The definition of cross products. The cross product \(\times : \mathbb{R}^3 \times \mathbb{R}^3 \to \mathbb{R}^3 \) is an operation that takes two vectors \(\mathbf{u} \) and \(\mathbf{v} \) in space and determines another vector \(\mathbf{u} \times \mathbf{v} \) in space. (Cross products are sometimes called outer products, sometimes called vector products.) Although we’ll define \(\mathbf{u} \times \mathbf{v} \) algebraically, its geometric meaning is understandable. The vector \(\mathbf{u} \times \mathbf{v} \) will have a length equal to the area of the parallelogram whose sides are \(\mathbf{u} \) and \(\mathbf{v} \), and the direction of \(\mathbf{u} \times \mathbf{v} \) will be orthogonal to the plane of \(\mathbf{u} \) and \(\mathbf{v} \) in a direction determined by a right-hand rule (when the coordinate system is right-handed).

The easiest way to define cross products is to use the standard unit vectors \(\mathbf{i}, \mathbf{j}, \) and \(\mathbf{k} \) for \(\mathbb{R}^3 \). If

\[
\mathbf{u} = (u_1, u_2, u_3) = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k},
\]

and

\[
\mathbf{v} = (v_1, v_2, v_3) = v_1 \mathbf{i} + v_2 \mathbf{j} + v_3 \mathbf{k},
\]

then \(\mathbf{u} \times \mathbf{v} \) is defined as

\[
\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2)\mathbf{i} + (u_3v_1 - u_1v_3)\mathbf{j} + (u_1v_2 - u_2v_1)\mathbf{k}
\]

which is much easier to remember when you write it as a determinant

\[
\mathbf{u} \times \mathbf{v} = \begin{vmatrix}
 u_2 & u_3 \\
 v_2 & v_3
\end{vmatrix} \mathbf{i} - \begin{vmatrix}
 u_1 & u_3 \\
 v_1 & v_3
\end{vmatrix} \mathbf{j} + \begin{vmatrix}
 u_1 & u_2 \\
 v_1 & v_2
\end{vmatrix} \mathbf{k}
\]

Properties of cross products. There are a whole lot of properties that follow from this definition. First of all, it’s anticommutative

\[
\mathbf{v} \times \mathbf{u} = -(\mathbf{u} \times \mathbf{v}),
\]

so any vector cross itself is \(\mathbf{0} \)

\[
\mathbf{v} \times \mathbf{v} = \mathbf{0}.
\]

It’s bilinear, that is, linear in each argument, so it distributes over addition and subtraction, \(\mathbf{0} \) acts as zero should, and you can pass scalars in and out of arguments

\[
\mathbf{u} \times (\mathbf{v} \pm \mathbf{w}) = (\mathbf{u} \times \mathbf{v}) \pm (\mathbf{u} \times \mathbf{w})
\]

\[
(\mathbf{u} \pm \mathbf{v}) \times \mathbf{w} = (\mathbf{u} \times \mathbf{w}) \pm (\mathbf{v} \times \mathbf{w})
\]
\[0 \times v = 0 = v \times 0 \]

\[c(u \times v) = (cu) \times v = u \times (cv) \]

A couple more properties you can check from the definition, or from the properties already found are that \(\langle u \times v \mid u \rangle = 0 \) and \(\langle u \times v \mid v \rangle = 0 \). Those imply that the vector \(u \times v \) is orthogonal to both vectors \(u \) and \(v \), and so it is orthogonal to the plane of \(u \) and \(v \).

Standard unit vectors and cross products. Interesting things happen when we look specifically at the cross products of standard unit vectors. Of course

\[i \times i = j \times j = k \times k = 0, \]

since any vector cross itself is 0. But

\[i \times j = k, \quad j \times k = i, \quad k \times i = j, \]

and

\[j \times i = -k, \quad k \times j = -i, \quad i \times k = -j, \]

all of which follows directly from the definition.

Length of the cross product, areas of triangles and parallelograms. A direct computation (which we’ll omit) shows that

\[\|u \times v\| = \|u\| \|v\| \sin \theta \]

where \(\theta \) is the angle between the vectors \(u \) and \(v \).

Consider a triangle in 3-space where two of the sides are \(u \) and \(v \).

![Triangle Diagram](image)

Taking \(u \) to be the base of the triangle, then the height of the triangle is \(\|v\| \sin \theta \), where \(\theta \) is the angle between \(u \) and \(v \). Therefore, the area of this triangle is

\[\text{Area} = \frac{1}{2} \|u\| \|v\| \sin \theta = \frac{1}{2} \|u \times v\|. \]

(In general, the area of a any triangle is half the product of two adjacent sides and the sine of the angle between them.)
Area of a parallelogram in \mathbb{R}^3. Now consider a parallelogram in 3-space where two of the sides are \mathbf{u} and \mathbf{v}.

Of course, if the triangle is doubled to a parallelogram, then the area of the parallelogram is $\|\mathbf{u} \times \mathbf{v}\|$.

Thus, the norm of a cross product is the area of the parallelogram bounded by the vectors.

We now have a geometric characterization of the cross product. The cross product $\mathbf{u} \times \mathbf{v}$ is the vector orthogonal to the plane of \mathbf{u} and \mathbf{v} pointing away from it in a the direction determined by a right-hand rule, and its length equals the area of the parallelogram whose sides are \mathbf{u} and \mathbf{v}.

Note that $\mathbf{u} \times \mathbf{v}$ is $\mathbf{0}$ if and only if \mathbf{u} and \mathbf{v} lie in a line, that is, they point in the same direction or the directly opposite directions.

Math 122 Home Page at http://math.clarku.edu/~djoyce/ma122/