides “unit-dose factors” for several radionuclides for residential and occupational scenarios for disposal, reuse, and transportation alternatives in mrem/yr/pCi/m², based on RESRAD. It also provides guidelines for transportation and decontamination costs to be included in cost analysis.

DOE Order 5820.2A, Radioactive Waste Management

Adopted in 1988, DOE internal Order 5820.2A incorporates the basic performance objectives of the Nuclear Regulatory Commission’s “low-level” radioactive waste disposal rule promulgated at 10 CFR 61. While this Order pertains to “low-level” radioactive waste burial grounds on DOE sites, burial of radioactive waste on DOE nuclear weapons sites predates 1988. The incorporation of the NRC regulations enabled DOE to effectively “draw a line” and deal with post-1988 waste with the new policy, effectively “grandfathering” the pre-1988 burials. In addition, and discussed below, DOE did not incorporate the NRC standard as-is, instead applying its own variations.

During this timeframe (1988), the NRC was pursuing an across-the-boards policy to define a level of radioactivity that “didn’t count”—that was “Below Regulatory Concern.” The NRC announced its first BRC policy in 1986, and expanded it in 1990. Portions of the 1990 Policy are reprinted in the Appendix to this report. When DOE adopted 5820.2A, it incorporated the concept of BRC. On page 15, in the definitions section:

> Below Regulatory Concern. A definable amount of low-level waste that can be deregulated with minimal risk to the public.

…and in Section III-7, adopted 09-26-88 on page 49:

> (6) Waste containing amounts of radionuclides below regulatory concern, as defined by Federal regulations, may be disposed without regard to radioactivity content.

When Congress acted to repeal the NRC BRC policies in its Energy Policy Act of 1992, it apparently did not know that DOE had already adopted its own BRC policy. Nonetheless, the statement above (from page 49) refers to the very Federal regulations that Congress did revoke. Nonetheless, as shown below, a “BRC-like” across-the-boards release policy remained the goal of this DOE action, even in 1996 (see excerpts from the DOE implementation plan below). Further, in 1990 5820.2A was incorporated into DOE’s Order 5400.5, its primary radiation guidance discussed above, which includes chapter 4, on releasing items with residual radioactive contamination to the public.

Defense Nuclear Safety Board Recommendation 94-2 Conformance with Safety Standards at Department of Energy Low-Level Nuclear Waste and Disposal Sites

The Defense Nuclear Facilities Safety Board issued a recommendation on Sept 8, 1994 with a letter from John Conway to then-DOE Secretary Hazel O’Leary that contains sharp criticisms of the DOE approach to low-level waste and its adoption of 10CFR61 in Order 5820.2A:

> In establishing low-level waste burial ground source terms, current DOE guidance for performance assessments required by DOE Order 5820.2A allows the evaluators to neglect waste disposed of prior to 1988. Further, it allows evaluators to apply reference dose criteria to disposal facilities individually rather than assessing composite effects when contiguous burial facilities exist. A number of other factors also complicate site specific assessments. For example: (1) a commercial low-level waste burial site is situated adjacent to a DOE burial site at Hanford; (2) some sites have multiple burial grounds, a situation not explicitly addressed by DOE Order 5820.2A, and (3) agreements have been established with State/Environmental Protection Agency authorities for closeout of some burial sites under the Resource Conservation Recovery Act and the Comprehensive Environmental Response, Compensation, and Liability Act provisions.

The objections raised in this letter are noteworthy. That reference dose criteria are being applied in a segmented, piecemeal way rather than in a more inte-
grated, comprehensive manner is emblematic of the entire issue of how standards are used and abused in this system. When dose criteria are applied within a frame that is too small, multiple-additive, cumulative and synergistic impacts (see box on MACS) will be missed. As the letter goes on to point out, the situation is complex, more resembling a patchwork quilt than a blank slate. Nor is there any truly credible system for summing all the potential for multiple exposures that are resulting from multiple DOE sites simultaneously releasing multiple waste streams, materials and properties.

DOE responded to the issues raised in the Defense Nuclear Facilities Safety Board’s Recommendation 94-2 with an “implementation plan” and a cover letter, signed by Secretary O’Leary and dated May 7, 1996; both are posted (as of 03-29-07) at: http://www.deprep.org/1996-2/Fs96y07b.pdf. This implementation plan, issued after Congress revoked the NRC BRC policies is noteworthy for its explicit goal of developing an across-the-board lower limit for radioactivity that must be treated as “radioactive”--in other words, DOE is seeking a DOE BRC policy.

DOE states in this plan on Pg II-3, in Table II-1 on line 3: A lower limit for radioactivity below which waste can be managed as other than LLW is needed.

Managing waste “as other than LLW” (low level waste) is a euphemistic way to call for a new “below regulatory concern” policy--an explicit call for deregulation and release of radioactivity.

Another entry from same table (II-1) states: The DOE moratorium on off-site shipments of hazardous waste, WIPP delays, and problematic LLW forms (GTCC and special case) are contributing to storage problems.

(GTCC is “Greater Than Class C”) This statement is a direct admission that the lack of storage and disposal options is driving the deregulation and release activities. Further, this goal is explicitly stated on page II-5: Establish limit of radioactivity for LLW, below which it need not be managed as LLW.

Thus the adoption of the NRC regulations that require institutional control of radioactivity as radioactive waste are the vehicle for DOE to further implement deregulation and release.

While not directly cited by the DOE, ANSI N-13.12, is part of the regulatory “underpinning” in the radiation deregulatory scheme. The American National Standards Institute standard-setting process was used by the Health Physics Society in the wake of Congress’ repeal of the BRC policies. The fact that the Health Physics Society, the professional organization for radiation supervisors at the DOE, and all other establishments that institutionally expose workers, and others, to radiation, would promulgate their own standard is indicative of the frustration that Congress caused in the worlds of radioactive waste generators.

HPS endorses a 1 mrem/year for releases of residual radioactivity in its document Clearance of Materials Having Surface or Internal Radioactivity, 1999 (reaffirmed 2001), is posted (as of 03-29-07) at: http://hps.org/documents/clearance_ps012-0.pdf. From pages 2 -- 3: Clearance is the removal from further control, of any kind, of items or materials that may contain residual levels of radioactivity.

The final clearance standard was approved in August 1999 as N13.12, Surface and Volume Radioactivity Standards for Clearance. This standard provides both the individual dose criterion of 1 mrem per year for clearance and derived screening levels for groups of similar radionuclides. The standard also allows for clearance, when justified on a case-by-case basis, at higher dose levels when it can be assured that exposures to multiple sources (including those not covered by the standard) will be maintained ALARA and will provide an adequate margin of safety below the public dose limit of 100 mrem/y (TEDE). It was recognized that there were several complex issues that would make it difficult to fully implement the clearance standard. As a result, some of these issues were defined to be beyond the scope of the standard, including: naturally occurring radioactive materials, radioactive materials in or on persons, release of a licensed or regulated site or facility for unrestricted use, radioactive materials on or in foodstuffs, release of land or soil intended for agricultural purposes, materials related to national security, and process gases or liquids.

The commentary here recognizing complexity in projecting outcomes reveals another interesting angle on releasing radioactivity: if deregulated radioactivity were to be consumed, and become an internal dose-emitter, it would no longer “count” toward the annual dose limit of 100 mrem / year – precisely when it would be most potent and contribute the greatest amount of dose to the “receptor” possible!
N-13-12-1999 applies to volumetrically contaminated material as well as surface contamination.

A National Academy of Sciences Committee reviewed the deregulation issue and concluded in its 2002 report, *The Disposition Dilemma: Controlling the Release of Solid Materials from Nuclear Regulatory Commission-Licensed Facilities*, that the documentation used in ANSI N-13.12 to project doses from volumetric radioactive contamination were not reproducible and therefore could not be relied upon.

Because there is no government standard for releasing radioactive materials with volumetric contamination, there is pressure to adopt this ANSI document, despite its lack of public review or input.

DOE G 450.1-5 (Guide, 05/27/2005, EH-4)

Implementation Guide for Integrating Pollution Prevention into Environmental Management Systems

This Guide suggests non-mandatory approaches to integrating pollution prevention into Integrated Safety Management/Environmental Management Systems, and contains the disclaimer: *This Guide describes suggested nonmandatory approaches for meeting requirements. Guides are not requirements documents and are not construed as requirements in any audit or appraisal for compliance with the parent Policy, Order, Notice, or Manual.*

The guide is posted (as of 03-31-07) at: http://www.directives.DOE.gov/pdfs/DOE/DOEt text/newword/450/g4501-5.htm

HOW IT GETS OUT AND WHERE IT GOES

How is radioactive material managed in the DOE and NNSA nuclear weapons complex and how does it get out?

The military industrial nuclear complex generates radioactive, hazardous and mixed waste at every step of the atomic fuel chain. As at businesses, industries or households, waste routinely accumulates at weapons sites. The big difference is that these sites are using, processing and generating radioactive and wastes, which can cause health effects, including cancer, and genetic effects, such as birth defects. Policies geared to save money are driving the push to physically and legally transfer nuclear weapons-generated radioactivity from government control, and to deny their identification as radioactive. In other words, radioactive material is getting “out” and radioactivity that is “out” could go anywhere and be made into anything. We don’t know exactly where and into what products because “getting out” fundamentally means that there is no longer any tracking. The material, wastes and property are disposed, reused or recycled as if not radioactive, with no credible restriction imposed or information provided.

Part of the original intent of this research was to track released radioactive materials from DOE into commerce. At some sites we were able to observe records with the initials of individuals who were responsible for letting various pieces of equipment go. We spoke with the broker contracted to take scrap from one site that treats DOE/NNSA (National Nuclear Security Administration) scrap as clean and thus sends it wherever scrap goes. We observed items cleared to be sold at open public auctions. We reviewed authorized release documents for volumetrically contaminated materials that were released from DOE to landfills or companies. But we were not able to observe and independently monitor contaminated materials such as plastic, wood, concrete, asphalt, soil or others as they are released for recycle and reuse, although this is understood to be happening. It will take more scrutiny, expertise, detection equipment, resources and lucky timing to identify which items are contaminated and to follow their pathways into commercial products.

The track is open and there is nothing stopping materials from getting into consumer goods, but we were not able to follow it fully in this project. The exception is for some metals, thanks to the Metal Industries Recycling Coalition (including the steel, copper, nickel and brass industries and some specialty metals), which is resisting any contamination in their supplies for economic, health and public relations reasons. Those industries are incurring expenses to monitor their processes and products, physically and legally, to keep nuclear contaminated metal out of them. Meanwhile the nuclear waste generators have purchased the same detection equipment used by the metal industry to assure their contamination is not detected. As metal costs are rising, DOE is reviving its ill-advised efforts to process and fabricate the metal allegedly for “restricted” release, opening the door to letting it out into everyday commerce.

International release

Since the metal market, as well as other materials markets, is international, we are seeking information on the position of metal industries in other countries. DOE has funded research at a Swedish radioactive metal recycler, Studsvik, which processes and releases metal from decommissioned German (and possibly other European) nuclear power reactors and facilities. There is radioactive metal recycling in Russia (Ecomet-S) near the Sosnovy Bor nuclear reactors and reportedly at Chernobyl in Ukraine. We are seeking documentation of DOE or NNSA funding of other radioactive release efforts internationally, not metal only.

How does it get out?

From review of practices at DOE sites that are closing and continuing operations, the paths out for wastes, materials and property are similar to each other and to those at other federal agencies that don’t have radioactive contamination. The distinction is that DOE sites take steps to determine that the contamination is either not present or below self-chosen acceptable levels. The flow chart for making these decisions is included in the appendix. Once these “clearance” or “free release” or “authorized limits” determinations are made the waste, property and materials are released. Here are some of the ways it gets out.

What are the pathways to unrestricted public use of waste, material and property from the Department of Energy’s nuclear weapons complex?

“Cleared” Department of Energy property can be:

Sold for Reuse or Donated
- At Auctions --Auctions are held for most DOE sites to get rid of excess property. They are held regularly for property from Los Alamos, NM and Oak
Ridge, TN--both operating facilities, and West Valley, NY, a closure facility, have held them. Thorough scanning is time-consuming so it is only done statistically and in conjunction with “institutional knowledge” about the likelihood the items ever came in contact with radioactivity. It is not likely that complete scanning is done of entire surfaces, in drawers of desks and nooks and crannies and hundreds of items are released for sale, from filing cabinets to pumps to large equipment to sinks, lamps, and furniture.

- Offered on Federal government exchange systems:
 - There are federal exchanges within DOE for contaminated and “clean” property, wastes and materials. There are also exchanges with other, non-nuclear federal agencies. All government agencies can place property on federal exchanges making it available to others within their agency and or other federal agencies. Much was sold or donated from Rocky Flats during the closure process. [An example of a recent offer for sale of metal that is identified as contaminated is included in the appendix. Presumably this would be a restricted sale.]
- Sold or Donated directly -- If property is not sold on the federal exchanges, it can be donated or sold to others. Glove boxes used for remote handling of radioactive materials at Rocky Flats went to schools and businesses. Trailers from Santa Susana in California went to schools, only to be found to contain asbestos and returned to DOE. Fire trucks from Fernald or Mound were donated to the local fire department.
- Leased or rented for unrestricted use to companies or other entities sometimes through the local Community Reuse Organizations.

These transfers can be:

- Direct i.e. equipment and building materials, such as the water tower from the Mound, Ohio site which went to a community for reuse and the soil from Los Alamos, New Mexico that went to a golf course in the area.
- Indirect via processors or brokers. At Oak Ridge there is an annual contract with a scrap broker that picks up scrap and combines it with all other scrap he collects. It is all mixed together and not considered contaminated. The contract is renewed regularly.

The materials, wastes and property can go to

- Municipal and other solid waste landfills onsite or offsite of DOE,
- Incinerators,
- Hazardous and mixed waste TSD (Treatment, Storage Disposal) facilities,
- Recycling into raw materials for consumer goods, building supplies, industrial and public works projects, etc. (No metal recycling due to the Secretarial bans but metal pipes or dismantled structures can go to scrap.)
- Waste brokers – for storage or shipment to processing, recycling, reuse, disposal or direct release,
- Processors of waste and materials that can treat or reassess and release,
- Schools, community organizations and nonprofit charities,
- The original source,
- Buildings and rooms can be leased or rented to businesses and other tenants,
- Other recipients.

A note on landfills:
Resource recovery (scavenging and organized recycling businesses) at local landfills could enable contaminated items to get out. To prevent this, Los Alamos reported that they send potentially contaminated metal to the larger Rio Rancho landfill near Albuquerque rather than the closer Los Alamos County landfill because the larger landfill takes more steps to prevent scavenging or deliberate resource recovery. Habitat for Humanity, however, does have access to the Rio Rancho landfill for supplies, but supposedly knows not to take DOE metal or materials. Housing developments are being built immediately adjacent to the Rio Rancho landfill. The Los Alamos County landfill has limited space remaining and encourages recycling of metal and concrete, having a facility adjacent to it for cement processing.

A note on incineration:
Incineration does not destroy radioactivity. If sent to an incinerator, radionuclides can be released and spread in the air, concentrate in the ash and contaminate the incinerator. It facilitates internal ingestion and inhalation of radioactive materials. Other than PEcoS, a state licensed processor in Washington, the only commercial and DOE radioactive incinerators appear to be in Tennessee. Some nuclear power reactors and medical facilities burn their own radioactive and mixed waste but do not generally bring in waste from other sources. The NRC provision permitting onsite burning of radioactive wastes at reactors was approved in 1992 (almost immediately) after the Energy Policy Act reaffirmed states’ rights over disposal and offsite radioactive air emissions.¹

Commercial radioactive incinerators have been licensed and some are operating in Tennessee. Energy-

Solutions, formerly Duratek, in Oak Ridge has licenses for two incinerators. Aerojet, in Johnson City, supposedly has no license for incineration but it has “a condition on their processing license that authorizes oxidizing (incinerating) metallic uranium chips and grinding fines for disposal as dry solids.” Efforts to build an incinerator in Idaho were overcome by public and technical opposition. An incinerator proposed by RACE in Memphis, TN, now Studsvik/RACE, was licensed by the state (Tennessee Department of Environment and Conservation, TDEC) but halted by the local air authority. TDEC licenses three companies to process ion-exchange resins, some of the hottest so-called “low-level” radioactive waste, some capable of giving a lethal dose unshielded in 20 minutes. Studsvik has been thermally processing resins since 1999. Du- ratek in Oak Ridge and Hake in Memphis have the other two resin processing licenses and both have been purchased by EnergySolutions. We have not ascer- tained whether they are processing resins and, if so, how loaded with radioactivity they can be.

It now appears that, with one exception, Tennessee is the only state in the US to import and incinerate both commercial nuclear power and weapons radioactive waste. Some other permits allow application of heat (metal melt, resin processing, boiler) but are not listed as incineration. DOE’s only operating incinerator is at Oak Ridge.

Release via Processor or Broker

We provide a more detailed discussion of processors elsewhere in this report. In broad-brush, brokers collect from DOE and other customers. Some are specifically brokers for radioactive materials and wastes; some are general brokers who may not even suspect radioactiv- ity. Processors are contractors or licensed facilities that may accept a so-called “low-level” radioactive waste or alternate a radioactive material under the terms of their license, and then subsequently declare the waste or material to be “cleared” after either simply another scan, or in some cases treatment that may lower the level of contamination on a portion of it to declare it “clean.” An example is the Texas licensee, Waste Control Specialists, which advertises to DOE that they (apparently under Texas agreement-state authority) can clear DOE’s nuclear waste, enabling DOE site opera- tors to avoid the “authorized limits” process that would be necessary to release waste themselves.

Processors may grit or sand-blast, acid-etch, concen- trate, heat-treat, cut, dilute, volume reduce, solidify, remove liquids or in some cases simply store the radio- active material. (See chart of Tennessee licenses for examples.) Some processors can let radioactive material out — so to a large degree, the DOE simply transfers the process of release to an agent. The results for the public are the same, since some processors are permitted to release their still-radioactive material.

Materials sometimes go back to the source

In some cases DOE sends materials back to the source that provided them in the first place. At Rocky Flats, activated granular carbon was used to filter plutonium and other radionuclides from solvents. After processing it, Rocky Flats DOE got permission from DOE head- quarters to return it to the Calgon Corporation in Ken- tucky for reactivation. Since Calgon is not licensed to handle radioactive material, DOE tried to remove most of the plutonium, americium and uranium, but needed approval since some remained. The plan to reactivation the carbon at the same facility that activates carbon for normal, every-day non-radioactive purposes was ap- proved by DOE, the State of Kentucky and supposedly the company. It is unclear what the final disposition of the carbon was even though DOE did provide docu- mentation of this “authorized release.” An obvious concern is whether and how much plutonium and other radionuclides might have contaminated this unlicensed facility.

Overview of Wastes that Remain Under Ra- dioactive Controls

When it doesn’t get out, where does it belong? We summarize briefly how radioactive wastes are con- trolled when they remain identified as radioactive. Some radioactive waste stays on DOE sites in storage or disposal. It can also be sent offsite to other DOE sites or to NRC or Agreement-State-licensed commercial sites for processing, treatment and disposal. It is treated as high level, “low-level,” transuranic or mixed radioactive waste. Even when under control, leakage and problems are rampant, calling into question the reliability of release decisions by the DOE.

DOE’s Order 435.1, *Radioactive Waste Management*, identifies the options for disposal of so-called “low-level” radioactive wastes

2 Email [Followup on Information Request] from TDEC Arnott to NIRS D’Arrigo Wed 2/28/2007 9:43 AM, “Aerojet does not have an incineration license, but does have a condition on their processing license that authorizes oxidizing (incinerating) metallic uranium chips and grinding fines for disposal as dry solids.” In response to inquiry posed when what appeared to be an incineration license was observed at the Johnson City TDEC office, near Aerojet DU processing facility.

--onsite at facilities that have onsite disposal cells (ex: Fernald), centralized at another DOE facility (the two options are Hanford, Washington or Nevada Test Site-NTS), or
--sent offsite for commercial disposal (ex; EnergySolutions in Utah) or storage (ex: Waste Control Specialists [WCS] in Texas) or
--sent for commercial processing (ex: EnergySolutions in Utah, WCS in Texas, Pacific EcoSolutions [PEcoS] in Washington, Alaron in Pennsylvania, Permafix in Florida or Tennessee or any of the many other TDEC licensed processors in Tennessee). Some processors can now come to the waste and process or clear for release rather than shipping.

There are two centralized mixed (hazardous and “low-level” radioactive) waste disposal facilities designated by DOE
-- one at the Nevada Test Site
-- one at the Hanford site that currently takes mixed waste from Hanford only. A referendum overwhelmingly passed in 2004 in the State of Washington that called for clean-up at Hanford before more hazardous and mixed waste was brought in to the state.

Mixed waste sometimes goes offsite to commercial mixed or hazardous waste processing and/or disposal sites. Examples include radioactively contaminated oil going to Diversified Scientific Services, Inc. [DSSI or DSS] mixed waste boiler in Kingston, TN which generates energy. Los Alamos, Paducah and Oak Ridge have sent or considered sending mixed radioactive/hazardous waste to the commercial hazardous waste disposal site, Chemical Waste Management (CWM) hazardous waste landfill in Lewiston, NY. Los Alamos and West Valley have both used that site for radioactive or mixed wastes. The claim was made in Los Alamos that the background radioactivity at CWM is higher so more radioactivity can go there. Interestingly, the site is adjacent to the Niagara Falls Storage Site where K-65 ore is stored—some of the hottest radioactive uranium residues in the world. Both are adjacent to the Lewiston-Porter Kindergarten through Grade 12 schools.

DOE uses its internal orders and guidance to release radioactive waste to solid waste facilities such as BFI Pine Avenue Landfill, NY; BFI Conestoga Landfill, PA; Grows Landfill, PA and Carter’s Valley Landfill, TN. As indicated elsewhere, several Tennessee landfills, including North Shelby near Memphis, Middle Point near Nashville and Carter’s Valley near Johnson City take radioactive “special” waste from DOE and commercial nuclear waste generators, via state licensed processors. DOE can use Order 5400.5 and authorized limits to release directly to solid waste sites. In California, DOE attempted to dispose at solid waste sites but was stopped. They still send or attempt to send to California hazardous wastes sites, however.

Although the state-licensed C-746-U solid waste landfill on the Paducah, Kentucky site is not licensed for nuclear waste, DOE has adopted “authorized limits” permitting radioactive waste to be buried there.

Onsite Superfund or CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act) burial areas are located at several facilities including Oak Ridge, TN; Fernald, OH; Hanford, WA; Idaho National Labs, ID for wastes from their sites only.

The only operating radioactive incinerator in the DOE complex –the TSCA (Toxic Substances Control Act) incinerator is at Oak Ridge, Tennessee.

The first geologic repository in the world opened for defense transuranic (TRU) and expanded quickly to take mixed TRU waste at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico.

High level radioactive waste must, by law, go to an NRC-licensed repository and none exists. The proposed repository at Yucca Mountain is deeply flawed legally, technically and politically.

Wastes under DOE control are getting out... through leaks, fires and natural forces including biological vectors (like the Hanford prairie dogs and other burrowers, migrating birds that stop at Oak Ridge’s mercury or radioactive lakes, and other animals and plants).

A couple of examples of how DOE mismanages the radioactive waste that is kept “under control” make it difficult to trust that free release to uncontrolled destinations would be done responsibly and at the stated limits.

- At Hanford, Washington and the Idaho National Laboratory, waste from reprocessing irradiated nuclear fuel from atomic weapons reactors, which will remain hazardous for millions of years, was poured into soil “cribs” and into carbon

5 Crib: An underground structure designed to receive liquid waste that percolates into the soil directly or percolates into the
steel tanks, not expected to remain intact nearly as long as the waste is hazardous. Not surprisingly, it is leaking out into the Columbia River watershed and the food-chain.

- At the Oak Ridge Reservation (ORR), radioactivity is routinely released into the air and water. The Tennessee Department of Environment and Conservation DOE-Oversight Division, Radiological Monitoring and Oversight Program First Quarter 2005 Report states that “Radioactive contaminants released on the ORR enter local streams where they are transported to the Clinch River, which is used as a source of raw water by local drinking water suppliers.” Pages 8-9 state: “Over one hundred miles of surface streams and significant (but unknown) quantities of groundwater in East Tennessee have been contaminated as a consequence of activities on the ORR. Process wastes contribute to this contamination, but the major portion of water pollutants on the ORR can be attributed to releases from antiquated and deteriorating waste disposal, transport, and storage facilities. Contaminants released from these facilities migrate to groundwater where they are discharged to local streams and are transported to the Clinch River and Watts Bar Reservoir.” The downstream Watts Bar Reservoir has hundreds of curies of cesium-137, and mercury contamination located in underwater silt deposits. In the past, marina owners sued the DOE for contaminating the reservoir.

Many DOE sites and the places to which the DOE waste was sent have become Superfund sites—sites that pose so much danger that they must be cleaned up with government dollars with the intent of getting the potentially responsible parties to reimburse the government later once the cleanup is completed. EPA’s Superfund website defines Superfund sites as sites “which are uncontrolled or abandoned places where hazardous waste is located, possibly affecting local ecosystems or people.”

Three examples of sites (in Colorado, Ohio and Tennessee) to which DOE waste was sent that became Superfund Sites are summarized in this report.

Redefining Waste Categories to Reduce or Remove Radioactive Controls:
From High Level and TRU to “Low-Level”
From “Low-Level” to No Level

High-level radioactive wastes (irradiated fuel and the extractions from reprocessing that fuel) from DOE operations are required by federal law to go to an NRC-licensed permanent repository. Despite a federal court determination that wastes from reprocessing irradiated fuel are “high-level” radioactive wastes, DOE used its political might in Congress to begin declassifying it, legislatively, as “Waste Incidental to Reprocessing” or “WIR.” Driven in part by the ballooning costs of clean-up in the DOE nuclear weapons complex, some of the still-highly-radioactive reprocessing waste is destined to be grouted—mixed with concrete and left in place—at the Savannah River Site in South Carolina and at the Idaho National Labs, and left to leak into the aquifers and rivers. Hanford, Washington and West Valley, NY are similarly threatened. While renaming high level waste to a lower level is not exactly the same as the “clearance” or “free release” by DOE, these are both examples of “linguistic” detoxification, to reduce the costs but increase the hazards to our health and environment.

This trend to define away the radioactivity is not new. In the 1970s DOE raised the concentration level for “transuranic waste” or TRU waste from 10 to 100 nanoCuries per gram (1 nanoCurie equals 37 becquerels or radioactive emissions per second per gram). Transuranics are elements that are heavier than uranium, including plutonium, neptunium and americium, that are generally very long-lasting and that emit alpha particles, most hazardous when inhaled or ingested. Alphas can do five to twenty times or more damage than gamma rays to the cells they hit. Raising the amount of radioactivity from 10 to 100 nanoCuries per gram as the definition for “transuranic” waste saved DOE from having to clean-up many acres to square miles of land at Hanford, Washington and Savannah River Site, South Carolina, clearly saving money but raising risks.

So, DOE continues to work hard to change the classifications of radioactive waste to reduce disposal requirements and costs. Creative dose-based classifications of waste by DOE allow projections of its eventual leakage and exposure to determine how it is classified and managed.

How does DOE “clear” wastes, materials and properties for unrestricted release?

Unintentional or Accidental Releases from Uncontrolled, Non-radiological Areas

Some material, waste and property are directly released as regular trash or for reuse if it originates from a non-radiological area. Even if DOE had always pursued a goal to isolate and prevent the dispersal of radioactiv-
ity, it is safe to assume that over the decades, some amount of it would have spread around throughout the facilities and off the sites. It is not credible to assume that every non-radiological and non-controlled area is, in fact, clean (no DOE-generated radioactivity). Since detection is only done randomly in these areas, it is entirely possible that surface contamination, tracked or otherwise spread from other areas could get into the areas assumed clean and be released. These would be accidental or unintentional releases.

There is no dispute however that some materials and wastes that are known to be contaminated with DOE-generated radioactivity are deliberately released from DOE control.

Intentional Volumetric Contaminated Releases under DOE Order 5400.5 from Controlled Areas

DOE Internal Order 5400.5 Radiation Protection of the Public and Environment, Chapter IV (releasing radioactive waste and materials from controls) was adopted in 1990, without public knowledge or input, evolving from DOE Order 5820.2A, Radioactive Waste Management. A provision of that Order allowed “Waste containing amounts of radionuclides below regulatory concern, as defined by Federal regulations, may be disposed without regard to radioactivity content.” There had been public opposition to this provision, but it was expanded into Order 5400.5 Chapters II and IV providing criteria for releasing nuclear waste. According to DOE staff actively developing and implementing the release provisions, Chapter IV evolved from clean up experiences at FUSRAP (Formerly Utilized Site Remedial Action Plan) Manhattan Project sites and Surplus Facilities Management Program (SFMP) sites contaminated from the development and production of the first nuclear weapons. Many of those sites were identified, demolished and removed or cleaned for reuse in the 1980s.

DOE Order 5400.5 has a table of surface contamination levels for various categories of radionuclides. The table is a variation of the 1974 Atomic Energy Commission Regulatory Guide 1.86 that was created to de-commission reactors. Reg Guide 1.86 was not intended to set contamination levels for items to be released into unregulated use and commerce. DOE has added and changed some of the contamination levels in that table and it is the basis for releasing surface contaminated radioactive materials, wastes and properties.

7 DOE Order 5820.2A Radioactive Waste Management 9-26-88 Chapter III Low-Level Radioactive Waste Management, page III-7. Defines “Below Regulatory Concern” as “a definable amount of low-level waste that can be with deregulated minimal risk to the public.”

Intentional Surface Contaminated Releases under DOE Order 5400.5 from Controlled Areas

DOE Internal Order 5400.5 Radiation Protection of the Public and Environment, Chapter IV (releasing radioactive waste and materials from controls) was adopted in 1990, without public knowledge or input, evolving from DOE Order 5820.2A, Radioactive Waste Management. A provision of that Order allowed “Waste containing amounts of radionuclides below regulatory concern, as defined by Federal regulations, may be disposed without regard to radioactivity content.” There had been public opposition to this provision, but it was expanded into Order 5400.5 Chapters II and IV providing criteria for releasing nuclear waste. According to DOE staff actively developing and implementing the release provisions, Chapter IV evolved from clean up experiences at FUSRAP (Formerly Utilized Site Remedial Action Plan) Manhattan Project sites and Surplus Facilities Management Program (SFMP) sites contaminated from the development and production of the first nuclear weapons. Many of those sites were identified, demolished and removed or cleaned for reuse in the 1980s.

DOE Order 5400.5 has a table of surface contamination levels for various categories of radionuclides. The table is a variation of the 1974 Atomic Energy Commission Regulatory Guide 1.86 that was created to de-commission reactors. Reg Guide 1.86 was not intended to set contamination levels for items to be released into unregulated use and commerce. DOE has added and changed some of the contamination levels in that table and it is the basis for releasing surface contaminated radioactive materials, wastes and properties.

8 November 17, 1995 DOE Memorandum from R.F. Pelletier, Office of Environmental Policy and Assistance, Air, Water and Radiation Division: EH-412: Wallo: 2025864996 to Program Office, Field Offices and Other (DOE) Organizations, RE: Application of DOE 5400.5 requirements for release and control of property containing residual radioactive material (see Appendix). Thus, this memo determines how DOE and, later, NNSA sites may release radioactive waste, material and property that is contaminated with nuclear weapons generated radioactivity.

If it is determined that the volumetric contamination will give “individual doses to the public [that] are less than 25 mrem in a year with a goal of a few millirem,” the waste can go to a solid waste landfill, as long as the groundwater is protected to state requirements and the landfill operator and state solid waste regulator agree.

If it gives a dose of a millirem or a few millirems per year, field offices can make the determination. If it would give higher doses, permission must be granted from the head of Environment Safety and Health EH-1, now HS-1, the head of the Office of Health, Safety and Security established August 30, 2006.

Using RESRAD Computer Code to permit radioactive releases to landfills and public

To assist DOE in claiming that groundwater would be protected, the DOE and NRC contracted the DOE Argonne National Laboratory to develop the RESRAD computer code. It provides a tool to claim doses are being calculated as acceptable and justify dumping nuclear waste in solid waste landfills.

The same doses estimates can be used to allow dumping radioactive waste in a state-licensed solid waste landfill that is on the DOE property. There is such a landfill at Paducah, Kentucky, which takes DOE radio-
active waste although it is not licensed as a radioactive disposal site.

Internal DOE “Guidance” to Implement DOE Order 5400.5: November 1995 Memo\(^9\) and 2002 Draft Guidance\(^10\) are used to allow radioactive releases.

These are not laws or regulations approved through any public process. They are DOE staff guidance developed to assist the sites in clearing nuclear waste out economically.

The November 1995 memo explains how radioactive materials and property can be released into general commerce. First, the total exposures have to be estimated to be less than the 100 millirems/year individuals are allowed from all sources above background. Like the landfill releases, they should have a goal of a few millirems but can each give up to 25 millirems per year.

These “authorized limits” appear more and more like blank checks to let contaminated materials go because there is no process and no effort made to verify the exposures caused.

At Tennessee landfills which have been taking nuclear waste for over a decade, there appears to be no monitoring for radioactivity in the leachate.

Authorized Limits and Supplemental Limits

As described, DOE sites and headquarters can establish authorized limits for releasing radioactivity from DOE controls. The limits may be established for one situation, but can be used regularly or irregularly thereafter for additional releases that are determined to meet the criteria for that authorized limit. Since an authorized limit can be used over and over for different releases, and no overall assessment is needed, it is impossible to know the total amount of radioactivity released under each authorized limit. In addition, if the authorized limit becomes impractical, supplemental limits may be approved to allow more or different radioactive releases.

As part of this research effort we sought information on authorized limits and received some examples of approved and rejected requests for releases under authorized limits. What has not been provided, which the DOE Secretarial Memos from 2000 promised the public, is transparent public record-keeping for all releases. Thus, simultaneously with the release of this report, NIRS is filing a Freedom of Information Act request for all of DOE’s approved and pending authorized and supplemental limits and an accounting of all of the radioactivity that has been released under these limits.

Another guidance document—this time a draft—establishes DOE’s procedures for creating Authorized Limits and Supplemental Limits. Draft DOE Guide 441.XX requires a cost benefit analysis to be done by the entity wishing to release the radioactive waste. Again, doses can be as high as 25 millirems a year and should be coordinated with landfill operators and state regulators if going to landfills. If the doses from volumetric radioactive contamination are projected by the entity wishing to release the radioactive waste to be higher than a millirem a year then they must get DOE Headquarters approval.

If the materials, wastes and properties are surface contaminated only, they can be directly released from a radiological area if it they are believed to be at or below the levels listed in DOE Order 5400.5 (which is based on the 1974 Atomic Energy Commission Regulatory Guide 1.86 contamination levels). The misuse of Regulatory Guide 1.86 for free release and the inadequacy of detection procedures are discussed more later.

Records are supposed to be kept, but these are sometimes hard to find or interpret. More than once, the headquarters comments on requests for authorized limits appeared to be coaching the field officials in how to convey and defend the releases rather than reviewing them critically with the primary motive of protecting public health and safety.

The Authorized Limits and Supplemental Limits approved are not reported on a central database or in a systematic way for DOE Headquarters or the public to review as was mandated by the 2000 Secretarial Memos. We were able to obtain some complete reports on specific authorized limits through a Freedom of Information Act request and are initiating a follow-up request for all DOE, NNSA Headquarters and site Authorized and Supplemental Limits used, in use and under consideration.

Limitations: Types of Detection, Detection Levels, Procedures and Time Constraints

\(^9\) Ibid.
\(^10\) DOE G 441.1-XX, XX-XX-02 Implementation Guide Control And Release Of Property With Residual Radioactive Material for use with DOE 5400.5, Radiation Protection of the Public and the Environment, May 1, 2002
Even items that are scanned and declared “clean” may have residual radioactivity. Radioactive substances can be present below the levels of detection of the instruments used or simply not picked up due to timing, calibration and other errors. Further, many instruments can detect only specific types of radiation, for example gamma rays. Another type of radiation, such as alpha, may be present in large amounts but will not be detected if the wrong instrument is used. The amount of time given to scanning will impact the data. If done too fast the instrument may not register radioactivity that is there. If this happens, contaminated materials, properties and wastes, even in excess of “release levels,” can escape.

Items that could be released include tools, vehicles, equipment, building materials, metals, plastics, concrete, asphalt, soil, chemicals, and even the buildings themselves that are at many sites now being leased for non-radiological purposes with no restrictions.

Possible Loopholes in Metal Recycling Ban

In 2000, the Secretary of Energy promised the American public that no metal from radiation areas (see box on radiation areas) would be released for recycling into unrestricted commerce. Metal can go to unregulated landfills even though it is not supposed to go to commercial recyclers. As of early 2007, DOE is proposing “restricted” metal recycling which raises immediate concerns about how it will remain restricted after the first restricted use, whether exemptions will be given and whether it will be used to circumvent the 2000 bans.

The movement between controlled and uncontrolled areas on DOE sites could also be a loophole for radioactive metal to get out.

Unfortunately in preventing metal recycling, no similar promises were made for other materials or property including soil, concrete, asphalt, chemicals, buildings, metal components of building such as piping, equipment and more. All non-metal materials can be deliberately released with some radioactive contamination into recycling.

In fact, DOE has been encouraging the release of various materials, wastes and property, through its pollution prevention or P2 programs, “Green Is Clean,” and activities of the Oak Ridge-based Center for Excellence in Recycling.

As mentioned above, the release levels can be as high as those for large operating nuclear power reactors or entire decommissioned areas (25millirems/year).

Un fortunately it is difficult, expensive and time consuming to detect low levels of different kinds of radioactivity. Since there is no safe level of exposure to ionizing radiation, all contaminated materials and property

DOE RADIATION AREAS

There are numerous types of areas at DOE sites that have radioactive materials or generate radiation. No metal can go to commercial recycling from these areas. Some of these are:

- **Controlled Area** ([CA]) any area where access is managed to limit individual exposure to radiation and/or radioactive materials < 100 mrem per year
- **Radiologically Control Area** ([RCA]) Areas containing radioactive material areas or radiological areas < 5 mrem per hour at 30 cm
- **Radioactive material area** [Areas where radioactive materials are stored for long and short time periods, may be combined with RCA; various dose levels]
- **Radioactive material management area** ([RMMMA]) Areas where non-radioactive material may become activated (from bombardment by radiation), such as all accelerator housings. These areas are RCAs. Various dose levels and dose rates.]
- **Radiation area** [> 5 to 100 mR per hour at 30 cm, a 10 CFR 835 “Radiological Area”]
- **High radiation area** [100 mR per hour-500R per hour at 1 meter, a 10 CFR 835 “Radiological Area”]
- **Very high radiation area** [> 500 R per hour at 1 meter, No entry allowed. Typically not accessible, a 10 CFR 835 “Radiological Area”]
- **Personnel exclusion area** [No entry allowed. Secured areas with the potential for abnormal ionizing radiation dose rates not controlled by engineered personnel protection systems (PPS)]
- **Contamination area** [Regardless of dose rate, a 10 CFR 835 “Radiological Area”]

could pose health risks.

Recordkeeping: Mandated Reporting Not Taking Place; One of DOE’s Broken Promises
Despite a commitment to the public from the DOE Secretary in 2000 that there would be publicly available recordkeeping, this has not happened—at headquarters or at some sites.

When NIRS requested the cumulative information on releases that have been made from each site, we were told by DOE officials that, as indicated in a 2000 Secretarial Memo, these were to be reported in the ASERS, Annual Site Environmental Reports. After reviewing all available ASERS for all years for all 7 DOE sites in this research, we found that this reporting is not taking place. It was mandated in 2000 but as of late 2006-early 2007 it was not being done. Guidance documents on how to comply with the reporting requirements were available but with the exception of West Valley, NY which simply reported no releases under authorized limits, we were unable to find the required reporting. Interestingly West Valley, like many DOE sites including Los Alamos and Oak Ridge, release large amounts of property through public auctions.

Although some sites do keep detailed records, they are not easily accessible or meaningful without direction from the entity responsible for them. This was the case in Ohio, where both Mound and Fernald are closing. The records were being shipped out of town to a federal repository and those that were available for review did not convey the amount of radioactivity released or its destination. Only the initials of the person releasing the recipient were reported with no key as to who the initials represented.

The staff was very friendly, highly competent and helpful in finding and interpreting the sample information requested, but the information itself was not adequate to provide an understanding of the amount of contamination and its endpoint. Once the sites are closed there will be no staff to direct the interested public to specific clearance records. In addition, the records were in the process of being moved to a final location out of the area.

In reviewing the information, the only indication that contamination on released items was below the allowable release level was an instrument number and calibration date. Which instruments are used (which radioactivity to try to find) are determined by “institutional knowledge” of the area and an expectation of the type of contamination that is likely to be present. Amazingly, our researcher at Rocky Flats was told that there were areas of the site that need not be monitored for alpha contamination despite the fact that it was a plutonium facility that even burned plutonium, an alpha emitter.

Overreliance on Institutional Knowledge
The head of the Tennessee Department of Environment and Conservation DOE Oversight Division expressed grave concerns about reliance on institutional knowledge at such old, enormous sites as Oak Ridge, TN. The first step in releasing radiological property is to determine if the property has known or potential contamination. This is done relying on institutional memory or knowledge about what might be contaminated and with what types of radioactivity. (The Radiological Release of Property flow diagram is provided in the Appendix F.) Another TDEC official expressed serious concern about the folly of relying on computer models to predict radioactive migration underground. He said the problem with computer models is the longer people spend on them, the more they believe they mean something. His opinion was that they cannot predict the underground migration patterns or timing. These are relied upon in Tennessee (by other TDEC divisions) to allow “cleared” radioactive materials/wastes to be disposed of in solid waste landfills.

One of the troubling aspects of “clearance” is that the material is no longer recorded as, labeled or considered radioactive. The more important issue is not the mass of the material being released that is of concern, which the TDEC Solid Waste Division is supposed to keep track of for each landfill receiving deregulated or “special” radioactive waste. It is the radioactivity and the resulting undisclosed radiation exposures to unsuspecting individuals that is of real concern.

The regulations that govern the release of residual radioactivity are reviewed in greater detail elsewhere in this report but we offer an overview here to give some perspective on the loopholes that exist between regulations on paper and their implementation.

How Much Radiation Gets Out?
We don’t know. Apparently DOE doesn’t know. There is no cumulative tracking, measurement, quantification, record keeping or reporting on all of the DOE’s radioactive releases in terms of volume, weight, type of material or radioactive amounts or concentrations. The releases are based on estimated concentrations and doses or surface contamination levels, not total radioactivity. There is no estimate or compilation of radioactivity or radionuclides released. There is generally no verification or confirmation that the release levels are being met or exceeded. This is especially difficult since
it is a dose calculation that justifies some of the releases. In a few cases independent verification of surface contamination levels is possible but the expense is rarely incurred and the results are not made public.

How DOE decides what can get out

The Environmental Protection Agency (40 CFR 190) limits exposures to the public from each operating nuclear-fuel-chain facility to 25 millirems per year.

The Nuclear Regulatory Commission (10 CFR 20 Subpart E) allows closed, decommissioned nuclear sites to be released for unrestricted use if they are projected to expose members of the public to up to 25 millirems per year.

By comparison, the Department of Energy releases individual sections of property, portions of sites and portions of waste streams based on projections that each release could expose people to 25 millirems per year, and possibly higher. This is using draft guidance that has never been promulgated into regulations, but it is the procedure DOE field offices use to implement DOE’s Internal Order 5400.5. On November 17, 1995 an internal memo about implementing DOE 5400.5 stated that it allows each authorized limit or release to give up to 100 millirems per year to individual members of the public but encourages that they be less than that since 100 millirems per year is the total dose above background a member of the public should receive, and people can get multiple exposures. The limits should be selected, it states, to ensure doses to individuals using the property under “actual” and “likely use” scenarios will be well below the primary dose limit and at a level that provides a reasonable expectation doses will be less than the dose constraint of 25 millirem in a year, with a goal of a few millirem or less in a year. In fact, if volumetric releases are calculated to be less than a millirem a year, the field can approve them. If they will be higher DOE Headquarters (EH-1, after 2006 HS-1) must approve them.

It is clearly inconsistent to allow an entire site to meet a radiation dose limit, but to allow each piece of a site in the form of released waste material, to meet the same limit.

DOE’s Internal Order 5400.5 incorporates with some variations, the Atomic Energy Commission Regulatory Guide 1.86. That guide, (See Appendix I), provides surface contamination levels for releasing a reactor area from licensed control, not levels for unregulated disposal, reuse or recycling into everyday commerce. These levels, most of which were selected in 1974, “were never intended to be used as (a) release guideline for recycling purposes,” according to John MacKinney of the EPA in 1993. Others have agreed since the Reg Gd 1.86 levels were intended for clearing an area, not releasing materials that could be made into items with which the public comes into routine, intimate personal contact.

DOE has interpreted that it can simply clear items that have less radioactivity than the surface contamination levels in their Internal Order 5400.5. DOE has added and changed some surface contamination levels and is in process of changing some numbers currently.

Proposed Changes to Weaken 10 CFR 835 – Adopting Provisions of Order 5400.5

There is a current rulemaking underway in which DOE has proposed to adopt part of its Internal Order 5400.5 into the DOE “regulations” for worker protection from radiation, 10 CFR 835. 10 CFR 835 is known to have been stricter than 5400.5, but DOE is weakening it by incorporating 5400.5 into it. This appears to permit some hot spots of radioactivity in buildings that are leased by DOE or Community Reuse Groups at DOE sites to independent, non-nuclear businesses that unsuspectingly rent rooms and buildings that once housed DOE nuclear activities. These occupants may be exposed to that residual radioactive contamination. Another change in the regulations under 10 CFR 835 could be made in the definition of some controlled areas that have the potential to affect the bans on commercial recycling of metal in those areas.

14 MacKinney, John, U.S. Environmental Protection Agency Recycling of Radioactive Scrap Metal, presented at Radioactive Scrap Metal Conference, July, 1993, University of Tennessee

If DOE wants to release materials, wastes, property that are volumetrically contaminated, that is, have radioactivity embedded within, an extrapolation must be done from the surface contamination levels to allowable concentrations and doses. DOE hired Argonne to develop the RESRAD computer to project the doses people would receive from various levels of all the radionuclides and combinations of radionuclides. To make this calculation, many assumptions are made that cannot be guaranteed. Volumetric releases have required approval of EH-1, the top official in the DOE Office of Environment Safety and Health. Now that DOE has restructured that office it is part of the Office of Health, Safety and Security (HSS). ES-1, the top official in that office is responsible for approving or rejecting volumetric releases.

Because of public, local, state, other industry, worker and union opposition to radioactive recycling and release in the US, there is no legal, allowable release level. DOE has created its own internal allowable levels and procedures to release both volumetric and surface contaminated metals and other materials, wastes and property. Because of the insistence of the metal industry, along with public and local and state governmental concern, DOE has halted (as of this writing in April 2007) deliberate commercial recycling of potentially contaminated metal, defined as that present in control areas. (Some definitions of radiological and control areas are provided in the box.) The latest threat is a request for Expressions of Interest for companies to process contaminated nickel and other metal from uranium enrichment for “restricted” use within DOE or the regulated nuclear industry.

Increasing amounts of allowable contamination: Some risk comparisons

DOE Internal Order 5400.5 states: “The basic public dose limits for exposure to residual radioactive material, in addition to natural occurring "background" exposures, are 100 mrem (1 mSv) effective dose equivalent in a year...”

The Order further allows for “unusual circumstances” in which a site may request permission to temporarily allow doses up to 500 millirems a year.

The section of this report on radiation detection discusses the challenges of detection. The dangers of radiation exposure are covered in the section on Ionizing Radiation. It is worth noting here that in 1990 the federal government provided its own risk assessment for the chances of fatal cancer from radiation exposure. The Below Regulatory Concern Policy Statement (portions reprinted in the Appendix J to this report) by the Nuclear Regulatory Commission included projections for risk of fatal cancer from an ongoing exposure to 100 millirems of radiation a year over a lifetime. NRC projected that the same regulatory limit DOE is imposing on itself will result in 3.5 fatal cancers per 1000 members of the public exposed, or 1 cancer death in every 286 people exposed. Compared to earlier public discussion (circa 1965) about whether it is ok for an industrial activity to result in “collateral damage” of 1 cancer in a million members of the public, the escalation of the Atomic Age has lowered the bar dramatically on a “bag limit” for the public. It becomes even more worrying when independent radiation experts find risk of fatal cancer from this level of radiation to be as much as 10 times higher than NRC’s projection.

In fact a DOE staff-person, in advocating the now rejected changes to DOE internal Order 5400.5 stated that technically, DOE can expose people to up to 500 millirems per year. Guidance—and there are volumes of it—require DOE headquarters’ approval for volumetric releases greater than one or few millirems per year. But this is an internal DOE decision on allowable risk to the public and environment in addition to those already imposed by DOE and other nuclear facility operators. This risk has never been approved by any elected officials or public process—it is an internal assertion by DOE for its own guidance, with no enforcement possible by the public. It has never been approved by the public, by law or regulatory process. In fact Congress has previously rejected the levels and the concept.

How State Licensing is Circumventing Federal Opposition to Nuclear Waste Release

DOE is taking advantage of the favorable attitude or lack of oversight in some states toward nuclear activities. Tennessee appears to be the leader. Tennessee’s Department of Environment and Conservation (TDEC) has at least four Divisions with some connection to DOE and commercial nuclear power industry radioactivity: the Divisions of DOE Oversight, Radiological Health, Solid and Hazardous Waste Management and Air Pollution Control. The Radiological Health Division licenses processors that can survey and release nuclear waste. The Solid and Hazardous Waste Management Division allows this “special” waste to go into solid waste landfills. Radiological Health and Solid Waste have a Memorandum of Agreement (See Appendix H) streamlining the process of sending nuclear waste to solid waste landfills.

Tennessee appears to have the most nuclear waste processors of any state and is the most proactive. It expressly licenses profit-making companies to import nuclear power and weapons wastes from other states and countries to be re-characterized and released in the state. The Division of Radiological Health gives seven...
types of licenses to numerous companies for Bulk Survey For Release (BSFR). The nuclear waste is brought in and scanned or treated and surveyed to be released into the states’ solid waste landfills or for reuse or recycling. (See charts.)

Some of the processors could be releasing radioactive materials for recycling and reuse. The documentation of this is more difficult because companies do not willingly admit to accepting materials from DOE weapons sites, even if it is through a middleman such as a broker or processor. It is also possible that the recipients don’t even know that their raw materials may have originated at a nuclear power or weapons site.

As far as deliberately determining an “acceptable” level of contamination, DOE is clearly biased and has a bad track record at protecting the public, workers and environment from its nuclear refuse. It is unsettling to be asked to trust the DOE, with its abysmal history of environmental neglect and contamination, to authorize releases. It is just as troubling to trust the State of Tennessee which actually licenses companies to import and release radioactive materials into the states’ environment to make decisions about how much radioactivity to let out. Finally, it is worrisome to trust local community reuse organizations that could profit from releases and leasing of formerly utilized property to determine acceptable contamination levels.
Where It Got Out in the Past and Is Causing Trouble Today:
3 Case Histories

The Department of Energy expects the public to trust them regarding how much radioactive waste to let go. Based on past history this would seem ill-advised. DOE waste went to these three sites, all of which are now in either federal or state Superfund cleanup: Lowry Landfill in Colorado, Industrial Excess Landfill in Ohio; and a metal recycler with a landfill on site, Witherspoon, Inc. in Tennessee. In all cases there was public concern and outrage surrounding the contamination and cleanup, some of which continues to this day.

These sites suffer from leakage, incorrect monitoring and contamination assessment, secret agreements and other difficulties. DOE is listed as either a Responsible Party (RP) or a Potentially Responsible Party (PRP) for each site.

The thread that passes through all of these case studies is the lack of government oversight and responsibility. Once radioactively contaminated materials leave a weapons site, keeping track of where they go or trying to assess the risk they pose has proven too great for either the government or its contractors. These case studies clearly show this.

Those who cannot learn from history are doomed to repeat it. George Santayana

Lowry Landfill, Colorado

Rocky Flats, a Department of Energy weapons production facility, dumped at the Lowry site which started out as a bombing range and later became a landfill. Lowry had no provisions for radioactive or hazardous materials. While DOE claims that it dumped no radioactive materials at Lowry, the radionuclides present nearly always come from the DOE weapons complex. Due to poor management and resulting contamination, Lowry is now a federal Superfund site.

The Lowry site is located about 15 miles southeast of Denver, Colorado. It was a United States Air Force Bombing range until1964 when the United States ceded it to the City of Denver to be used as a landfill. Lowry Landfill accepted solid waste and industrial liquid waste in unlined waste pits or trenches with no measures to prevent seepage into surrounding soil. In 1984 Lowry was placed on the National Priorities List (NPL), becoming one of the nation’s more expensive EPA Superfund sites. In 1985 a barrier wall was constructed to keep onsite groundwater from moving off-site and a treatment plant was built to treat onsite groundwater. Recognized contaminants include several volatile organic compounds (VOCs) (www.scorecard.org) and radionuclides. Data from 1991 show elevated levels of radionuclides in water at the site, including plutonium. These data were generated by responsible parties (RPs).

In the interim between the collection of 1991 data and the Responsible Parties’ reevaluation of the site, several wells were capped or re-dug, including wells that indicated plutonium contamination. Additionally, several of the Responsible Parties were offered a “radiation premium” which they would buy into in trade for abrogation of responsibility for radioactive contamination at the site. A deal was cut between the City of Denver (which was partnered with Waste Management) and the Responsible Parties that was sealed from public view by a court decision. The exact nature of the language of this agreement still eludes the public.

EPA Region 8 issued a Record of Decision in 1994 regarding the Lowry site that allowed groundwater to be pumped off the site as wastewater through the municipal water treatment facilities. The public became concerned that this water was not being completely filtered for radiation, resulting in potential exposures. In response, EPA issued a 1995 report explaining their 1994 Record of Decision (ROD) and the apparently conflicting radiation contamination numbers. EPA Region 8 was attempting to claim that testing at Lowry which found plutonium and other nuclides was faulty.

But the company (Teledyne Isotopes) that did the original testing that found the plutonium, stood by their original tests that indicated plutonium, uranium and thorium were present.

Further, a Federal judge stated that …on July 31, 2000, the EPA Ombudsman issued a report which concluded that the “weight of evidence supports” citizens’ claims that “uncertainty” exists concerning radioactive

5. Letter from Teledyne Isotopes to Harding Lawson Associa-
tes, June 1, 1992
6. case # 1997-SDW-7 Adrienne Anderson v. Metro Wastewa-
ter Reclamation District
contamination of the Lowry Landfill Superfund Site. As a result, the Ombudsman recommends “further sampling and the development of sampling protocols to address the issue of the presence of radioactive material at the Lowry Landfill Superfund Site.”

The judge further found that the “discharge permit” which Metro Wastewater had fought to keep from being permitted as evidence in this lawsuit “includes plutonium and other radioactive material,” making it clear that plutonium and other nuclides are indeed a concern at Lowry.

The Denver Metro wastewater treatment facility receives groundwater recovered from the Lowry site which has been treated (for VOCs, semi-VOCs and heavy metals) but not for plutonium. Metro then monitors this water for levels of various radionuclides. The Metro wastewater permit (permit #I-118) allows discharge of plutonium and other radionuclides to be released into the public sewage system which is then spread as sludge on farmland for edible crops.

While Rockwell International, a U.S. Department of Energy contractor that was responsible for oversight at Rocky Flats weapons complex, is listed as a Potentially Responsible Party, it claimed that the 55,630 gallons of waste it sent to Lowry was not radioactive. Considering the kinds of radionuclides found at Lowry, this claim appears to be untrue. Or perhaps Rocky Flats dumped additional wastes at Lowry that were radioactive, without any record. In either case, DOE’s handling of radioactive wastes in this way was and is inappropriate and dangerous. It leaves very little trail, and subjects the surrounding community and anyone who eats the crops grown with water from the site to unknown exposure to radiation.

Rocky Flats contractor, Rockwell, remains a Potentially Responsible Party at the Lowry Superfund Site. The presence of radioactive isotopes at the Lowry site has never been adequately explained. Public inquiry on this matter has met with resistance, threats and personal recriminations leading to an ever-deepening suspicion and further obfuscation of the truth.

Industrial Excess Landfill, Uniontown, Ohio

The Industrial Excess Landfill (IEL) started as a sand and gravel mine. In 1966 it was converted to a landfill (old-style with no liners or engineering) that closed in 1980. The public, rubber industries, and hospitals, and others, dumped at the landfill, which is now a U.S. Environmental Protection Agency (EPA) Region 5 Superfund site. The U.S. Department of Energy is also suspected to have dumped at this site, which was not licensed or regulated for radioactivity. Local citizens actually saw a line-up of trucks with radiation symbols in the middle of night. The plutonium (Pu) contamination at this site most likely came from DOE sites, but determining which DOE facility is responsible would be difficult (though the excess of Pu-238 indicates the Pu came from Mound Laboratory).

The EPA Superfund website (www.epa.gov/superfund) does not list radionuclides as a concern at IEL, yet radionuclides were detected in the groundwater. Rainfall is flushing the permeable glaciated, sand & gravel site at a flow rate of up to 6 feet per day as reported by the US Geological Survey. This raises extreme concern that IEL could potentially affect a sole source aquifer that goes into 13 counties and is used by 600,000 people. Numerous radionuclides have been discovered at the site, including plutonium.

Plutonium was reported detected in the ground water at the IEL site in several wells, both on and offsite in 1992/93, 2000 and 2001. U.S. EPA has described them as "potential detections." In 2000 two wells were reportedly found to be contaminated with plutonium and an additional three wells in 2001. The levels of plutonium reported were above cleanup, health-based legal limits established at other DOE sites such as Rocky Flats in Colorado. For comparison, the limit for ground and surface water cleanup at Rocky Flats is 0.15 pCi/L for plutonium set out in the “Final Rocky Flats Cleanup Agreement.”

The testing of groundwater at IEL was sporadic and core samples of soils were never taken. Top radiation scientists have weighed in on this case with concerns that the testing methods used at IEL were suspect in several ways. For example, according to several experts in and out of government, tests for plutonium in water were improperly performed at IEL. Further, U.S. EPA used a method of screening for contamination known as Finished Drinking Water 900, which is meant for use on clean, finished public water systems and not raw, untreated dump water at a Superfund site. Experts at DOE have raised serious questions regarding the collection and handling of the samples including “field filtering” the 1992/93 samples by EPA, and lack of field preservation of the 2000/01 samples, stating that failure to immediately preserve the samples could set up conditions for potentially most of the plutonium.

7 Reported by Dr Marvin Resnikoff, Radioactive Waste Management Associates.
8 Schwartz, G.M. Buried Secrets, Cleveland Free Times Volume 14, Issue 25; http://www.freetimes.com/story/4185
9 data sheets from contractor hired by the Potentially Responsible Parties and analyzed at Oak Ridge
to be lost, and thus go undetected. The sensitivity of the actual testing has also been called into question.11

Independent experts have been forbidden site entrance and samples for proper testing, and many of the wells that showed plutonium or other radionuclide contamination have since been capped.12

Overarching issues:

1. Citizens around IEL have the following concerns: Improper monitoring which cannot show the totality or the magnitude of on- or off-site contamination,
2. Stonewalling access to IEL test wells for independent monitoring & failure to conduct core samples.
3. General improper collection and testing methods used according to several experts.
4. 33 monitoring wells were permanently sealed, preventing crucial testing from being conducted of those wells in the future, including wells that showed possible detections of plutonium as high as the Nevada Test Site.
5. No real cleanup of this 30 acre site in the middle of a community of approximately 30,000 people.
6. Testing methods used at IEL were the example used by EPA for all other sites suspected of containing radiation around the country.13 A policy change is needed to ensure that the U.S. EPA Finished Drinking Water Method is NOT used on raw, untreated dumpsite water. EPA needs to use methods with better sensitivity and mass spectroscopy. The Finished Drinking Water Method may mask or miss leaking of man-made radiation from a site, yielding dangerously misleading test results about contamination. As a result, a true picture of contamination may never be known and polluters would be able to walk away from dirty sites which are clean on paper, but could easily pose a great risk to unsuspecting communities.

Recommendations:

NIRS recommends that properly trained, independent experts are allowed onsite at IEL to measure radionuclide concentration in the remaining wells and holes. NIRS also recommends opening the capped wells or installing new test wells at the same locations and depths and measuring again. Cores samples (soils) should be taken near the "plutonium eggs." Independent measurements and monitoring must be done both on and off site to assess the type of contamination, the distance traveled and the danger it poses. Any testing should be on the unfiltered site water with mass spectroscopy, with samples being properly preserved upon collection in the field. Samples should be big enough to get a good measure. The source of the plutonium on site should be determined and proper cleanup should be undertaken with proper and full citizen input.

As of June, 2005, EPA was still in discussion with the PRPs for clean up compensation. Clean-up at the site will occur only after these discussions reach agreement.

"How can we trust the government to build more nuclear plants when the evidence shows we can't properly and honestly deal with the radioactive waste that has already been generated?"14

Witherspoon Radioactive Metal Recycling

In 1948, a metal recycling company opened in Knoxville, near Oak Ridge, Tennessee. The facility recycled radioactive metal from the Oak Ridge nuclear facilities. In 1981, the US Nuclear Regulatory Commission realized that 200,000 pounds of radioactive scrap metal, containing 1,760 grams of Special Nuclear Material (concentrated uranium 235) were missing.

Investigation of the matter revealed that while the material had been accounted as present at Witherspoon, NRC had no record of Form NRC-741, Nuclear Materials Transaction Report, which should have documented when the material came to the Witherspoon Facility. The contaminated metal apparently came from Babcock and Wilcox (B&W), a Department of Energy Contractor, in 1968 or 1969. B&W records document this transaction. Up until 1981 paper work submitted by Witherspoon claimed the contaminated scrap was still at the site. It now appears it may have actually left the site in 1969 or 197015, though it is still not clear where the material went. Confounding this mystery is a 1971 fire that destroyed the company's files, including all paper records of where this scrap went.

The metal could have gone to Knoxville Iron Company (KIC), which has since gone out of business. According to their then-president and a former general man-

11 Schwartz, G.M. Buried Secrets, Cleveland Free Times Volume 14, Issue 25; [HTTP://WWW.FREETIMES.COM/STORY/4185](http://www.freetimes.com/story/4185)

12 Schwartz, G.M. Buried Secrets, Cleveland Free Times Volume 14, Issue 25; http://www.freetimes.com/story/4185

13 Cleveland Free Times “Buried Secrets” Volume 14, Issue 25

15 NRC Report # 70-992/81-01
ager, they had an Atomic Energy Commission (AEC) license to smelt contaminated metal, but they let it lapse in 1970. KIC got most of their contaminated scrap (90%) from Witherspoon.

KIC also did not have any records and the only person who would know of such shipments was deceased. A search of the records of the Nuclear Regulatory Commission’s Office of Nuclear Materials Security and Safeguards revealed Knoxville Iron Company never had a Special Nuclear Materials license, the proper AEC license for handling nuclear materials.

However, the radioactive scrap could also have gone to Wolverine Metal Company in Detroit, Michigan, which recycles metal. They did have an NRC license, but in 1978 it was terminated at the request of the company. NRC site inspection claims that “the site and remaining buildings … were decontaminated to a residual radiation level consistent with current NRC guidelines.” Both Wolverine and KIC are listed among many commercial companies that performed nuclear weapons work, and were on but have been removed from the FUSRAP (DOE Formerly Utilized Site Remedial Action Program) list.

Apparently Witherspoon also smelted contaminated scrap and had a state license to do so beginning in 1968. However it appears Witherspoon lacked an equivalent license from the US Atomic Energy Commission (AEC). They needed both. In 1970, Witherspoon requested a smelting license from AEC but a search of the records reveals no positive response subsequent to this request.

NRC cited the following violations: 1) failure to complete and distribute forms reflecting transfer of licensed materials 2) submissions of incorrect forms indicating this material was still on the Witherspoon site 3) transferring scrap to a non-licensee. The Tennessee Department of Environment and Conservation found numerous violations since 1967 yet Witherspoon’s state license to handle contaminated scrap remained unaffected. Additionally, Witherspoon was cited for violating AEC/NRC regulations at least three times between 1970 and 1979 and also failed to pay a license renewal fee at least once.

In July 2002 the Subcommittee on Oversight and Investigations of the US House Energy and Commerce Committee noted in Order 90-3443 that Witherspoon is a Superfund Site grossly contaminated with radioactivity and other contaminants. The order states “DOE is listed as a potential responsible party under state Superfund regulations because a major portion of the contaminants of concern at the Witherspoon sites came from material purchased from a DOE contractor.” At the time of this order, DOE was in the process of addressing site contamination and interim measures have been taken to seal off the site as well as remove some of the contaminated material. The destination for contaminated materials is not mentioned.

Unfortunately, testing wells at Witherspoon were vandalized; ruining potential sample collection and testing equipment went missing. Drilling and trenching tests largely found no contamination. Lacking information on the testing methodology used, it is impossible to assess the validity of this data. A negative finding means little in a context where data collection was disrupted and there is no understanding of how the conclusion was derived.

NIRS spoke with an on-site manager at TDEC in Knoxville and was informed that most of the radioactively contaminated waste (a good deal of it metal and soil) being cleaned up at Witherspoon is being shipped to a landfill at Oak Ridge National Lab where some of the waste came from originally. He then said that material that fell under the NRC criteria for free release would go to a regular landfill or metal recyclers. The limit varies according to radionuclide, for instance if U-238 contamination is below 35 pCi/gm activity level it would be considered free release. The official stressed that most of the material does not fit this criteria and was uncertain whether any had actually been shipped under this criteria. In a follow-up phone call, he was asked to provide documentation of the free release criteria. The office stated that the criteria were contained in a final rule that was published in the Fed-

16 NRC Report # 70-992/81-01
17 Report # 999-90003/94005(DRSS)
18 Eisler, Peter, USA Today 09/21/00- Updated 08:52 AM ET http://www.usatoday.com/news/poison/022.htm;
accessed 4/20/07
19 History of the Witherspoon Problem,
http://web.utk.edu/~nolt/envrepts/WSPOON.htm
20 letter from Witherspoon to AEC dated May 1970
21 NRC Report # 70-992/81-01
22 History of the Witherspoon Problem,
http://web.utk.edu/~nolt/envrepts/WSPOON.htm

24 testimony of Mr. John Owsey, Tennessee Department of Energy and Conservation (TDEC), July 19, 2002 reprinted in “A Review of DOE’s Accelerated Cleanup Program and State-Based Compliance Agreement,” Subcommittee on Oversight and Investigations
26 Communication by Cindy Folkers, NIRS, on October 24, 2006.
eral Register, and said he would provide it; but has not to date. NIRS has not been able to find it either. He also added that trash that is not contaminated to begin with goes back to the Witherspoon Companies.

Although the original Witherspoon Company is closed the previous owners have opened and are operating other companies, including a metal recycling facility. Company names include David Witherspoon, Inc. and Volunteer Equipment & Supply, Inc. both at 1630 Maryville Pike in Knoxville (one of the same addresses as the original Witherspoon companies). Per phone communication on October 30, 2006, Volunteer Equipment & Supply, Inc. says it does not take scrap with radioactive contamination (it is unclear how the company knows the scrap material is not contaminated).

One troubling circumstance lingers among all of the other difficulties surrounding Witherspoon. If a clearance or “free release” level actually exists for this site, anything below this level could be considered uncontaminated when in fact, residual contamination below this level may be present. This linguistic decontamination (calling contaminated scrap uncontaminated) results in a situation where, when one asks the cleanup parties if radioactive material goes to unprotected, unmonitored dumps or recyclers, their answer could be “no”, but it wouldn’t be completely correct. It is not possible from the evidence available to know whether this is happening as of this point.

There is also no indication at this stage in the research that a free release level is approved for Witherspoon at the levels indicated above in either the regulations or other agency policies.
PROCESSORS OF RADIOACTIVE WASTE AND MATERIALS

One of the ways that radioactive waste gets out of the control and responsibility of the Department of Energy (DOE) and its National Nuclear Security Administration (NNSA) is via Nuclear Regulatory Commission (NRC) and Agreement-State-licensed processors and brokers.

These companies are licensed by NRC or Agreement States1 to receive, handle, manage, store, treat, dispose or otherwise process source, byproduct and special nuclear materials2. Processing of nuclear and mixed waste is often carried out to reduce volumes, to stabilize or to destroy chemical components that might accelerate leakage from burial grounds. Processing, including incineration, does not destroy the radioactivity. It may move the radioactivity from one portion of the waste to another or convert it from one chemical or physical form to another, but the radioactivity remains until it undergoes its own natural, characteristic decay (generally 10 to 20 half-lives). Processors themselves generate radioactive waste, routine radioactive emissions into air and water, and worker exposures. Processing is of concern because it incompletely removes man-made radioactivity and can lead to subsequent sale of the contaminated material into commercial recycling or to disposal at solid or hazardous waste facilities not intended to isolate Atomic-Energy-Act generated nuclear materials3.

In Tennessee, a state leading the country in licensing nuclear waste processors, the Tennessee Department of Environment and Conservation (TDEC) is the Agreement State agency with the responsibility and authority to regulate and provide permits or licenses for handling of radioactive material. TDEC has several divisions that involve licensing or oversight of nuclear power, weapons and other man-made radioactivity including the Divisions of Radiological Health (RH), Solid and Hazardous Waste Management (or Division of Solid Waste) (SW) and Department of Energy Oversight (DOEO). The Air Pollution Control Division can have a role as do four local air authorities.

Tennessee has been an Agreement State with the Nuclear Regulatory Commission since 1965, meaning that the state has the authority to license activities involving byproduct materials, source materials, and special nuclear materials in quantities not sufficient to form a critical mass. The Tennessee Department of Environment and Conservation’s Division of Radiological Health has over 600 licensees, tens of which are for processing and some for release of radioactive materials, sites or wastes from regulatory control. The state also licenses over 150 transporters—“license-for-delivery” licenses4.

As the nuclear industry makes great efforts to expand, growing numbers of old, highly contaminated nuclear power and weapons facilities are closing, reducing size, dismantling and decommissioning. Massive amounts of resources have been irreversibly contaminated and essentially sacrificed to the nuclear decisions of bygone eras. Companies that are moving out of the nuclear business are seeking to be excused of all liability (e.g., closing nuclear power reactors) and to incur minimal expenses for waste disposal. Sending all the contaminated materials to licensed waste disposal can seem exorbitantly expensive when compared to hiring an entity to survey and determine it can be sent to regular trash dumps or even sold to be reused in the open marketplace. In a federal legislative provision to encourage normal (not radioactive) recycling, recyclers were relieved of Superfund liability whereas the danger of a waste site being declared a Superfund site could render all who dumped there “Potentially Responsible Parties” or PRPs. The promised exclusion for radioactive recycling was not included despite bipartisan commitments. Thus processors are being hired to take the waste and treat, manage, dispose or release it under their own license and authority. DOE uses this “service” as well.

1 Agreement States have the authority to license activities involving byproduct materials, source materials, and special nuclear materials in quantities not sufficient to form a critical mass. Essentially they license most commercial nuclear facilities except reactors. There are 34 Agreement States [AL * AR * AZ * CA * CO * FL * GA * IA * IL * KS * KY * LA * MA * MD * ME * MN * MS * NC * ND * NE * NH * NM * NV * NY * OH * OK * OR * RI * SC * TN * TX * UT * WA * WI] as of April 2007, with 3 [PA * VA * NJ] in process of becoming Agreement States. Information on them and most of the agreements can be found on the NRC website: http://nrc-stp.ornl.gov/

2 As defined in the Atomic Energy Act in Section 11(e) 1 and 2 as byproduct materials. In 2006 additional definitions were added for 11 (e) 3 and 4 by Congress. In early 2007 the Nuclear Regulatory Commission is completing its final regulation to update and assert regulatory control over these additional, newly identified byproduct materials.

3 What is referred to here is the history of keeping nuclear power and weapons wastes at facilities intended to isolate or limit their release to the environment and public rather than sending to facilities without that intent or design. Some of those facilities may have taken naturally occurring radioactive materials before because they were never regulated under the Atomic Energy Act as requiring governmental control.

4 As of 2006 according to email messages from Charlie Arnott, Tennessee Department of Environment and Conservation, Division io Radiological Health, to Diane D’Arrigo
In the U.S., there has been clear public opposition to deregulating long-lasting, man-made nuclear waste. There has also been inept federal agency hiring of a contractor with clear conflicts of interest to provide technical support for deregulation rules while at the same time involved in a major contract profiting from release levels⁵. Federal agencies such as the NRC and EPA have not been able to set publicly acceptable clearance levels for man-made radioactivity. As we report throughout this study, DOE is implementing self-determined internal orders and guidance developed against and out-of-view of public will and scrutiny. DOE continues to pursue other ways to release or clear its contamination that circumvent public knowledge and opposition by local and state governments, workers, unions, affected industries and Congress. NRC is acting as strong proponents of reprocessing nuclear waste--essentially violating the public trust--and misrepresenting the U.S. public on this point when participating with international nuclear bodies, establishments and bureaucracies.

State-licensed Radioactive Waste Processors, part of International Nuclear Corporations

Since at least the 1980s, with almost no public knowledge, Tennessee has been blazing the way for nuclear processors. Some of the processors started up as small companies run by former DOE workers or contractors who stepped out on their own. The corporate structures, owners and license holders are constantly changing but the trend is for more and more radioactive processing facilities and consolidation in the hands of fewer large companies.

Hake in Memphis, Scientific Ecology Group (SEG) in Oak Ridge and Diversified Scientific Services Inc. (DSSI) in Kingston were some of the first, all of which have since been purchased by other companies. Hake and SEG were bought by Duratek (as were other waste companies). They are now owned by Utah-based EnergySolutions. DSSI or DSS is owned by Perma-Fix Environmental Services (which is in the process of purchasing a commercial nuclear incinerator outside of Tennessee.⁶ All of these continue to process radioactive and/or mixed waste imported into Tennessee. An offshoot of Hake, RACE (Radiological Assistance, Consulting and Engineering), in Memphis, processes large bulky components from nuclear facilities, among other functions. In 2006 the company was purchased by Studsvik which is one of the only companies in the world known to recycle radioactive metal from nuclear power reactors and other facilities into the open metal market. They do this in Sweden, but the metal market is international. In Erwin, Tennessee they process radioactive ion exchange resins, some of the hottest "low-level" radioactive generated by the US nuclear power industry⁷.

EnergySolutions (via the license it obtained by purchasing Duratek) also has a permit to process very radioactively-hot ion exchange resins, a license which was originally with SEG and companies with which it partnered or merged. Thus, some local Tennessee nuclear processors have become simply pieces of large international nuclear corporations whose bottom line far outweighs health, safety and local concerns about occupational and public radiation exposures.

TDEC’s Division of Radiological Health has 14 Fee Categories for licenses⁸ including a General License and numbered Fee Categories 1 through 13. There are categories for receipt, possession, processing, disposal of various amounts and types of radioactivity and use of devices that generate radiation. The specifics of the licensed activity are in the license itself. Release of nuclear waste and materials as if not radioactive is licensed as Bulk Survey For Release or BSFR license provisions. Bulk Survey For Release is (as of 2006) in Fee Category 11 (d) and is always accompanied by another Fee Category 11 license.

⁵ SAIC Science Applications International Corp was hired by DOE as part of the team to dismantle and recycle a large portion of the K-25 Oak Ridge Site for $278 million. At the same time they were developing the NRC’s NUREG 1640, technical basis for recycling radioactive metal and concrete. They were let go by NRC when this was made public and the NRC lawsuit against SAIC for compromising the NRC rulemaking is still in court as of early 2007. Meanwhile, DOE again hired SAIC to carry out their Programmatic Environmental Impact Statement on Radioactive Recycling and had to let them go due to the same conflicts of interest.

⁶ The only incinerators we identified were in TN, WA and FL. The scope of this project was not extensive research into the incineration portion of the processing so it is possible that there are others and we welcome information to update this review.

"Hottest" here means concentrated, intensely radioactive, able to give a lethal dose in less than an hour unsheilded depending how loaded with radioactivity from the core and irradiated fuel pool of reactors the resins and filters are.

⁷ Tennessee SRPAR (State Regulations for Protection Against Radiation) 1200-2-10-.31 Fees for Licenses. January 2006 revised.
According to a 2001 TDEC White Paper (see Appendix J), requests for sending some radioactive materials to Class D landfills, regulated by TDEC Division of Solid and Hazardous Waste Management, began going to TDEC Division of Radiological Health in the early 1990s. In the late 1990s more and more proposals were coming in and were getting backlogged. Consequently, the Radiological Health and Solid Waste Divisions streamlined the process for permitting radioactive wastes into Tennessee solid waste landfills. They created a systematic way to accelerate the determinations.

To speed up approvals of deregulated radioactive disposal in landfills, a hypothetical, “worst-case” scenario was set up using the RESRAD Computer Code (RESidual RADioactivity code developed by Argonne National Labs for DOE and NRC) to justify the dumping. Any waste stream that was less contaminated than the amounts in the scenario, or could be shown to be equivalent, could go if some conditions were met.

Some documents observed in TDEC files appeared to permit releases in the “few millirem per year range.” Releases to the state-licensed landfill on the Oak Ridge property can be higher.

TDEC inspects licensees and determines they are in compliance, but the compliance data are not available to the public. TDEC inspects licensees’ programs for release methods and procedures, not the actual releases. TDEC Radiological Health (as of 2003) did not keep records of what went out. The companies keep the records and they can destroy them when the licenses are closed or terminated. Records of measurements and calculations are maintained until license terminates-then are destroyed.

TDEC records were reviewed in 2003 and 2004 and with information gathered from 1999 until 2007. In approving the streamlined releases, no requirement appears to have been made to evaluate for the synergistic effects of radioactivity and hazardous chemicals that could be in the landfills.

Tennessee made this determination to accept additional exposure to members of the public even though it is not practical to enforce or limit the exposures. Our research did not reveal exactly how this decision was made or any requirements for monitoring or efforts to verify or enforce the exposure limits.

The state streamlined procedures for sending nuclear waste to landfills purport to limit the nuclear waste to no more than 5% of each approved landfill.

The state requires “quarterly summaries of all shipments” including the mass, average concentration and maximum concentration of each radionuclide shipped. These are documents that should be made public and reviewed to see if the reporting is taking place and how it is evaluated by the state, the waste site operator and all the nuclear generators and processors that dump at each site.

Tennessee Solid Waste Landfills Permitted to Take Nuclear Waste

At least four solid waste landfills in Tennessee have been approved to take deregulated nuclear waste from TDEC-licensed processors. These are the BFI Middle Point landfill in Murfreesboro in Rutherford County near Nashville, BFI Carter’s Valley or Carter Valley landfill near Johnson City and Kingsport in Hawkins County and BFI North Shelby landfill in Shelby County near Memphis. The Chestnut Ridge Landfill and Recycling Center in Heiskell, Anderson County, owned by Waste Management Inc. of Tennessee also takes released radioactive waste.

NIRS collected information on some of the companies that have and had TDEC licenses in 1999 and in 2006 to receive and process nuclear waste and materials, including releasing, storing, incinerating, compacting and other actions. We reviewed some specific files in 2003, 2004 and 2005. We also requested information in 2006 and 2007 directly from TDEC staff, who were very knowledgeable and responsive. Unfortunately, the information from the Radiological Health Division can only be obtained from knowledgeable staff because it is not published and the records are so enormous that guidance is necessary to find where desired information might be within the licensee files.

There are about a dozen major companies with processing licenses, but it is not clear this is a complete list.

10 Op. cit. footnote #9

11 The Chestnut Ridge Landfill and Recycling Center in Heiskell is a different facility than the DOE burial area with a similar name also in Anderson County but on DOE land. The DOE-owned and operated, state licensed hazardous waste burial area is the Chestnut Ridge Hydrogeologic Regime comprised of East Chestnut Ridge Waste Pile, Chestnut Ridge Sediment Disposal Basin, Chestnut Ridge Security Pits and Kerr Hollow Quarry on the Oak Ridge Y-12 National Security Complex operated with the Bechtel Jacobs Company LLC.
In addition, companies often buy each other, go bankrupt, have their licenses transferred to others or otherwise change identities over time.

As mentioned above, some of the landfills to which Tennessee nuclear waste processors could send waste are Carter’s Valley BFI in Church Hill, TN, from what was Duratek Bear Creek Metal Melt Facility at the time of records review and is (in 2006) licensed as Duratek but owned by EnergySolutions. Duratek at Oak Ridge was also reported to be able to send to Chestnut Ridge. ATG was approved to send nuclear waste to the Middle Point landfill run by BFI in Murfreesboro not far from Nashville. American Ecology Recycle Center also was allowed to send to Middle Point. Hundreds of thousands of tons are still going to Middle Point as of early 2007. Those licensed processor companies have been bought by other companies but the permits remain.

We were told that TDEC does not “track” Reg Guide 1.86 or surface contamination level releases to landfills but they do track the number of volumetric releases to landfills. In some cases the EPA COMPLY computer code was used to determine potential doses but the RESRAD code has since been adopted for the more systematical releases.

RACE had a license (license #R 24003 which became R 79273 RACE LLC) to super-compact and “free release.” The North Shelby landfill was approved to receive waste from that processor. As mentioned, the company has now become Studsvik RACE.

We provide two charts of the major processing activities licensed by TDEC Radiological Health Division and a list of processors holding some of those licenses in 1999 and in 2006. Several expressly permit the clearing or release of radioactive materials. The lists may not be complete but they certainly reveal a growing industry in nuclear waste management, processing and deregulation.

Processing can be done in various categories or combinations of categories. There is variability and judgment (by TDEC Radiological Health Division and the licensee) used to determine which categories cover the different activities the companies carry out.

The TDEC licensed activities regarding nuclear processing that were listed in 1999 are:

- Receipt of Waste Material
- Packaging for Transfer to Licensed Parties
- Preparation of Waste for Processing
- Treatment of Waste Materials
- Compaction
- Metal Melt Operations
- Resin Processing
- Wet Waste Processing
- Mechanical and Chemical Decontamination
- Onsite Decontamination and Waste Disposal
- Temporary Jobsite Decon and Disposal
- Decontamination for Free Release
- Survey for Free Release Reg Guide 1.86
- Volumetric Free Release
- Free Release of Lead
- Free Release of Soil and Other Bulk Materials
- Free Release of Equipment
- Free Release of Concrete and Asphalt
- Nuclear Laundry
- Machining of Shield Block
- Incineration
- Container Maintenance
- Store and Sort
- Shredding
- License Product Material Processors and Producers
- Encapsulation of Sources

(See 2 charts.)

Seven of these allow the companies to make determinations to deregulate or free release nuclear materials or waste as if not radioactive. These are: Decontamination for Free Release, Survey for Free Release Reg Guide 1.86, Volumetric Free Release, Free Release of Lead, Free Release of Soil and Other Bulk Materials, Free Release of Equipment, Free Release of Concrete and Asphalt. From there they can go to approved landfills or anywhere else including recycling.

Clearance, Release, Bulk Survey For Release (BSFR)

As previously stated, since at least the early 1990s, companies in Tennessee have been licensed to make the decision themselves on what is radioactive and what can be considered “clean.” As identified above, there are at least seven types of “Bulk Survey For Release” or BSFR licenses, which, as of 2006, are held by a small and changing number of companies. Some of these companies can make the decision that their own waste is releasable as not radioactive—some can do this for other companies or the DOE. One of the services they provide is to deregulate or clear radioactive waste for their customers. BSFR, or Bulk Survey For Release, is the mechanism for deregulating nuclear wastes. The specific criteria for each company to make these decisions are in their individual licenses at the regional TDEC office and at the Nashville headquarters office.

There is “reciprocity” between some Agreement states for some licensing, meaning that a company licensed to perform an activity in its home state might be able to do so in other states without the residents of that state
even knowing about it. It is not clear how this reciproc-ity applies to companies with licenses to deregulate nuclear waste, but presumably a nuclear generator in Tennessee or another state could hire the TDEC-licensed company to come in and survey their site or materials and declare them acceptable for “free re-

lease,” even if that state did not allow such a determination. It is also possible for companies licensed else-
where to come to Tennessee and carry out their li-
censed activities in Tennessee.

According to the 2001 TDEC White Paper12 (see Ap-

pendix J), approved by the Division of Radiological Health director, deputy director, health-physics con-
sultant and key managers, increasing numbers of re-
quests to dispose of low-concentration radioactive wastes in the state’s Class D solid waste landfills were causing backlogs. To speed up approvals of deregu-

lation and key managers, increasing numbers of re-

quired and allow its residents to be exposed, unknowingly, in-

voluntarily to radioactivity from nuclear waste.

TDEC was affirming that an additional millirem a year to Tennesseans for every accepted release to state-

approved landfills was permissible. They made this decision while knowing there would be more than one waste stream, since the backlog of requests motivated the accelerated process for approvals.

Tennessee made this determination to accept additional radiation exposure to members of the public even though it is not practical to enforce or limit the expo-

sures. For a fee, nuclear waste can be more economi-
cally buried in potentially leaking solid waste facilities, potentially increasing the risks those landfills pose from leakage, from use of the landfill gas if radioactive gasses form and from synergistic effects. Our research did not reveal any requirements for monitoring to actually verify or enforce the exposure limits were not be-
ing exceeded. Partly this is due to the inability to physically measure exposure—it must be calculated based on assumptions (see radiation chapters).

RESRAD

The RESRAD computer code, which had been design-
nated as an acceptable tool to justify sending the nu-
clear waste to solid waste landfills for DOE and NRC, was approved for use in the state. RESRAD was origi-

nally developed for DOE by DOE at Argonne National Laboratory to implement DOE’s own free release of volumetrically contaminated nuclear wastes, materials and property under DOE Internal Order 5400.5. The NRC also supported the development of the code to justify releasing contaminated property from licensee liability in its regulations 10 CFR 20, especially the License Termination Rule, Subpart E and 10 CFR 20.2002 Alternative Methods of Disposal. So Ten-

nessee decided to permit its licensees to apply the code to nuclear waste brought in from DOE or NRC and Agreement State licensed generators. The generators pay the processors (and the processors pay TDEC for the licenses) to take their waste and the processors utilize a computer code to deregulate the waste and send it to regular trash landfills in Tennessee.

The RESRAD computer code does not incorporate or factor in the synergistic effects of radioactivity and other envi-

ronmental stressors such as chemicals into its projected doses. It is common knowledge, but not part of the so-
called acceptable risk calculation, that health effects are greater than additive for exposures to chemicals and radiation together. In addition, chemicals in a land-

fill can accelerate migration of the contents of landfills including radioactivity.

The RESRAD computer code was designed to project the doses members of the public or workers might re-

ceive in the future from abandonment of some set amount of radioactive materials today. Although claims are made that code has been validated, which means proven to give the correct projections when compared to real world situations, our researchers were unable to identify any validation for the RESRAD code for land-

fills. The RESRAD Recycle code for recycling radio-

active metal into consumer goods was put through a DOE-funded validation exercise (at Studsvik in Swe-
den) but it was not convincing and focused on worker doses, not doses to people in daily contact with items made from radioactive metal. Regarding the RESRAD code used to determine doses from landfills, no proof that it was even in the ballpark could be found. In addition, projecting leakage of any materials from landfills is highly speculative.

According to landfill groundwater expert, Dr. G Fred Lee13, “There is no reliable way to properly predict

12 Ibid.

13 G Fred Lee statement to Diane D’Arrigo on Monday February 26, 2007; From his website, www.gfredlee.com: “Dr. G Fred Lee has a PhD in environmental engineering from Harvard University. A major area of his specialization there was aquatic chemistry, which focused on the transport, fate, transforma-
tion, and control of chemical constituents in aquatic (surface
when high density polyethylene liners in an MSW [Municipal Solid Waste] landfill or Class C landfill are going to fail. They are going to fail. There is no question they will fail. The issue about that is not if but WHEN and that is unknown. It relates to the fact that there are a whole host of reasons they fail including free radical attack. It can take hundreds of years but that is extrapolating beyond any reasonable approach.” He did not believe RESRAD or any code can reliably predict when any doses would be delivered.

In addition, the RESRAD computer code relies on a secret base code. The underlying equations for the various assumptions are not revealed publicly even though the code was developed primarily with U.S. tax dollars and is used to justify release of corporate and government nuclear waste generators from liability for the radioactivity they produce.

The claims are often made that the RESRAD code has been benchmarked (compared with other comparable codes), validated (shown to have the correct calculations) and verified (shown to be accurate based on real-life comparisons). There are several RESRAD codes and the one used for landfills has not been validated, to the best of our ability to ascertain. We researched and inquired directly with the authors but got no information on validation of the code used for landfill dose calculations. The RESRAD website14 indicates that metal recycling code RESRAD RECYCLE was validated but we would urge caution on accepting that assertion as there appear to be flaws and invalid comparisons in that validation effort.

Other States
Although Tennessee appears to be the leader in importing, processing and releasing nuclear waste, other states are beginning to follow suit.

It appears that Texas was in discussions with the NRC in 2005 regarding its stricter-than-federal regulations for releasing nuclear waste into the environment. Numerous states require continued regulatory control over nuclear wastes. Texas had provisions to allow release of short-lasting radionuclides only. Longer-lasting radionuclides required license control. Waste Control Specialists (WCS), based in West Texas (just across the New Mexico state line from the proposed LES uranium enrichment facility), is applying for a nuclear waste disposal license from the State of Texas but as of April 2007 did not have such a license. WCS does, however, have state licenses for hazardous waste storage, treatment and disposal and for storage and treatment of radioactive waste. The company promotes, among its “services,” the ability to circumvent the DOE’s “Authorized Limits” process for release of nuclear materials, wastes and properties from DOE sites. DOE site managers can pay WCS to take their nuclear waste rather than going through the hassle of evaluating and recording their own decision to release it. Waste sent to WCS in Texas, will be accepted as radioactive but then WCS can re-characterize it (using Reg Guide 1.86) or it can process and then recalculate it to be “not radioactive” and releasable or disposable at their site which is not licensed for nuclear disposal. Thus it appears that WCS can dispose of it on its own site if hazardous, or at any solid waste site if no hazardous components are present.

Pennsylvania, which is not an Agreement State yet but is on its way, appears to have violated its own state law prohibiting nuclear waste in any location other than those specifically licensed for such material. The Pennsylvania Department of Environmental Protection set permissible contamination levels for all of its solid waste facilities (landfills, treatment facilities, recycling centers) de-facto allowing radioactive materials in as long as they are not detected above those levels. In addition, Alaron15, a nuclear waste processor in Pennsylvania licensed by the NRC, processes DOE waste from Ohio and Kentucky.

Washington: In the State of Washington, PEcoS, near Hanford, is licensed to incinerate and do other processing. Hanford has sent hazardous, suspect radioactive, contaminated metal to a regular metal processor resulting in alleged worker contamination and injury.

New York: NYS Department of Environmental Conservation allows DOE mixed radioactive and hazardous waste to be dumped at the Chemical Waste Management hazardous waste site in Lewiston, NY and DOE has listed the Pine Avenue landfill as an option for some nuclear waste.16 Oak Ridge and Los Alamos have sent waste to CWM.

Transport regulation exemptions = de facto allowed radioactivity to solid waste facilities

16 DOE Power Point on Implementing Authorized Limits 2005.
Deregulation of nuclear transport regulations could increase the amount of radioactive materials entering solid waste facilities.

Unofficially but routinely, Department of Transportation (DOT) and NRC exemption levels for radioactive transport have been used as levels for exemption of radioactive waste from regulatory control for access to landfills and other solid waste facilities. NIRS and four other organizations sued DOT and NRC for adopting weaker exemption levels (for a majority of radionuclides) for transport partly because they could be used as new levels for release and partly because they increased public and transporter health and economic risks. The courts dropped the suits on jurisdictional and standing issues without addressing the content. So the international transport recommendations (dubbed TSR-1 or STR-1 by the United Nations transport agencies) developed by nuclear advocates went into effect in the U.S. in October 2004. They were developed through the IAEA precisely to facilitate deregulation of nuclear waste internationally and to allow it to be transported without labeling or tracking. DOT and NRC deny this step toward deregulating nuclear wastes, but brokers do use these levels, perhaps unofficially, and illegally to deregulate waste for customers and dump as if not radioactive.

Incineration and Heat Treatment of Radioactive and Mixed Wastes

Tennessee is one of the few states to license the commercial incineration and thermal treatment of nuclear waste. It is the only state in which DOE is burning radioactive waste.

Among the Tennessee companies that have licenses or license conditions or other permission to incinerate or heat treat radioactive waste is Studsvik/RACE, which has a TDEC license for an incinerator in Memphis, but was prevented from operating the incinerator by the local government air authority and community opposition. In early 2007, Studsvik withdrew its incinerator application for Erwin, Tennessee due to community opposition. In Erwin, Studsvik now proposes to expand its existing thermal process for ion exchange resins and other radioactive wastes from nuclear power reactors. The process called THERmal Organic Reduction (THOR) process, is a “pyrolysis/steam reforming technology” which started up in about 1999. The ion exchange resins “treated” are among the radioactively hottest so-called “low-level” radioactive waste. They become loaded with plutonium, cesium, strontium, iodines—all the same radionuclides that are considered “high-level” waste if they stay in the fuel rods but which become “low-level” once they leak out. The resins are used at reactors to filter the cooling water in the reactor core and fuel pool to remove the radionuclides that leak out of the fuel rods. According to the Government Accounting Office GAO-RGED98-40R Radioactive Waste: Answers to Questions... May 22, 1998 pp.50-52 Class C “low-level” radioactive waste (which includes heavily loaded resins) can give a lethal dose, if unshielded, in less than an hour (20 minutes for doses of 500 rads per hour). Wastes at Studsvik can have surface doses of up to 400 rads per hour.

EnergySolutions (formerly Duratek, GTS Duratek, SEG and Westinghouse in Oak Ridge and formerly Hake in Memphis) has two licenses for operating radioactive incinerators at its Oak Ridge Bear Creek Road facility. It also has been melting metal, including depleted uranium, for many years. According to TDEC, EnergySolutions also has a license for resin processing. This is most likely the Q-CEP process developed by Molten Metals, or M-4, several years ago.

Aerojet, in Jonesboro, TN, which processes depleted uranium, has a condition of its license that “authorizes oxidizing (incinerating) metallic uranium chips and grinding fines for disposal as dry solids.”

DSS, DSSI or Diversified Scientific Services, Inc. in Kingston, TN (a wholly owned subsidiary of Perma-Fix Environmental Services of Oak Ridge, TN), operates a boiler in Kingston for mixed waste but is not listed as having a permit or license to incinerate radioactive materials. According to the TDEC fact-sheet on DSSI, it can “combust blended liquid waste fuels containing hazardous and low level radioactive constituents while continuously controlling system emissions within established RCRA, Clean Air Act, and radioactive materials license limits.”

Another state found in the research for this report to allow commercial incineration of nuclear wastes is Washington, where Pacific Eco Solutions or PEcoS incinerates waste. The marketing contact is based in TN. PEcoS is owned by Perma-Fix, which also owns DSSI and East Tennessee Materials & Energy Corporation in Tennessee (which operates from the K-25 portion of the DOE Oak Ridge site).

19 http://www.state.tn.us/environment/swm/ppp/dssifactsheet.pdf accessed 4-10-07 fact sheet Diversified Scientific Services, Inc. direct fired fuel boiler system
Oak Ridge, TN is the home to the only DOE radioactive incinerator operating in the country, the TSCA (Toxic Substances Control Act) incinerator which can burn mixed waste from Oak Ridge and other DOE sites.

Efforts by industries and DOE to build new radioactive incinerators have been repeatedly defeated across the country over the years (including in NY, PA, and ID). As with all processing methods (other than transmutation which is not a process in practical use), heat does not destroy the radioactivity. The chemical bonds may break and chemical structures and phases change but the radioactive isotopes remain just as long as if not heated. So the process has the very large danger of dispersing radioactivity into the air (where it can be taken internally directly by inhalation or indirectly by getting into the water and food chain where it can be re-concentrated and ingested) concentrate in ash or other solid remaining after the thermal process and contaminating the incinerator or processor.

Licenses for Free Release and Bulk Survey For Release--BSFR

As described above, a group of “processses” that are of special concern are those that allow re-characterizing the radioactive waste to make a determination that it is below some threshold of contamination followed by its release as if not radioactive. Some processors treat the waste in various ways such as acid etching or grit blasting to remove surface contamination and then declare the material “clean” enough to recycle into commerce or dispose as regular trash. Some have permits to bring waste to their own sites or to carry out the determination at the customers’ sites.

There is an arrangement between the TDEC Divisions of Radiological Health and Solid Waste whereby Radiological-licensed processors can send some of their waste to regular landfills in the state. In some cases the TDEC Department of Solid Waste does calculations using the RESRAD Computer code to predict that the doses from these landfills from the nuclear materials being disposed there will be “acceptable.”

It is unclear under what authority TDEC approves this radioactive release, since Congress revoked the NRC’s policies that intended to do it.

Since some of the BSFR licenses allow for unrestricted free release, in addition to going to landfills, some radioactive wastes, materials and property could get into commercial recycling and reuse. Equipment, asphalt, concrete, soil, plastics, wood, glass, paper and metal (except if it is from DOE-controlled areas) and other materials could get out this way. Closer tracking of these paths is needed to identify the destinations.

Tennessee licensees

According to TDEC, in December 2006 with follow-up in February 2007, RACE, Duratek Services, Studsvik, Diversified Scientific Services, East Tennessee Materials and Energy, IMPACT Services, ToxCo, and Philotechnics were licensed to receive radioactive waste material. Others who have licenses include Nuclear Fuel Services in Erwin, Tennessee, MSC or Manufacturing Sciences Corporation (which was bought by Duratek so is now part of EnergySolutions), Aerojet, UniTech (formerly KER Services) with a radioactive laundry license, Alstom Power (formerly Combustion in Chattanooga), Shaw Environmental (formerly IT Corporation). In 2006 EnergySolutions purchased Duratek and its previously-purchased processing and disposal companies but the license names had not changed as of the information request.

All of those licensed to receive radioactive waste materials--RACE, Duratek Services, Studsvik, IMPACT Services, ToxCo, and Philotechnics--have licenses for Bulk Survey For Release. The websites of these companies give estimates of the amounts and types of waste they have “free released” for customers.

All of these companies also are licensed for Preparation of Waste for Processing Treatment of Waste Materials Wet Waste Processing Onsite Decontamination and Waste Disposal Store and Sort

Some of the major processors in TN include:

1) Studsvik/RACE in Memphis and Studsvik in Erwin. RACE got an incinerator permit from the state TDEC but the local air authority for Memphis prevented it from being used for a few years. Then Studsvik bought RACE and tried to get a similar incinerator license for Erwin, TN. Community opposition halted it. As mentioned under Incineration and Heat Treatment above, Studsvik is already processing some of the hottest so-called “low-level” radioactive waste in the country with nearly no public knowledge of the activity. They plan to expand that process.

RACE, prior to its takeover or merger with Studsvik, was handling heavy equipment decontamination, sectioning or large components and grit blasting to clean surfaces.

2) EnergySolutions, the Utah-based, rapidly-expanding nuclear disposal company, bought numerous nuclear
companies in Tennessee and elsewhere including Duratek which had taken over Hake in Memphis, licensed to decommission nuclear reactors and to accept metal sheets, plexiglass, wood and large components for processing and release. Duratek (which had been GTS Duratek), Scientific Ecology Group (SEG) and some metal and ion exchange resin melting companies in the Oak Ridge area, has licenses to run two radioactive waste incinerators, a metal smelter, several BSFR Bulk Survey For Release permits, and more. They also own MSC (Manufacturing Sciences Corporation) which processed and released some radioactive metal from the large ($278 million “fixed price”) DOE-BNFL/SAIC/et al contract to clean up three huge uranium enrichment buildings at the K-25 area of Oak Ridge, Tennessee. They run burial grounds at Barnwell (SC), Oak Ridge (TN) and Toole County (UT) and are bidding on DOE (GNEP) reprocessing proposals.

3) ToxCo, in Oak Ridge, is a DOE Basic Ordering Agreements (BOA) company pre-approved to do processing work fast. Both ToxCo and Duratek/ EnergySolutions have metal melt licenses but state they do not free release metal.

4) IMPACT Services is a TDEC licensed processor at K-25 on DOE’s Oak Ridge property. Among its services, it can “clear” or release volumetrically-contaminated materials.

5) Philotechnics creatively implements clearance and release procedures to maximize the amount of material “cleared” from radiological controls, saving customers money--likely meaning more unregulated radioactivity.

Circumventing DOE’s Radioactive Metal Recycling Ban

Before the radioactive nickel from the K-25 cleanup could be released, public, worker and metal industry opposition prevailed and the DOE bans (moratorium and suspension) were placed on commercial recycling of radioactive metal from DOE. This resulted in prevention of nuclear contamination of the metal supply. The Community Reuse Organizations at Paducah (PACRO, Paducah Area Community Reuse Organization) and Oak Ridge (CROET Community Reuse Organization of East Tennessee) have been strong advocates of selling the surplus contaminated metal. These groups identify and sublease DOE property and equipment and hope to benefit from the sale and reuse of the contaminated metal at both sites. They have advocated overturning the bans on commercial metal recycling.

Entities of DOE have also been attempting to get around the metal recycling bans. In apparent violation of the spirit of the ban, DOE at Paducah put out a Request for Proposals to develop concepts and procedures for releasing the metal.

In addition, the University of Kentucky (KRCEE)20 received contracts to pursue development of processes that would lead to or be prototypes for releasing the radioactive metals despite the bans that are in place. Several DOE-funded research projects were carried out to facilitate radioactive metal processing and recycling.

DOE made an attempt to bypass the suspension and moratorium on radioactive nickel, for example in December 2001, when the field offices were scheduled to discuss making provisions to release it. The metal industry and public objected strenuously and that plan was halted.

In August 2006, DOE proposed in the Federal Register to adopt some of the provisions of its internal order 5400.5 into its worker radiation exposure regulations, 10 CFR 835 (FR Aug 2006 comment deadline October 2007) This move, if adopted, could allow radioactive contamination in the buildings that DOE leases to the local community reuse groups at its sites, which they subsequently lease to industry and other users that may not have anything to do with radioactive processes. They could be used for food storage or day care or any business. Ads marketing the spaces abound. But because of the proposed change in the regulations, a loophole could open allowing more contamination than permitted before, without warning.

There is some question too as to whether the change redefines radiation and control areas, thus affecting the areas that were previously banned from releasing metal for commercial recycling.

The changes in 10 CFR 835 are claimed by its perpetrators at DOE to be benign but they allow hot spots and 5400.5 contamination levels that were not allowed previously.

20 From the KRCEE website
http://www.uky.edu/krcee/proj3.htm: purification and recovery of radiologically contaminated metals; project manager Lindell Ormsbee, Director, Kentucky Research Consortium for Energy and Environment, University of Kentucky; PRINCIPAL INVESTIGATOR David Silverstein, Assistant Professor, University of Kentucky - Paducah Campus

From the KRCEE website
http://www.uky.edu/krcee/proj10.htm: Purification and Recovery of Radiologically Contaminated Metals 3; project manager Steve Hampson, Assistant Director, Kentucky Research Consortium for Energy and Environment, University of Kentucky principal investigators Eric Grujke, Ph.D., Professor University of Kentucky College of Engineering Dr. Tony Zhai, Ph.D., Professor University of Kentucky College of Engineering
It is important to note that the opposition of the metal industries in the US and UK21 have been important in preventing generic release of contaminated metal into the open metal marketplace in these countries. Other recycling industries are not as organized thus releases could be occurring from DOE under 5400.5 and authorized limits. The commercial nuclear industry can be releasing to metal and other materials markets using the surface contamination guidance (Reg Guide 1.86) or through license provisions from NRC possibly for volumetric releases.

As of May 2007, DOE has released a request for Expressions of Interest from companies to process the radioactive metal accumulated at both the Oak Ridge and Paducah enrichment facilities for supposed “restricted” recycling and reuse, but it appears the restriction will only be on the first reuse, from whence the metal could be free released. If the internal nuclear market is not big enough to support the processing of the metal and use within DOE and NRC restricted areas, there will clearly be pressure to exempt and release it into the marketplace. Previous study of this prospect had not been promising but as metal prices rise, concern about health effects appears to drop. As of publication of this report, this is the biggest loophole we face for DOE to release radioactively contaminated metal. As mentioned throughout, the possibility of other radioactive materials being “cleared” and released from both the DOE and commercial nuclear waste generators is an active concern.

21 \url{http://www.nuclearpolicy.info/publications/scrapmetal.php}
Report on Radioactive Scrap Metal by NFLA, British Metals industry zero tolerance policy toward radioactive metal in their facilities
WHAT WE DID, WHAT WE LEARNED, WHAT TO DO NEXT

In our effort to determine how nuclear waste gets out of control and where it goes, we surveyed various DOE entities, workers and former workers, community and environmental advocates, some state agencies and some of the potential recipients. More time and personnel would be needed to comprehensively complete the research we initiated and, over time, we plan to continue to pursue some of these avenues.

Much of the information we gleaned came from DOE headquarters and site visits, partial responses to our Freedom of Information Act (FOIA) requests and document research.

Interviews, document searches

NIRS met with headquarters personnel and visited Los Alamos, Oak Ridge, Rocky Flats, Mound, Fernald, the Ohio Field Office, and attended some West Valley public meetings, in order to understand the legal, regulatory and practical methods for characterizing and releasing radioactive materials from the complex. We asked for copies of the governing regulations and guidance and for actual demonstrations of procedures. At some sites we observed the detection instruments used and the records of releases. At another site we observed cleared items ready for public auction. We heard various perspectives on the reliability of institutional and historical knowledge as applied to determinations for release from radiological controls. We discussed how and by whom the decisions are made to use independent verification—the expense and benefit. No place has routine independent verification. Those that choose to employ it do so for specific parts of various projects—never routinely for all site releases. It is used for increased public confidence in portions of some high profile or precedent-setting cleanup efforts.

Failure to fulfill public reporting requirement

In 2000 the DOE Secretarial orders banning commercial recycling of all potentially radioactive metal also committed to the public that DOE would make all information about releases public. Guidance was included in the Energy Secretary’s January 19, 2001 memo (2001-001288), directing DOE Department Heads to clearly define contamination areas, release criteria, measurement and survey protocols, and independent verification programs. The directive required all DOE sites to “(b)etter inform and involve the public and improve DOE reporting on releases…” Documentation on releases was to be made available to the public and to those receiving the property. This information was to be included in Annual Sites’ Environmental Reports (ASERs) and a system was to be developed to track releases by category. We investigated, requested and reviewed all available ASERs and other information and found that, seven years after it was made, this commitment to the public still has not been fulfilled. There is guidance provided to field offices from headquarters on how to report in the ASERs but no meaningful reporting has been done. There is no database to inform DOE Headquarters and no records of any efforts to create the promised reporting system.

Slow and incomplete responses to FOIAs

Over the past ten years, NIRS and other organizations have filed through the Freedom of Information Act (FOIA) for information on radioactive release decisions from both the Department of Energy and the Nuclear Regulatory Commission, which has a related role. Most of the responses to FOIAs submitted to DOE Headquarters have taken years (from over one to over four years) to receive response and many responses were incomplete.

Hard to know what consumer products are made with nuclear waste

Some of the most common questions members of the public have are “What objects are made with radioactively contaminated materials?” “Do I need to take a Geiger counter or detector when I go shopping?” “How can I avoid potentially contaminated items?”

The system in place by DOE and NRC makes answering these questions very difficult because there is no public reporting of companies and facilities that receive the material. It is possible that some are aware that they are taking potentially radioactive materials but there is also a possibility that they have no knowledge. This is especially possible the more steps there are between the nuclear waste generators and the industries that use the materials to make items or the companies that sell items to the public. When brokers transfer materials from many sites, including some nuclear sites, to scrapyards or other centralized locations for recycling they are not necessarily required to report the source of all the materials they are supplying. The steel and most metal recyclers do their best to monitor incoming loads to prevent any radioactive materials from entering their facilities, but they can only monitor for gamma radiation, not alpha or beta, due to practical physical, technical, economic and time constraints. Other types of recyclers likely have not invested in detection equipment to prevent incoming nuclear contaminated materials.
In general, from our visits and the information we did receive, we were able to gain a general understanding of DOE’s overall framework for the release of radioactive materials, which are governed largely by draft guidance documents (many listed in the References and Appendices). Those documents are based on assumptions of “acceptable” doses, which in fact have never been deemed acceptable by the public in a democratic, open and informed way. The release guidance can get complicated and largely appears to be neither verifiable nor enforceable unless the violations are extreme and detailed knowledge of the release pathways is already known. The records were not easily, routinely available at all locations. Obviously, when sites close there will be loss of institutional knowledge. At those locations, with some exceptions, the records, information and knowledgeable personnel are gone, but radioactivity can remain. Public input is rarely sought before DOE headquarters or sites make release decisions or policies. When the decisions involve release to the open market, getting local input is not sufficient since the recipients of the doses are from the more general population and future generations, if the radioactivity is long-lasting.

Some sites (such as Mound) had clear (although constantly changing) written release procedures which they readily shared upon our request. This was complicated by the various levels (DOE HQ, DOE Field Offices, DOE at each site, NNSA at some sites, contractor and subcontractor) and constantly-changing procedure manuals at each level. Despite constant updates, the suspension and moratorium on metal recycling reportedly had not been incorporated into the procedures, but we were informed verbally that they were being honored and implemented. There were possible loopholes in the ban that might not seem obvious. For example, although metal is prohibited from going into commercial recycling, metal parts from disassembling buildings supposedly are not subject to the bans. Large metal objects could be reused unrestricted, thus subsequently they could enter the metal recycling market. Despite various loopholes in the ban, we got the sense it was being respected by most with whom we met.

Other sites were much more evasive when it came to providing written documentation and procedures. Basic site governance information has not been provided from Los Alamos and Oak Ridge. Oak Ridge required that all information we requested on our visit be provided by FOIA. Generally, the Oak Ridge FOIA office had been very efficient but requests under this research project have been circuitted through DOE headquarters and thus far not provided. Los Alamos personnel were very open and informative but the point of contact was resistant to providing follow up information, deferring to NNSA.

We did receive a partial response to our FOIA on what is being released to where. Some examples were given of authorized releases of volumetric radioactive materials considered by DOE Headquarters. They were instructive on the internal processes that are in place to evaluate releases. From the examples provided, DOE headquarters appears to play more of a role in assisting local sites on preparing defensible data to allow releases than preventing releases or unnecessary public exposures. The default for local requests for some authorized volumetric radioactive releases is that they can proceed (in 40 days) if DOE headquarters does not object within a given time period (within 20 days). The final destination was not always clear for the approved releases.

One of the important pieces of missing information from our requests to DOE is regarding The Center for Excellence in Recycling (formerly Radioactive Metal Recycling, now Materials Recycling) based at Oak Ridge Tennessee, and reportedly funded through the Oak Ridge portion of the DOE budget. Staff from the Center met with us and provided historical information on the releases of “slightly” radioactive materials from DOE sites over the years but none of the requested current information, budget information or follow up on the reported information was provided. All of our Oak Ridge DOE contacts required that we submit a FOIA for any information from them, but none has arrived nearly a year after the request was submitted. This Center is pivotal in assisting all of the DOE sites in releasing and trading potentially contaminated materials. The Center promotes commercial recycling despite the public opposition to polluting recycling streams with man-made radioactivity from nuclear weapons production. It is connected with the Pollution Prevention (P-2) and “Green is Clean” programs which cover both radioactive and non-radioactive materials and recycling but which facilitate radioactive release or clearance to unrestricted, uncontrolled destinations.

After four years, we did receive some FOIA information on the failure of DOE to identify a first or second Conflict of Interest in their hiring of SAIC (Science Applications International Corporation): first to make money on recycling radioactive metal at the K-25 Oak Ridge decommissioning contract, while at the same time developing the allowable release levels for radioactive metal that could have applied to that project, and second to carry out the DOE Programmatic Environmental Impact Statement (PEIS) on Radioac-
tive Metal Disposition despite their vested interest in the outcome. Since then they have been removed from a couple of these projects and the PEIS is on hold. But DOE continues to refuse to allow public review of the comments received on the scoping or the work done thus far on the PEIS issue.

A sampling of what we learned:
The Ohio and Tennessee sites have been playing key supporting roles for radioactive recycling and release over the years.

Copper from Fernald was recycled into commerce after processing at a Tennessee Department of Environment and Conservation (TDEC) licensed company (ATG) on the Oak Ridge DOE reservation. The companies on that site have come and gone, changed names and owners, but there is usually some commercial radioactive processing operation at the East Tennessee Technology Park (ETTP).

Oak Ridge is home to the Center for Excellence in [Radioactive] Recycling. Of course recycling is normally very positive environmentally, but when it includes radioactively contaminated materials the benefits are destroyed. The Center has a history of working to provide artificial incentives to recycle radioactively contaminated materials, thus circulating small but still-potentially dangerous sources of radiation throughout the environment, marketplace and recycling world.

The entire Rocky Flats site is being released from radioactive control and open as a wildlife area to the public with no warning that long-lasting radioactivity remains. State legislation that would have notified visitors did not pass the Colorado legislature.

Fernald is also being converted to a wildlife refuge but an important distinction is that radioactive waste remains buried in a tumulus at the site so there will be some level of institutional control as opposed to complete abandonment. In addition, there will be a visitor center explaining the history of the site, so there is some chance of warning visitors. Fernald officials allowed us to inspect some materials that were to be released for unrestricted use but they were in the vicinity of radioactive waste that was hot enough that we could not take readings on the “cleared” items.

Los Alamos is in the process of releasing much land for unrestricted use—giving or selling it to the City of Los Alamos, and private, public and Tribal recipients. We requested but did not receive a map of all areas being released. [Good maps, of the Technical Areas, but not designating release areas per se, can be viewed at the Los Alamos Study Group website, http://lasg.org/maps/pages/contents/TAmainmap.htm]

We learned a lot about the procedures for actually dismantling and clearing out areas that had been used for decades for various activities. Some mixed waste from a cleanup project went to the Chemical Waste Management hazardous waste site in Lewiston, New York supposedly because background levels there are lower than the radioactive contamination of the material. Thus it was shipped across the country to a site not licensed for radioactive disposal next to the Lewiston-Porter schools. At Los Alamos, despite growing public interest concern about leakage from the site, it appeared that there was accessible onsite disposal for nuclear waste and thus a lower motivation to deliberately release the waste into commerce and recycling. There are regular auctions of materials from the site into the open market, and these items are cleared as at other DOE sites based on institutional knowledge and instruments set at the “acceptable” contamination release levels. Soil from Los Alamos was used on a golf course. Buildings, land, rubble, are “cleared” based on state limits for hazardous contamination and DOE levels for radioactive contamination. Some is dumped at the local landfill, some at the larger landfill near Albuquerque and some is released for reuse or recycling or used onsite.

Preventing nuclear waste from getting Out-of-Control:
Overall we learned that more work needs to be done to track, identify and stop DOE’s radioactive releases.

Despite much effort, the answers to the public’s main questions about where the contamination is going remain largely unanswered.

As long as DOE and other nuclear waste generators can slip their contamination out–letting it get Out of Control–On Purpose – there is really no limit to the amount of additional radiation exposure members of the public could receive. Until the goal is shifted to isolate the radioactivity, the public must become ever more vigilant.

We list below the specific ways we see DOE and other agencies could let their nuclear waste get Out Of Control–On Purpose and encourage those concerned to help track and provide input to decision makers.

Maintain and expand DOE’s radioactive metal recycling ban
Dramatic, coordinated, sustained action will be needed if the public hopes to maintain the ban on commercial recycling of nuclear weapons-generated radioactive metal and especially to expand that ban to prevent non-metal radioactive materials from being released.

Prevent contaminated property from getting out of control
Greater vigilance is needed as radioactively contaminated land, property and buildings are released for unrestricted use at several DOE sites.

DOE Expressions of Interest¹ for “Restricted” Recycling of Radioactive Metal: Foot in the Door for Unrestricted Release
Maintaining the prohibition on metal recycling could be challenging if metal prices continue to rise. There have been efforts by some within and outside of DOE to overturn the ban on commercial recycling of radioactive metal. If DOE gets away with investment in supposedly “restricted” metal recycling, the metal could easily be diverted to unrestricted use on second use or through exemptions if the market for contaminated metal is not large enough to justify the costs of processing it. Beyond tracking the industry responses to DOE’s Expressions of Interest on “Restricted” Metal Recycling, and DOE’s next steps, the concerned public could take the opportunity until June 8, 2007 to express its interests to DOE in the radioactive metal processing and “recycling” proposal, the responding companies and to decision makers.²

Expanded FOIA Request to DOE/NNSA on Authorized and Supplemental Limits for Radioactive Releases
NIRS is submitting a new comprehensive FOIA to DOE and NNSA along with the release of this report, in another attempt to identify and quantify how much nuclear weapons-generated radioactivity has been released, is being released and may be released and its destinations. (See Appendix.)

Watchdog DOE relaxation of 10 CFR 835 and possible adoption of 10 CFR 834
Close tracking is needed to identify the weakening of DOE’s occupational exposure regulations (10 CFR 835 Occupational Radiation Protection) which could affect (1) non-nuclear workers or the public in leased buildings formerly used by DOE and (2) the movement of potentially contaminated metal between radiation areas and between radiation and non-radiation areas of DOE and contractor sites.

DOE also intends to adopt 10 CFR 834, Radiation Protection of the Public and the Environment, which could incorporate radioactive releases into DOE regulations.

Agreement State Agency facilitation of letting nuclear waste get out of control
(1) Learn more about Tennessee and other Agreement state actions that let nuclear waste out-of-control. Track Agreement state-licensed processors to determine how much radioactivity they are bringing into their states and letting go into regular or hazardous waste landfills or into commercial recycling. Find out what processors are doing and what they are releasing to landfills and to commercial recycling. This research focused on Tennessee but other states need to be investigated.

(2) Follow up is needed in Tennessee to determine the extent of the releases, the compliance with quarterly reporting for landfill disposal and other expressed provisions for special (radioactive) waste release and disposal. What efforts are being made to verify the claims about safety?

(3) Comment to TDEC by June 1, 2007 or call for a true public comment period on its licensing of nuclear processors to do Bulk Survey For Release (BSFR) of radioactive materials. Tennessee (TDEC) has been letting nuclear waste go to unregulated destinations for years and is now taking comments from those that release and those that accept the waste, but the public has not been notified or asked to comment. The TDEC comment period on BSFR is underway as this report goes to press, so why not let them know what you think? Once the public learns about the

² The solicitation requests interested companies that want to “clean” and reuse the metal within the nuclear complex to respond by close of business 4:30 p.m. EDT on June 8, 2007 to Gene Chou, U.S. Department of Energy, Office of Disposal Operations (EM-12)/Cloverleaf Building, 19901 Germantown Road, Germantown, Maryland 20874-1290, by mail, express service delivery, or electronically to gene.chou@em.doe.gov; phone: 301-903-7159; fax: 301-903-1431.¹ Send your input and let your elected officials know what you think.

³ 45996 Federal Register / Vol. 71, No. 154 / Thursday, August 10, 2006 / Proposed Rules
importation and routine deregulation and release of nuclear waste in Tennessee, they might want to have a say.

Identify the Position of Potential Recipients of Out-of-Control Radioactive Waste
The metals industries oppose nuclear waste getting out of control and into their facilities. Some landfill companies seem to accept, if not welcome, “special” waste. Some do not. What are the positions of other potential recipient industries on acceptance of and incorporation of radioactive materials into recycling or reuse of concrete, plastics, wood, paper, soil, chemicals, asphalt, equipment, components of dismantled buildings? Some hazardous waste sites seem willing to take the radioactive materials; some might not always. Do renters of “cleared” buildings know the previous uses of those buildings? And that they might have hot spots?

Assessment needs to be done of the stances of potential recipients of released or cleared nuclear waste. This will help consumers know the paths of least resistance for nuclear waste to better determine where it is going.

NRC and EPA could resume radioactive waste Out-of-Control rulemakings:
In the Timeline Chapter of this report the Nuclear Regulatory Commission and the Environmental Protection Agency are listed as having on hold potential rules to generically deregulate nuclear waste and to permit it at unregulated (for nuclear) facilities. The deferred rulemakings could reopen if pressure prevents streamlined release of nuclear materials and wastes via alternative pathways. Thus the vigilant public must keep an eye on those agencies.

Track NRC’s many options deregulating nuclear waste:
NRC could adopt the transportation exemption levels from 10 CFR 71 (adopted by NRC and DOT in 2004 to comply with the United Nations International Atomic Energy Agency exemption levels developed to facilitate nuclear reactor decommissioning) into its 10 CFR 20 Radiation Protection Regulations. 10 CFR 20 has exempt levels for radioactivity in air, water and sewage. The nuclear industry wants to allow it in solid materials as well even though Congress and the public revoked the efforts to codify such exemptions in the past.

NRC is continuing to let nuclear waste Out of Control through case-by-case deregulation under its 10 CFR 20.2002 rule on alternative methods of disposal which allows radioactive waste burial onsite at reactors and disposal at unlicensed facilities.

NRC amended the licenses it gives to allow some waste to be deregulated. This is hardest to track because the approval is embedded in the license so is implemented routinely with no notice.

Join International Allies in Rejecting International Recommendations
Let NRC know your thoughts as they move to adopt the upcoming 2007 recommendations of the International Commission on Radiological Protection, which include provisions for deregulating nuclear waste. The international nuclear groups such as ICRP, IAEA and Euratom are nuclear promoters whose members stand to gain economically if their waste can be let out of control. They like to claim some levels are trivial and acceptable to let go. They are not independent and NRC uses their recommendations to overcome US opposition to unsavory radiation rules. Watch out for and challenge the US adoption of the ICRP 2007 recommendations.
QUESTIONS POSED AT SITE VISITS

We asked similar questions in FOIAs to DOE and at the site visits. In general we sought to learn about releases at each site. We asked the following questions and received various combinations of answers at each site.

1) What is the DOE’s national policy on releasing or clearing potentially radioactive material or slightly contaminated radioactive material from DOE and contractor/subcontractor regulatory control?

2) A) What are field, site, DOE, contractor/subcontractor, NNSA policies on releasing or clearing potentially radioactive material or slightly contaminated radioactive material from DOE, NNSA and contractor/subcontractor regulatory control?

B) Please provide the Policy, Procedures and Specific destinations for all types of waste and materials (see list below) and identify the location and type of records for surveys of ‘released’ materials.

Soil
Buildings- reuse
Buildings- demolition waste
Concrete
Asphalt
Metal – Surface Contaminated
Volumetric Contaminated
(how much and where stored?)
Equipment
Plastics
Chemicals
Wood
Other

C) Are the moratorium and suspension on release of radioactive and potentially radioactive metals from January and June 2000 still in effect? If so how much of a burden has this been for the site and why? Where stored? How much?

If metals are released for disposal where do they go?
What levels?
What instruments, procedures?
Detection limits of survey and measurement equipment?
How determined?
By whom? Generally and specifically?
Who decides what is released?
What is information is used to make the decision?
Where does the released material go?
How much has gone?
Records? Where? Arrange to see.

D) What is required to move material from DOE and contractor/subcontractor property to a destination that is not under DOE/contractor/subcontractor control? What is required to move potentially radioactive materials from radiological control areas to non-radiological control areas?

E) What inventories are kept for metal releases and for non-metal releases?
Where and when may we review those inventories?
QUESTIONS POSED AT SITE VISITS (continued)

3) Responsible Parties for Authorized Levels and for Releases/Clearance

A) Federally: Is EH-1 still the responsible party authorizing volumetric releases?
(If not, who is or what procedure replaced that designation?)
What records are there of releases approved by EH-1 or designee?

[[This has changed since 2006 when there was reorganization of DOE. Now it is HS-1, the Chief
Health Safety and Security Officer for the Office of Health, Safety and Security, who is responsi-
ble for approving or denying release of volumetrically contaminated radioactive materials that will
give doses higher than in the millirem/year range.]]

B) Site Specific: Who is responsible at each site for releases? What records are there of
releases both surface and volumetric?

4) How does DOE distinguish between radioactive and non-radioactively contaminated
materials?

A) What are the rules, regulations, policies, procedures and practices for making the
determinations?

B) What equipment and procedures are used?

C) What is the level of detection that the equipment and procedures are capable of de-
tecting? Capable of measuring? Confidence levels?

D) Who does the independent monitoring of the process? What do they actually observe
(percent of releases, which procedures, etc)?

E) Is a 3rd party independent observer required for all releases? Where and when may
we observe the records of the 3rd party independent observer?

F) Where and when may we observe the release process? Where and when may we
observe the oversight procedures of the independent 3rd party?

5) Authorized Limits or Authorized Levels

A) What federal—across the complex—authorized levels are there for surface and volu-
metric radioactivity? [e.g., DOE order 5400? Reg. Guide 1.86? draft implementation guides? oth-
ers?]

B) What site-specific authorized levels are there?

C) How were they set?

D) What levels are currently being set?

E) Are they set for each portion of a cleanup or other activity or for the whole site gener-
ally?

F) Are they different for release to landfill disposal (not regulated for nuclear materials)
and for recycling?

6) What measurements are done?

What instruments?
What procedures?
By whom?
Record keeping?
Where are the records? (Who to contact to review them)
May we observe the process?