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Problem 1. Essay. [25] Select one of the three
topics A, B, and C.

Topic A. Explain the logical structure of the El-
ements (axioms, propositions, proofs). How does
this differ from earlier mathematics of Egypt and
Babylonia? How can such a logical structure affect
the mathematical advances of a civilization?

The Elements begins with definitions and ax-
ioms. Some of these just describe the terms to be
used, others are more substantive and state specific
assumptions about properties of the mathematical
objects under study. Definitions are given for new
concepts stated in terms of the old concepts as the
new concepts are needed. Propositions are stated
one at a time only using those terms already intro-
duced, and each proposition is proved rigorously.
The proof begins with a detailed statement of what
is given and what is to be proved. Each statement
in the proof can be justified by previous statements,
axioms, previously proved propositions, or as an as-
sumption in the beginning of a proof by contradic-
tion. The last statement in a proof is that which
was to be proven.

The preHellenic mathematics of Egypt and
Babylonia consisted of tables and of solutions to
problems of various types. The solutions were
meant to describe the methods to solve the prob-
lems, what we now call algorithms. No indication
was given why the methods should work.

A strict logical structure is primarily needed to
convince the audience of the validity of the theory,
but it has other purposes. It is used to find flaws in

arguments, and even in previously accepted state-
ments. It can be used to find hidden assumptions.
More importantly, adhering to a strict logical struc-
ture suggests new concepts and new results. Egyp-
tian mathematics reached its high point early in
the history of Egypt, about 2000 BCE, and did
not progress past that. Babylonian mathematics
reached its high point about the same time, 1800
BCE, the Old Babylonian Empire, and also failed
to progress after that. The mathematics of both
cultures was directed to solving problems. Greek
mathematics, on the other hand, progressed as logic
developed to the time of Euclid, and continued to
progress for several centuries as we will see.

Topic B. Compare and contrast the arithmetic
of the Babylonians with that of the Egyptians.
Be sure to mention their numerals, algorithms for
the arithmetic operations, and fractions. Illustrate
with examples. Don’t go into their algebra or ge-
ometry for this essay.

Here’s an list of topics that could go into an essay,
but they’re not all needed in an essay: Numerals:
Egypt — base 10, hieroglyphics repeated symbols
for 1, 10, 100, etc, hieratic abbreviations; Babylonia
– base 60, positional numeration but used only two
marks. Addition and subtraction similar to ours in
both cultures. Multiplication: Egypt — repeated
duplication two columns (give example); Babylo-
nia — long multiplication similar to ours. Division:
Egypt — virtually the same as multiplication, but
order of selecting rows different; Babylonia — use
a table of reciprocals then multiply. Square roots:
Egypt — unknown; Babylonia — tables and fast
algorithm. Fractions: Egypt — unit fractions, dou-
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bling table for fractions, extend multiplication and
division algorithms to fractions; Babylonia — po-
sitional numeration like our decimal fractions, but
rarely indicate where the decimal point is, same
arithmetic algorithms as for whole numbers, but
complicated by mentally keeping track of decimal
point. One possible essay summary: Babylonians
had much more efficient notation and algorithms,
could deal with fractions much better.

Topic C. Aristotle presented four of Zeno’s para-
doxes: the Dichotomy, the Achilles, the Arrow, and
the Stadium. Select one, but only one, of them and
write about it. State the paradox as clearly and
completely as you can. Explain why it was con-
sidered important. Refute the paradox, either as
Aristotle did, or as you would from a modern point
of view.

One of the arguments, the Stadium, depends on
conceiving a line as being made out of points in a
row, one next to another. Even in Euclidean ge-
ometry, there are points on a line, but they do not
have that arrangement. The Arrow also depends on
time being composed of instants, but not explicitly
arranged in a row, one next to another. It does de-
pend, however, in assuming that motion can be de-
termined at an instant without looking at positions
at other instants. Aristotle refutes these paradoxes
by denying lines are composed of points and time
of instants, and by allowing motion only over an
interval of time. Aristotle’s solution to these two
paradoxes differs from that of modern mathemat-
ics.

The Dichotomy and the Achilles assert an infi-
nite sequence of occurrences in a finite amount of
time. The arguments leading to these occurrences
are different in the two paradoxes, but Zeno ap-
parently denied an infinite number of instants in
a finite interval of time. Aristotle and the modern
point of view agree here. There is no paradox in as-
suming that there are an infinite number of points
on a finite line, or that there are an infinite number
of points in time in a finite interval of time.

See the text for more details.

Problem 2. [15] Find the greatest common di-
visor of the two numbers 11484 and 7902 by using
the Euclidean algorithm. (Computations are suffi-
cient, but show your work. An explanation is not
necessary.)

For the Euclidean algorithm repeatedly subtract
the smaller number from the larger to get smaller
and smaller numbers until the smaller divides the
larger. Subtract 7902 from 11484 to get 3582. Then
work with 7902 and 3583. Now you can subtract
3582 from 7902 a couple times to get a remainder of
738. (That’s the same as dividing 7902 by 3582 and
keeping the remainder.) Then subtract 738 repeat-
edly from 3582 to get a remainder of 630. Then
738 − 630 = 108, and 108 repeatedly subtracted
from 630 gives 90, and 108 − 90 = 18. Finally, 18
divides 90, so 18 is the greatest common divisor.

Problem 3. [24] On Eudoxus’ definition of equal-
ity of ratios of magnitudes. Answer each part in a
couple of sentences.

a. [12] The Pythagorean philosophy of numbers
was summarized by the Pythagorean Philolaus as

All things which can be known have num-
ber; for it is not possible that without
number anything can be either conceived
or known.

Explain why the discovery of incommensurable
magnitudes (such as the side of a square and its
diagonal) led to a crisis for the Pythagoreans.

To Philolaus and the Pythagoreans, “number”
meant whole positive whole number. If the philos-
ophy was correct, shouldn’t there be a unit which
measures both the diagonal and side of a square
evenly, that is, some positive whole number of units
make up the diagonal while another positive whole
number of units make up the side? But that can’t
be done.

b. [4] Explain in your own words Eudoxus defini-
tion of equality of ratios, that is, when is the ratio
a : b of two magnitudes of one type equal to the
ratio c : d of two magnitudes of (possibly) another
type.
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Whenever some multiple na of a is greater than
some other multiple mb of b, then the first multiple
nc of c will be greater than the second multiple md
of d. But if na = mb, then nc will equal md. And
if na < mc, then nc will be less than md. And
these statements must hold for all whole positive
numbers m and n.

(Note that Eudoxus did not say that a : b = c : d
when ad = bc. That’s a useful definition in some
cases, for example when a, b, c, and d are all lines;
then ad = bc says one rectangle equals another
rectangle. It also works when a and b are lines
while c and d are plane figures; then ad = bc says
one solid equals another solid. But it doesn’t work
when they’re all plane figures because ad would re-
fer to some 4-dimensional object, a concept beyond
the ancient geometers’ comprehension.)

c. [4] Using this definition, show that the nu-
meric ratio 3:5 does not equal the ratio 4:6.

All we have to do is find values for m and n so
that 3n compares to 5m in a different way than
4n compares to 6m. There are lots of choices that
work. For instance, (m,n) = (3, 5), for then 3 · 5 =
5 · 3 but 4 · 5 > 6 · 3. For another example, take
(m,n) = (7, 11), then 3 · 11 < 5 · 7 but 4 · 11 > 6 · 7.

d. [4] Explain how this definition resolved the
crisis and supported the Pythagorean philosophy.

With Eudoxus definition, ratios like the diago-
nal to the side of a square can be known even if
they’re not commensurable, and they can be known
by means of whole numbers.

Problem 4. [16] On areas of circles. The cul-
tures we have studied—Egyptian, Babylonian, and
Greek—all knew how to approximate the area of a
circle. Choose one of the cultures and describe one
method that was used to compute the area of a cir-
cle. Your description should only be a sentence or
two long. Illustrate the method by detemining the
area of a circle whose diameter is 9 cubits. (A cubit
being a measure of length, the length of a forearm,
used by all three cultures.)

One Egyptian method that was quite accurate
was to take the square on 8

9
of the diameter. In

this case, that’s 64 square cubits.
The Babylonians often used a method that we

can summarize as approximating π by 3, equiva-
lently, the area of a circle is approximately 3

4
the

area of the square on the diameter. In this case,
that’s 3

4
of 81, or 60 plus 3

4
, or, as the Egyptians

would have expressed it, 60 plus 1
2

plus 1
4
.

Various values were used by the Greeks to ap-
proximate π, Archimedes’ 22

7
being one of them.

With that approximation, the area of this circle is
22
7

(9
2
)2 = 891

14
63 9

14
.

Problem 5. [25; 5 points each part] True/false.

a. Euclid’s parallel postulate (Postulate 5 in
Book I of the Elements) stated that lines in the
same direction are parallel. False. That’s nothing
like the parallel postulate.

b. The ancient Babylonians knew the
Pythagorean theorem (the square on the hype-
nenuse of a right triangle is equal to the sum of
the squares on the other two sides) over a thousand
years before Pythagoras. True.

c. Each of the propositions in Euclid’s Elements
includes a proof. True.

d. A triangular number is the perimeter of an
equilateral triangle, for example, 15 is a triangular
number since an equilateral triangle of side length
5 has perimeter 15. False.

e. Whereas Egyptians used common fractions
like 2

5
, Babylonians prefered unit fractions like one-

third plus one-fifteenth. False.
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