1. [12] On limits of average rates of change. Let \(f(x) = 5x^2 + 4 \).

 a. [4] Write down an expression that gives the average rate of change of this function over the interval between \(x \) and \(x + h \), and simplify the expression.

 \[
 \frac{f(x + h) - f(x)}{h} = \frac{(5(x + h)^2 + 4) - (5x^2 + 4)}{h}
 \]

 b. [8] Compute the limit as \(h \to 0 \) of that average rate of change.

 \[
 \lim_{h \to 0} \frac{(5(x + h)^2 + 4) - (5x^2 + 4)}{h} = \lim_{h \to 0} \frac{5x^2 + 10xh + 5h^2 + 4 - 5x^2 - 4}{h} = \lim_{h \to 0} \frac{10xh + 5h^2}{h} = \lim_{h \to 0} (10x + 5h) = 10x
 \]

2. [10; 5 points each] On the intuitive concept of limit and continuity.

 a. [5] Sketch the graph \(y = f(x) \) of a function for which \(\lim_{x \to 3} f(x) \) does not exist.

 There are many such graphs. For example, if there’s a jump in the value of \(f \) at \(x = 3 \), then that limit won’t exist. See section 2.4 of the text.

 b. [5] Sketch the graph \(y = f(x) \) of a function defined everywhere, the limit \(\lim_{x \to 3} f(x) \) does exist, but \(f \) is not continuous at \(x = 3 \).

 This can be achieved by making \(f(3) \) unequal to the limit, but make sure that the function is defined at \(x = 3 \). See section 2.5 of the text.

3. [10; 5 points each property] On asymptotes.

 a. Sketch the graph of a function \(f \) such that \(\lim_{x \to ^2} f(x) = 0 \) and \(\lim_{x \to ^2} f(x) = -\infty \).

 The graph of the function should should be asymptotic to the vertical line \(x = 2 \). See section 2.6 of the text.

 b. Sketch the graph of a function \(f \) such that \(\lim_{x \to ^-} f(x) = 1 \).

 The graph of the function should should be asymptotic to the horizontal line \(y = 1 \). See section 2.6 of the text.

4. [28; 7 points each part] Evaluate the following limits. If a limit diverges to \(\pm \infty \) it is enough to say that it doesn’t exist.

 a. \(\lim_{x \to 1} \frac{x^2 - 4x + 4}{x^2 - x - 2} \)

 As \(x \) approaches 1, the numerator approaches 1 while the denominator approaches \(-2 \), so the quotient approaches \(-1/2 \).

 b. \(\lim_{x \to ^2} \frac{x^2 - 4x + 4}{x^2 - x - 2} \)

 The expression needs to be simplified before taking the limit.

 \[
 \lim_{x \to ^2} \frac{(x + 2)(x - 2)}{(x + 1)(x - 2)} = \lim_{x \to ^2} \frac{x + 2}{x + 1} = \frac{4}{3}
 \]

 c. \(\lim_{x \to ^\infty} \frac{3x^2 - 2x + 1}{9x^3 + x} \)

 The numerator has a lower degree than the denominator, so as \(x \to \infty \), the limit approaches 0. This can be seen by dividing the numerator and denominator by \(x^3 \)

 \[
 \lim_{x \to ^\infty} \frac{3x^2 - 2x + 1}{9x^3 + x} = \lim_{x \to ^\infty} \frac{3/x - 2/x^2 + 1/x^3}{9 + 1/x^2} = \frac{0 - 0 + 0}{9 + 0} = 0
 \]
d. \(\lim_{x \to 0} \frac{5x}{8 \sin x} \).

Recall that \(\lim_{x \to 0} \frac{\sin x}{x} = 1 \). Therefore \(\lim_{x \to 0} \frac{x}{\sin x} = 1 \), hence this limit equals \(\frac{5}{8} \).

Consider the limit \(\lim_{x \to 3} (9 - 2x) \) which, of course, has the value 3. Since it has the value 3, that means that for each \(\epsilon > 0 \), there exists some \(\delta > 0 \), such that for all \(x \), if \(0 < |x - 3| < \delta \), then \(|(9 - 2x) - 3| < \epsilon \).

Let \(\epsilon = \frac{1}{3} \). Find a value of \(\delta \) that works for this \(\epsilon \).

You need to find a value of \(\delta \) so that

\[0 < |x - 3| < \delta \text{ implies } |(9 - 2x) - 3| < \frac{1}{3}. \]

The expression \(|(9 - 2x) - 3| \) can be rewritten as \(|6 - 2x| \) which equals \(2|x - 3| \). Therefore, the condition \(|(9 - 2x) - 3| < \frac{1}{3} \) is equivalent to \(|x - 3| < \frac{1}{6} \). Thus, you need to find a value of \(\delta \) so that

\[0 < |x - 3| < \delta \text{ implies } |x - 3| < \frac{1}{6}. \]

Such a value is \(\delta = \frac{1}{6} \).

6. [10] Suppose that \(\theta \) is an angle between \(\pi/2 \) and \(\pi \), and that \(\sin \theta = \frac{1}{2} \sqrt{2} \). Determine the value of \(\cos \theta \).

Since \(\sin \theta = \frac{1}{2} \sqrt{2} \), the Pythagorean identity \(\sin^2 \theta + \cos^2 \theta = 1 \) implies \(\frac{1}{2} + \cos^2 \theta = 1 \). Hence, \(\cos^2 \theta = \frac{1}{2} \), so \(\cos \theta = \pm \frac{1}{2} \sqrt{2} \). Since \(\theta \) is an angle between \(\pi/2 \) and \(\pi \), the cosine of \(\theta \) is negative. Thus \(\cos \theta = -\frac{1}{2} \sqrt{2} \).

7. [15; 5 points each part] Suppose that \(\lim_{x \to \pi/2} f(x) = 4 \) and \(\lim_{x \to \pi/2} g(x) = 5 \). Evaluate each of the following limits, or explain why it doesn’t exist.

a. \(\lim_{x \to \pi/2} \frac{f(x) + g(x)}{f(x) - g(x)} \)

Since \(f(x) \) approaches 4, and \(g(x) \) approaches 9, the numerator approaches 9 while the denominator approaches -1. Therefore quotient approaches -9.

b. \(\lim_{x \to \pi/2} \frac{x}{g(x) - f(x) - \sin x} \)

As \(x \) approaches \(\pi/2 \), \(\sin x \) approaches 1. Therefore the denominator approaches 0. But the numerator approaches \(\pi/2 \), so the limit doesn’t exist.

c. \(\lim_{x \to \pi/2} \sqrt{(g(x))^2 + (f(x))^2} \)

The sum \((g(x))^2 + (f(x))^2 \) approaches 25. Since the square root function is continuous, the limit approaches the square root of 25, which is 5.