1. [12] On limits of average rates of change. Let $f(x) = x^2 - 3x$.

 a. [4] Write down an expression that gives the average rate of change of this function over the interval between x and $x + h$, and simplify the expression.

 b. [8] Compute the limit as $h \to 0$ of that average rate of change.
2. [10; 5 points each] On the intutitive concept of limit and continuity.

a. [5] Sketch the graph $y = f(x)$ of a function for which $\lim_{x \to 0} f(x)$ does not exist.

b. [5] Sketch the graph $y = f(x)$ of a function defined everywhere, the limit $\lim_{x \to 0} f(x)$ does exist, but f is not continuous at $x = 0$.
3. [10; 5 points each property] On asymptotes.
 a. Sketch the graph of a function f such that
 \[
 \lim_{x \to 2^-} f(x) = \infty \quad \text{and} \quad \lim_{x \to 2^+} f(x) = -\infty.
 \]

 b. Sketch the graph of a function f such that $\lim_{x \to \infty} f(x) = 1.$
4. [28; 7 points each part] Evaluate the following limits. If a limit diverges to $\pm \infty$ it is enough to say that it doesn’t exist.

a. \[\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2} \]

b. \[\lim_{x \to 1} \frac{x^2 - 4}{x^2 - 3x + 2} \]

c. \[\lim_{x \to \infty} \frac{4x^3 - 2x}{9x^3 + 1} \]

d. \[\lim_{x \to 0} \frac{4 \sin x}{5x} \]

Consider the limit \(\lim_{x \to 5} (2x - 3) \) which, of course, has the value 7. Since it has the value 7, that means that for each \(\epsilon > 0 \), there exists some \(\delta > 0 \), such that for all \(x \), if \(0 < |x - 5| < \delta \), then \(|(2x - 3) - 7| < \epsilon \).

Let \(\epsilon = \frac{1}{2} \). Find a value of \(\delta \) that works for this \(\epsilon \). (Show your work.)

6. [10] Suppose that \(\theta \) is an angle between \(-\pi/2 \) and 0, and that \(\cos \theta = \frac{1}{2} \sqrt{2} \). Determine the value of \(\sin \theta \).
7. [15; 5 points each part] Suppose that \(\lim_{x \to \pi} f(x) = 5 \) and \(\lim_{x \to \pi} g(x) = 3 \). Evaluate each of the following limits, or explain why it doesn’t exist.

a. \(\lim_{x \to \pi} \frac{f(x)}{g(x)} \)

b. \(\lim_{x \to \pi} \frac{f(x)}{g(x) + 3 \cos x} \)

c. \(\lim_{x \to \pi} \sqrt{x + f(x)g(x)} \)