First Test Answers
Math 120 Calculus I
September, 2013

Scale. 90–100 A, 80–89 B, 65–79 C. Median 80.

1. [12] On limits of average rates of change. Let \(f(x) = x^2 - 3x \).

a. [4] Write down an expression that gives the average rate of change of this function over the interval between \(x \) and \(x + h \), and simplify the expression.

\[
\frac{f(x + h) - f(x)}{h} = \frac{((x + h)^2 - 3(x + h)) - (x^2 - 3x)}{h}
\]

b. [8] Compute the limit as \(h \to 0 \) of that average rate of change.

\[
\lim_{h \to 0} \frac{((x + h)^2 - 3(x + h)) - (x^2 - 3x)}{h} = \lim_{h \to 0} \frac{2xh + h^2 - 3h}{h} = \lim_{h \to 0} (2x + h - 3) = 2x - 3
\]

2. [10; 5 points each] On the intuitive concept of limit and continuity.

a. [5] Sketch the graph \(y = f(x) \) of a function for which \(\lim_{x \to 0} f(x) \) does not exist.

There are many such graphs. For example, if there’s a jump in the value of \(f \) at \(x = 0 \), then that limit won’t exist. See section 2.4 of the text.

b. [5] Sketch the graph \(y = f(x) \) of a function defined everywhere, the limit \(\lim_{x \to 0} f(x) \) does exist, but \(f \) is not continuous at \(x = 0 \).

This can be achieved by making \(f(0) \) unequal to the limit, but make sure that the function is defined at \(x = 0 \). See section 2.5 of the text.

3. [10; 5 points each property] On asymptotes.

a. Sketch the graph of a function \(f \) such that \(\lim_{x \to 2^+} f(x) = \infty \) and \(\lim_{x \to 2^-} f(x) = -\infty \).

The graph of the function should be asymptotic to the vertical line \(x = 2 \). See section 2.6 of the text.

b. Sketch the graph of a function \(f \) such that \(\lim_{x \to \infty} f(x) = 1 \).

The graph of the function should be asymptotic to the horizontal line \(y = 1 \). See section 2.6 of the text.

4. [28; 7 points each part] Evaluate the following limits. If a limit diverges to \(\pm \infty \) it is enough to say that it doesn’t exist.

a. \(\lim_{x \to 1} \frac{x^2 - 1}{x^2 - 3x + 2} \)

The expression needs to be simplified before taking the limit.

\[
\lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(x - 2)} = \lim_{x \to 1} \frac{x + 1}{x - 2} = -2
\]

b. \(\lim_{x \to 1} \frac{x^2 - 4}{x^2 - 3x + 2} \)

The number approaches \(-3\) while the denominator approaches \(0\), so the limit of the quotient doesn’t exist.

c. \(\lim_{x \to \infty} \frac{4x^3 - 2x}{9x^3 + 1} \)

The numerator and denominator have the same degree, so as \(x \to \infty \), the value approaches the ratio of the leading coefficients, \(\frac{4}{9} \). This can be seen by dividing the numerator and denominator by \(x^3 \)

\[
\lim_{x \to \infty} \frac{4x^3 - 2x}{9x^3 + 1} = \lim_{x \to \infty} \frac{4 - 2/x^2}{9 + 1/x^3}
\]

\[
= \frac{4 - 0}{9 - 0} = \frac{4}{9}
\]
d. \[\lim_{x \to 0} \frac{4 \sin x}{5x} \]

Recall that \[\lim_{x \to 0} \frac{\sin x}{x} = 1 \]. Therefore this limit equals \(\frac{4}{5} \).

Consider the limit \(\lim_{x \to 5} (2x - 3) \) which, of course, has the value 7. Since it has the value 7, that means that for each \(\epsilon > 0 \), there exists some \(\delta > 0 \), such that for all \(x \), if \(0 < |x - 5| < \delta \), then \(|(2x - 3) - 7| < \epsilon \).

Let \(\epsilon = \frac{1}{2} \). Find a value of \(\delta \) that works for this \(\epsilon \).

You need to find a value of \(\delta \) so that

\[0 < |x - 5| < \delta \text{ implies } |(2x - 3) - 7| < \frac{1}{2}. \]

The expression \(|(2x - 3) - 7| \) can be rewritten as \(|2x - 10| \) which equals \(2|x - 5| \). Therefore, the condition \(|(2x - 3) - 7| < \frac{1}{2} \) is equivalent to \(|x - 5| < \frac{1}{4} \).

Thus, you need to find a value of \(\delta \) so that

\[0 < |x - 5| < \delta \text{ implies } |x - 5| < \frac{1}{4}. \]

Such a value is \(\delta = \frac{1}{4} \).

6. [10] Suppose that \(\theta \) is an angle between \(-\pi/2 \) and 0, and that \(\cos \theta = \frac{1}{2}\sqrt{2} \). Determine the value of \(\sin \theta \).

Since \(\cos \theta = \frac{1}{2}\sqrt{2} \), the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1 \) implies \(\sin^2 \theta + \frac{1}{2} = 1 \). Hence, \(\sin^2 \theta = \frac{1}{2} \), so \(\sin \theta = \pm \frac{1}{2}\sqrt{2} \). Since \(\theta \) is an angle between \(-\pi/2 \) and 0, the sine of \(\theta \) is negative. Thus \(\sin \theta = -\frac{1}{2}\sqrt{2} \).

7. [15; 5 points each part] Suppose that \(\lim_{x \to \pi} f(x) = 5 \) and \(\lim_{x \to \pi} g(x) = 3 \). Evaluate each of the following limits, or explain why it doesn’t exist.

a. \(\lim_{x \to \pi} \frac{f(x)}{g(x)} \)

Since \(f(x) \) approaches 5, and \(g(x) \) approaches 3, the quotient approaches \(\frac{5}{3} \).