Math 105 History of Mathematics

Aryabhata's trig table

Prof. D. Joyce

Aryabhata (b. 476) included a table of sines in his Aryabhatiya and a rule for constructing that table of sines. For Aryabhata, a sine was a half-chord in a circle of radius 3438 (the same radius Hipparchus had used centuries earlier). Thus, Aryabhata's sine for an angle θ equals $3438 \sin \theta$. His table is given in increments of $3^{\circ} 45^{\prime}$ for angles strictly between 0° and 90°, but only increases in sines are given.

Stanza I, 10. The twenty-four sine [differences] reckoned in minutes of arc are 225, 224, 222, 219, 215, 210, 205, 199, 191, 183, 174, 164, 154, 143, $131,119,106,93,79,65,51,37,22,7$.

If we denote these differences by $d_{1}, d_{2}, \ldots, d_{24}$, and their sums by $s_{1}=d_{1}, s_{2}=d_{1}+d_{2}, \ldots, s_{24}=d_{1}+d_{2}+\cdots+d_{24}$, then the sums are the sines of various angles. The first entry, 225 , gives $s_{1}=3438 \sin 3^{\circ} 45^{\prime}$. Add to that the second, $d_{2}=224$, to give $s_{2}=449=3438 \sin 7^{\circ} 30^{\prime}$. Add to that the third, $d_{3}=222$, to give $s_{3}=671=3438 \sin 11^{\circ} 15^{\prime}$. And so forth.

Thus, if you've memorized the stanza, you can construct a table of sines for trigonometry since you can easily compute a sine from the previous sine and the sine difference: $s_{n}=$ $s_{n-1}+d_{n}$.

In a later stanza, Aryabhata gives a rule for constructing the twenty-four sine differences. This stansa tells how to compute the differences d_{n}.

Stanza II, 12. By what number the last sine [difference] is less than the first sine, and by the quotient obtained by dividing the sum of the preceding sine [differences] by the first sine, by the sum of these two quantities the following sine [differences] are less than the first sine.

As an equation, this rule says

$$
\left(d_{1}-d_{n-1}\right)+\frac{d_{1}+d_{2}+\cdots+d_{n_{1}}}{d_{1}}=d_{1}-d_{n}
$$

or, more simply,

$$
d_{n}=d_{n}-s_{n-1} / 225 .
$$

Below is an table of the values. It only depends on the two equations, $s_{n}=s_{n-1}+d_{n}$ and $d_{n}=d_{n}-s_{n-1} / 225$, and
the values in the first line. The numbers in the last column, d_{n}, are usually rounded down to the nearest integer, but sometimes rounded up to the next integer.

n	d_{n}	s_{n}	$s_{n} / 225$
1	225	225	$225 / 225=1.0$
2	224	449	$449 / 225=2.0$
3	222	671	$671 / 225=3.0$
4	219	890	$890 / 225=4.0$
5	215	1105	$1105 / 225=4.9$
6	210	1315	$1315 / 225=5.8$
7	205	1520	$1520 / 225=6.8$
8	199	1719	$1719 / 225=7.6$
9	191	1910	$1910 / 225=8.5$
10	183	2093	$2093 / 225=9.3$
11	174	2267	$2267 / 225=10.1$
12	164	2431	$2431 / 225=10.8$
13	154	2585	$2585 / 225=11.5$
14	143	2728	$2728 / 225=12.1$
15	131	2859	$2859 / 225=12.7$
16	119	2978	$2978 / 225=13.2$
17	106	3084	$3084 / 225=13.7$
18	93	3177	$3177 / 225=14.1$
19	79	3256	$3256 / 225=14.5$
20	65	3321	$3321 / 225=14.8$
21	51	3372	$3372 / 225=14.9$
22	37	3409	$3409 / 225=15.2$
23	22	3431	$3431 / 225=15.2$
24	7	3438	

