1. [12] Consider the three vectors \(u = (1, 3, 1), \ v = (4, 2, -1), \) and \(w = (-3, 1, 2). \)

 a. [8] Either prove that the \(u \) is in the span of the vectors \(v \) and \(w, \) or prove that it is not. (There are several ways you can approach this question. Any one will do.)

 Note that \(u = v + w. \) Since \(u \) is a linear combination of \(v \) and \(w, \) it’s in the span of them.

 b. [4] Are the three vectors \(u, \ v, \) and \(w \) linearly dependent, or linearly independent?

 They’re linearly dependent since one of them is a linear combination of the others.

2. [16] Let \(A \) be the matrix \(A = \begin{bmatrix} 2 & 2 & 2 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}. \)

 a. [4] Write down the characteristic polynomial \(f(\lambda) \) for \(A. \)

 The determinant of the matrix

 \[
 A - \lambda I = \begin{bmatrix} 2 - \lambda & 2 & 2 \\ 0 & 2 - \lambda & 0 \\ 0 & 0 & 3 - \lambda \end{bmatrix}
 \]

 is the characteristic polynomial. Since that’s an upper triangular matrix, its determinant is the product of its diagonal entries, \((2 - \lambda)^2(3 - \lambda).\)

 b. [4] Determine the eigenvalues for \(A. \)

 The eigenvalues are the roots of the characteristic polynomial, namely, 2 and 3. (Note that 2 has multiplicity 2.)

 c. [8] For each of the eigenvalues of \(A, \) find the eigenspace of eigenvectors for that eigenvalue.

 Case \(\lambda = 2. \) The solutions to the matrix equation \((A - 2I)x = 0\) are \(x = (x, 0, 0) \) where \(x \) is an arbitrary number. (Note that even though 2 has multiplicity 2, the dimension of its eigenspace is only 1.)

 Case \(\lambda = 3. \) The solutions to the matrix equation \((A - 3I)x = 0\) are \(x = (2z, 0, z) \) where \(z \) is an arbitrary number.

3. [15; 5 points each part] On dimension.

 a. State the definition of the dimension of a vector space.

 The dimension of a vector space is the number of vectors in any of its bases.

 b. What theorem on vector spaces is required before this definition of dimension is a valid definition?

 The theorem that says that every basis of a vector space has the same number of vectors. That followed directly from the replacement theorem.

 c. Let \(V \) be the vector space \(V = \{(w, x, y, z) \in \mathbb{R}^4 | w = x + y + z\}. \) Give an example of a 2-dimensional subspace \(W \) of \(V. \)

 As \(V \) has dimension 3, you can require almost any equation to reduce it to dimension 2. For example, if you require \(x = 0, \) then you get the 2-dimensional subspace \(W = \{(w, 0, y, z) \in \mathbb{R}^4 | w = y + z\}. \)

4. [15] If \(A \) is a \(5 \times 3 \) matrix, show that the rows of \(A \) are linearly dependent. (There are several ways that you can approach this. Be sure to write a clear and complete explanation.)

 One such proof: The column space is spanned by the three columns, so it has at most dimension 3. Therefore the rank of \(A \) is at most 3. Therefore, the row space has at most dimension 3. Since there are 5 rows, they can’t be independent since the row space can’t be as high as 5.

5. [15] Suppose that \(u, \ v, \) and \(w \) are vectors in \(\mathbb{R}^3. \) Prove that if \(u \) is orthogonal to both \(v \) and \(w, \) then \(u \) is also orthogonal to \(8v + 13w. \)
Since \(\mathbf{u} \perp \mathbf{v} \) and \(\mathbf{u} \perp \mathbf{w} \), therefore \(\langle \mathbf{u} | \mathbf{v} \rangle = 0 \) and \(\langle \mathbf{u} | \mathbf{w} \rangle = 0 \). Thus,
\[
\langle \mathbf{u} | 8\mathbf{v} + 13\mathbf{w} \rangle = \langle \mathbf{u} | 8\mathbf{v} \rangle + \langle \mathbf{u} | 13\mathbf{w} \rangle
= 8\langle \mathbf{u} | \mathbf{v} \rangle + 13\langle \mathbf{u} | \mathbf{w} \rangle
= 8 \cdot 0 + 13 \cdot 0 = 0
\]
Hence, \(\mathbf{u} \perp (8\mathbf{v} + 13\mathbf{w}) \). Q.E.D.

6. [20; 4 points each part] Consider the three vectors in the plane \(\mathbf{u} = (2, 1), \mathbf{v} = (2, 3), \) and \(\mathbf{w} = (6, 1) \).

a. Compute \(\| \mathbf{v} - \mathbf{w} \| \).
\[
\| (2, 3) - (6, 1) \| = \| (-4, 2) \| = \sqrt{16 + 4} = \sqrt{20}
\]
b. Compute the inner product \(\langle \mathbf{u} | \mathbf{v} \rangle \).
\[
\langle (2, 1) | (2, 3) \rangle = 2 \cdot 2 + 1 \cdot 3 = 7
\]
c. Let \(\theta \) be the angle between \(\mathbf{u} \) and \(\mathbf{v} \). Find \(\cos \theta \).
\[
\cos \theta = \frac{\langle \mathbf{u} | \mathbf{v} \rangle}{\| \mathbf{u} \| \| \mathbf{v} \|} = \frac{7}{\sqrt{5} \sqrt{13}} = \frac{7}{\sqrt{65}}
\]
d. Which of the vectors \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{w} \) are parallel, if any?
None are parallel since no one of them is a scalar multiple of any other one.

e. Which of the vectors \(\mathbf{u}, \mathbf{v}, \) and \(\mathbf{w} \) are orthogonal, if any?
None are orthogonal since the inner products of any two of them are nonzero.

7. [10] Evaluate the following determinant using any method you like. Show all your work.
\[
| \mathbf{A} | = \begin{vmatrix}
1 & 0 & -3 & 0 \\
0 & 1 & 0 & 1 \\
5 & 3 & 0 & 0 \\
0 & 0 & 2 & -1
\end{vmatrix}
\]
There are many ways to compute the determinant. It is \(-9\).