
 

Transactions in GIS

 

, 2003, 7(4): 467–484

© 2003 Blackwell Publishing Ltd, 9600 Garsington Road, Oxford OX4 2DQ, UK and 
350 Main Street, Malden MA 02148, USA.

 

Research Article

 

Using the Relative Operating 
Characteristic to Quantify Certainty 
in Prediction of Location of Land 
Cover Change in India

 

R Gil Pontius Jr

 

Graduate School of Geography 
Clark University

 

Kiran Batchu

 

Graduate School of Geography 
Clark University

 

Abstract

 

This paper describes a methodology by which modelers, ecologists and planners
can quantify the certainty in predicting the location of change for a given quantity
of change. The specification of the quantity of a land cover category and the
specification of the location of a land cover category are two distinct fundamental
concepts in geographical analysis. It is crucial that scientists have appropriate
quantitative tools to analyze each of these two concepts independently of one another.
This paper gives methods whereby a scientist can convert a map of relative propensity
for disturbance to a map of probability of future disturbance, based on a quantifiable
validation of a map’s predictive ability. The required inputs are: (1) maps that
show a Boolean categorical variable at times 0, 1 and 2, (2) a technique to create a
map that shows the relative propensity for membership in the Boolean category, and
(3) a predicted proportion of the category at time 3.

 

1 Introduction

 

1.1 From thresholds to predictions

 

One of the most common procedures in Geographic Information Science is the con-
version from a real variable on the interval [0, 1] to a Boolean categorical variable of
zero or one. If the real value is greater than some specified threshold, then the categorical
variable is assigned a value of one, else the categorical variable is assigned a value of
zero. Examples abound. In the ecological and environmental sciences, researchers use
this threshold procedure to generate raster maps of presence or absence of species (Wu and
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Huffer 1997). In remote sensing, scientists use thresholds to interpret satellite images
in order to create a resultant image of categories of land cover (Mather 1999). In
decision analysis, scientists create maps where each grid cell shows the suitability for
a particular land use type, and then a threshold is set to create a map of recommended
land use categories (Eastman 1995). In land-use change modeling, scientists generate
maps of the likelihood of deforestation, then a threshold is set to determine which cells
show the category of predicted deforestation (Veldkamp and Lambin 2001). This fourth
case of predicting disturbance to a landscape serves as the example in the remainder of
this paper. For this example, we call the real value on the interval [0, 1] a “propensity
for disturbance”. If the propensity of a cell in a raster map is greater than the threshold,
then the cell is assigned to the “disturbed” category, else the cell is assigned to the
“non-disturbed” category.

The decision concerning the level of the threshold is a decision that determines the
magnitude of the quantity of area of land assigned to each category. If the threshold is
high, then a small quantity of land is assigned to the disturbed category because only a
small number of cells have a propensity for disturbance above a high threshold. If the
threshold is lower, then a larger quantity of land is assigned to the disturbed category.
In this sense, a map of propensity for disturbance contains information about only the
relative geographical location of predicted disturbance, because the propensity values
have meaning only in terms of their relative ordering, not in terms of their magnitudes.
A map of propensity for disturbance claims nothing concerning the predicted quantity
of disturbance. After the scientist sets the threshold and performs the reclassification,
the categorical map of the predicted landscape specifies both the location and quantity
of predicted disturbance versus non-disturbance.

The specification of the quantity of a category and the specification of the location
of a category are two distinct fundamental concepts in geographical analysis. It is import-
ant that scientists have appropriate quantitative tools to analyze each of these two
concepts independently of one another. This paper presents statistical tools to examine
the specification of location, independently from the specification of quantity, for cases
where a scientist converts a real number on the interval [0, 1] to a Boolean variable for
the purpose of prediction and/or accuracy assessment.

 

1.2 Probability of disturbance on a landscape

 

Logistic regression is perhaps the most common method to create a raster map of
propensity for disturbance (Ludeke et al. 1990, Irwin and Geoghegan 2001, Geoghegan
et al. 2001). Each observation of the regression analysis is a grid cell that is non-
disturbed at time 0. The dependent variable takes a value of one if disturbance happened
in a cell between time 0 and time 1, and zero if disturbance did not happen. Typical
dependent variables are distance to roads, distance to markets, and slope. Logistic
regression produces a map where each grid cell has a fitted value on the interval (0, 1).

How should we interpret the fitted values that logistic regression produces? Some
scientists commonly refer to these fitted values as predicted probabilities. However,
if the purpose of the logistic regression is to predict future disturbance beyond time 1,
then there are two reasons why it is faulty to interpret these fitted values as predicted
probabilities. First, the fitted values are not predictions because the data from time 0 and
time 1 are known and are used to generate the values. It is an oxymoron to predict
something that is known and that happened in the past. Second, the fitted values are
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not probabilities because the data from time 0 and time 1 show definitively which
cells became disturbed and which did not, therefore the probability of disturbance
in those cells that became disturbed between time 0 and time 1 is one, and the pro-
bability of disturbance in those cells that were not disturbed between time 0 and
time 1 is zero.

We should find meaning in the relative ordering of the fitted values, not in their
magnitudes. If the fitted value of a particular cell is 

 

y

 

, we should not assume that the
probability of cell becoming disturbed in the future is 

 

y

 

. If we were to insist that the
magnitude of the fitted values is meaningful, then we would attribute characteristics to
the fitted values that they are not designed to portray. Specifically, if we interpret the
fitted values as probabilities, then the average of the fitted values among the non-dis-
turbed cells of time 1 implies a specific quantity of predicted future disturbance between
time 1 and some future time 2. The fitted values are not designed to predict the quantity
of land that will become disturbed between time 1 and time 2.

However, it is possible to use the fitted values to help to predict which cells will
become disturbed between time 1 and some future time 2. The method should be to
examine the cells that remained non-disturbed at time 1, then to predict the cells that
have the largest fitted values will become disturbed before the cells that have relatively
smaller fitted values. We would need an independent calculation to predict the quantity
of cells that would be disturbed between time 1 and time 2.

Ultimately, decision-makers need maps that show interpretable probabilities of
future disturbance, not simply propensities for future disturbance. More importantly,
decision-makers must know the extent to which they can trust predictions. Therefore,
scientists must create maps where each cell shows the probability that the cell will
become disturbed by some specific time. These maps should communicate clearly the
level of certainty in terms of two important questions: (1) What is the level of certainty
of the predicted quantity of disturbance? and (2) What is the level of certainty of the
predicted location of disturbance? This paper offers methods to assess the second of
these two questions. To clarify the distinction between the two questions, consider the
example in the following section.

 

1.3 Certainty of location versus certainty of quantity

 

Suppose a scientist predicts that 

 

P

 

 is the proportion of a landscape that will be disturbed
at some point in the future. This prediction of the quantity 

 

P

 

 alone gives no information
concerning the spatial distribution of the disturbance on the future landscape. But sup-
pose that the scientist would like to create a map of many grid cells for which each cell
shows the probability of being disturbed in the future, given the estimate of 

 

P

 

. If the
scientist were completely uncertain of the location of the future disturbance, then every
cell of the map should show a probability of 

 

P

 

 of being disturbed. If the scientist were
completely certain of the location of the future disturbance, then the map of the pre-
dicted disturbance should contain a probability of 1 in 

 

P

 

 proportion of the cells and a
probability of 0 in 1-

 

P

 

 proportion of the cells. In most cases, the scientist’s level of
certainty concerning the predicted location of the future disturbance will be somewhere
between no certainty and perfect certainty. If the scientist has an intermediate level of
certainty, then the scientist should make a map such that the probability for each grid
cell would be near 

 

P

 

 for locations that are very uncertain, and would be far from 

 

P

 

 (i.e.
near 0 or 1) for locations that are very certain.
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This paper shows methods whereby a scientist can create a map of the probability
of future disturbance, based on an estimated quantity of future disturbance and a measure
of a map’s ability to predict the location of future disturbance. We illustrate the procedure
with an example of forest disturbance in India’s Western Ghats.

 

1.4 Biodiversity and Human Disturbance in the Western Ghats

 

The Western Ghats consist of a chain of mountain ranges that stretch along the
western coast of India, from the Vindhya-Satpura in the north to the tip of the Indian
peninsula in the south (Figure 1). The Western Ghats span across four major states of
India: Maharashtra, Karnataka, Kerala and Tamilnadu. Covering an estimated area of
160,000 km

 

2

 

, the Western Ghats are an area of exceptional biological diversity and
conservation interest (Rodgers and Panwar 1988). Almost one-third of all the flowering
plant species in India are found in the Western Ghats region. The complex topography
and heavy rainfall have made certain areas inaccessible and have helped the region
retain its diversity.

Nevertheless, human disturbance has had a great influence on vegetation. Human
activity has caused degradation, thus some forest areas have shrunk considerably (Menon
and Bawa 1997). The Western Ghats has suffered rapid deforestation in the past few
decades due to large-scale conversion of forests for fuelwood, roads, and plantations of

Figure 1 Map of the Western Ghats in India
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tea and coffee. The loss of forest in sensitive regions such as steep slopes aggravates soil
erosion and flooding. Some endemic species have disappeared entirely, and others are
on the verge of extinction. Due to its richness and its vulnerability, the Western Ghats
is among the world’s biodiversity “hot spots” (Myers et al. 2000).

It is essential to understand and to anticipate the threat to biodiversity due to the
cumulative effect of human disturbance. Therefore, we have applied a statistical tech-
nique to simulate cumulative forest disturbance between years for which we have maps
(1920 and 1990) and to predict disturbance into the future. This paper uses the Western
Ghats to demonstrate a technique to create a map that shows the probability of future
disturbance at any specific location.

 

2 Methods

 

2.1 Data

 

Figure 2 shows cumulative forest disturbance, which is the dependent variable. The
darkest shade denotes cells that were disturbed between time 0 and time 1. The medium
shade shows cells that were disturbed between time 1 and time 2. The lightest shade
shows cells that remain undisturbed at time 2. In this case, time 0 is an unspecified pre-
human time. Time 1 is 1920 and time 2 is 1990. White denotes areas that are outside
the Western Ghats, that are water, or that are locations for which data are not available.
The resolution of each grid cell is approximately 1 km by 1 km. The accuracy of the
maps for this analysis is not known precisely, but we accept the maps as points of
reference because the purpose of this paper is to demonstrate a technique of analysis.

The entire Western Ghats would probably be forested, were it not for humans,
because the entire study area has the biophysical potential to be forest (Kamaljit Bawa,
personal communication). Therefore we assume a completely non-disturbed landscape
at some time 0, called pre-human. This assumption allows the technique to be applied
in cases where maps are available for only two points in time, e.g. 1920 and 1990.

We derive Figure 2 from a pair of individual maps of 1920 and 1990 in which each
cell is categorized as forest or non-forest. The 1920 map was digitized from paper maps
of Survey of India toposheets, printed by the Army Map Service, Corps of Engineers,
surveyed in the years ranging from 1910 to 1930. The map of forest of 1990 was
created from satellite imagery. The initial classification had the following land use types:
Dense Forest, Less Dense Forest, Tree Plantations, Coffee, Tea, Scrub, Open, and Water.
The first two categories are classified as forest. Non-forest areas are plantations, coffee,
tea, scrub and open. All the non-forest areas are considered disturbed. The motivation
for this categorization is to represent the cumulative threat to biodiversity.

A small number of cells exhibit forest re-growth between 1920 and 1990. Cells that
are non-forest in 1920 and forest in 1990 are placed in the category “disturbed between
pre-human and 1920” because our motivation is to assess the cumulative threat to
biodiversity. Consequently, Figure 2 shows one-way cumulative disturbance from a pre-
human time to 1920 to 1990. The assumption that the change is a one-way conversion
of a Boolean variable is necessary for the technique of this paper. The need for this
assumption is a limitation of the applicability of the technique.

Figure 3 shows an independent variable, slope. The slope map was derived from an
elevation map that has pixels of 1 km by 1 km. The coarseness of the elevation map
results in a modest range in slopes. If the resolution of the elevation map were finer,
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then the range in slopes could be more extreme. Figure 3 distinguishes flatter regions
from steeper regions at a resolution that is consistent with the forest map. We think that
slope is important in predicting human disturbance to the landscape in the rugged
terrain of the Western Ghats. We hypothesize that humans would prioritize disturbance
on flatter slopes before steeper slopes.

 

2.2 Strategy

 

Figure 4 shows the sequence of operations of our analysis. The rectangles with solid
borders denote maps. The rectangles with dotted borders denote non-map information.

Figure 2 Map of cumulative forest disturbance at 1920 and 1990
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The arrows show the flow of information and the sequence of steps. The first step is to
create a propensity for post-1920 disturbance map from only the variables that would
have been available in 1920. This can be accomplished by performing logistic regression
to explain the disturbance between pre-human times and 1920 as a function of slope.
The resulting fitted values give a propensity for post-1920 disturbance map, which is
used to predict the disturbance between 1920 and 1990. Hence the propensity for post-
1920 disturbance map is compared to the 1990 map, to compute a goodness-of-fit of
validation for the predicted disturbance between 1920 and 1990. A statistic called the
Relative Operating Characteristic (ROC) measures the goodness-of-fit of the validation.

Figure 3 Map of slope in percent
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Then the model is recalibrated to generate a new propensity for disturbance map that
shows the relative likelihood for post-1990 disturbance, which is subsequently used to
predict post-1990 disturbance. Lastly, two types of adjustments convert the propensity
for post-1990 disturbance map into a probability of post-1990 disturbance map. The
two adjustments derive from the dotted rectangles, which are: (1) the ROC goodness-
of-fit of validation, and (2) an independent prediction of the quantity of post-1990
disturbance. The subsequent subsections give details of the inner workings of each
rectangle of Figure 4.

 

2.3 Specification of propensity for post-1920 disturbance

 

A calibration procedure uses data from 1920 to generate the propensity for post-1920
disturbance map. Logistic regression is one of the most commonly used calibration
methods, which uses empirical analysis to establish a relationship between the independ-
ent variable and the propensity for post-1920 disturbance. In the regression, the depend-
ent variable is 1 if the cell is disturbed between pre-human times and 1920, and 0 if the
cell is non-disturbed by 1920. The independent variable is slope, which we assume does
not change appreciably over time. The propensity for disturbance values are the regres-
sion’s resulting fitted values. In order to predict post-1920 disturbance, the values are
relevant for only those cells that are non-disturbed in 1920, since only those cells are
candidates for post-1920 disturbance.

 

 

 
 
 
 
 
 
 
 
 

 

 

 
 

 

 

 
 

 

 

 

 
 

 

Figure 4 Flow of methods
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Alternatively, we can use distance to forest edge as the propensity for post-1920
disturbance map. In this case, the non-disturbed cells that touch disturbed cells receive
a propensity value of 1 and the non-disturbed cell that is farthest from any disturbed
cell receives a propensity value of 0. Using these two extremes, linear interpolation sets
a relationship between propensity and distance to forest edge, thus assigns a propensity
value to each non-disturbed cell of 1920 as a linear function of its distance to edge as
defined by:

(1)

where 

 

P

 

(

 

n

 

) 

 

=

 

 propensity for cell 

 

n

 

 to become disturbed after 1920; 

 

n

 

 

 

=

 

 index of cell that
is non-disturbed in 1920 

 

=

 

 1, 2, . . . , 

 

N

 

; and 

 

N

 

 

 

=

 

 number of cells that are non-disturbed
in 1920.

The value of the propensity for disturbance in each cell shows the likelihood of that
cell for disturbance, relative to the other cells. That is, we would predict that the cells
with the larger propensity values would become disturbed before the cells with the
smaller propensity values. Therefore we can test the validity of the propensity for post-
1920 map by comparing it to the map of real disturbance between 1920 and 1990.

There are undoubtedly more complex methods, such as multiple logistic regression
or multi-criteria analysis, to construct the propensity for disturbance map. However the
purpose of this analysis is to show a technique to convert any propensity for disturbance
map to a probability of future disturbance map, therefore we do not analyze more
complicated methods of generating the propensity for disturbance map.

 

2.4 Validation for predicted change between 1920 and 1990

 

A validation procedure assesses how well the propensity for post-1920 disturbance map
matches the map of real 1920–90 disturbance. The goodness-of-fit of the validation
measures the predictive ability of the calibration procedure that created the propensity
for post-1920 map. The propensity for post-1920 disturbance map has predictive power
if the larger propensity values are concentrated at locations that truly became disturbed
between 1920 and 1990. The Relative Operating Characteristic (ROC) is a statistic that
measures the extent to which this is true. Swets (1986, 1988) describes the logic of the
ROC in depth. Others show how to compute the ROC in the context of digital maps
(Pontius and Schneider 2001, Pontius and Pacheco 2003). Here we give a brief descrip-
tion of the ROC.

The ROC is a method to compare a Boolean variable (e.g. real 1920–90 disturb-
ance) versus an order variable (e.g. propensity for post-1920 disturbance). The ROC
requires that we compute the accuracy of the prediction at several different threshold
levels. For each threshold level, each cell of the propensity for post-1920 disturbance
map is reclassified as either above or not above the threshold. Equation (2) shows how
any particular threshold defines a predicted map of Boolean disturbance versus non-
disturbance:

(2)

where 

 

S

 

i

 

(

 

n

 

) 

 

=

 

 predicted disturbance for cell 

 

n

 

 at threshold 

 

T

 

i

 

; and 

 

i

 

 

 

=

 

 index of threshold

 

=

 

 0, 1, . . . , 

 

I

 

; 

 

T

 

i

 

 =

 

 threshold 

 

i

 

; and 

 

I

 

 

 

=

 

 number of bins created by the thresholds.

P n
n

n
( )  =

distance between cell  and the nearest disturbed cell
maximum distance between any cell  and the nearest disturbed cell
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=

1
0

if
else
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The initial threshold is one (i.e. 

 

T

 

0

 

 

 

=

 

 1) such that all cells are predicted as non-
disturbance. Each subsequent threshold is lower, so each subsequent predicted map has
a larger quantity of cells in the disturbed category. At every threshold, we compute agree-
ment between the predicted map and the map of real disturbance between 1920 and 1990
(Figure 2). The final threshold is less than 0 such that all cells are predicted as disturbance.

Let us define bin 

 

i

 

 as the union of cells that have a propensity for disturbance value
that falls between threshold level 

 

i

 

 and 

 

i

 

-1. Equation (3) shows that we set the threshold
levels such that each bin 

 

i

 

 has the same number of cells for 

 

i

 

 

 

=

 

 1, 2, . . . , 

 

I

 

:

(3)

For each threshold level, we assess the accuracy of the prediction by using a contin-
gency table such as Table 1. The columns of Table 1 refer to the category in the map of
real disturbance between 1920 and 1990. Thus 

 

A

 

i

 

 + 

 

C

 

i

 

 denotes the number of cells that
are disturbed in the reality map, whereas 

 

B

 

i

 

 + 

 

D

 

i

 

 denotes the number of cells that are non-
disturbed in the reality map. The rows of Table 1 refer to the category in the map of
predicted disturbance, as defined by the propensity for post-1920 disturbance map and
threshold 

 

i

 

. Thus the entry in the first row and first column of Table 1, denoted as 

 

A

 

i

 

,
is the number of non-disturbed cells of 1920 that are classified as disturbed in both the
prediction map and the map of real disturbance between 1920 and 1990. 

 

A

 

i

 

 is the
number of true positive cells for threshold 

 

i

 

. Thus the entry in the first row and second
column of Table 1, denoted as Bi, is the number of non-disturbed cells of 1920 that are
classified as disturbed in the prediction and non-disturbed in the map of real disturbance
between 1920 and 1990. Bi is the number of false positive cells for threshold i. A
“positive” is a cell that is categorized as disturbed in the predicted landscape. Ci is the
number of False Negatives and Di is the number of True Negatives. For the ROC
analysis, Equation (4) gives the rate of true positives and Equation (5) gives the rate of
false positives for each threshold i:

(4)

(5)

Figure 5 plots the rate of true positives versus the rate of false positives for each
threshold. The point (0, 0) derives from the first threshold T0 and the point (1, 1) derives
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Table 1 Two-by-Two contingency table where ‘i ’ is threshold index and Ai, Bi, Ci, and Di

are numbers of grid cells that are candidates for post-1920 disturbance in the map.
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from the last threshold TI. Points near the origin derive from high thresholds and points
near (1, 1) derive from low thresholds. When all the points are connected with line
segments, the area under the resulting curve is the ROC value. If the propensity for
disturbance values were distributed at random locations, then the expected ROC curve
would be the straight diagonal line between (0, 0) and (1, 1), hence the area under the
curve would be 0.5. Alternatively, if the propensity for disturbance map were perfect,
then the ROC curve would begin at the point (0, 0), proceed straight to the point (0, 1),
then straight to the point (1, 1), hence the area under the curve would be 1. A perfect
propensity for disturbance map is a map in which all the largest propensity for post-
1920 disturbance values are at locations of real post-1920 disturbance.

In this respect, the ROC reflects the producer’s accuracy, because Equation (4)
indicates the producer’s accuracy for the disturbed category. The producer’s accuracy
answers the question: “Given that a cell is really disturbed, what is the probability
that the cell is predicted as disturbed?” This type of accuracy is interesting to the
map-producer.

However, a decision-maker who examines the predicted map is more interested in
the question: “Given that the cell is predicted as disturbed, what is the probability that
the cell really is disturbed?” This type of accuracy is the “user’s accuracy”. Congalton
and Green (1999) describe the difference between producer’s accuracy and user’s
accuracy. Equation (6) defines the user’s accuracy, denoted Zi, for the disturbed category
for every bin i, where i = 1, . . . , N:

(6)

Figure 5 ROC curves to validate predicted additional disturbance 1920–1990 for three
propensity maps based on: (1) distance to forest edge, (2) logistic regression using slope, and
(3) random location
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Bin i consists of the cells that have a propensity for disturbance value that is greater
than or equal to threshold i and less than threshold i − 1. We compute a value of Zi for
each bin i, during the validation of the prediction of the disturbance between 1920 and
1990. We store these values of Zi for use in the extrapolation part of the analysis to
predict post-1990 disturbance, as shown in the bottom of Figure 4.

2.5 Respecification of propensity for post-1990 disturbance

A recalibration procedure creates propensity for post-1990 disturbance maps in a
manner similar to the calibration method used to create propensity for post-1920 dis-
turbance maps. The only difference is that the number of cells that are non-disturbed
in 1990, denoted N′, is less than the number of cells that are non-disturbed in 1920,
denoted N. Hence, the number of cells that are candidates for post-1990 disturbance is
less than the number of cells that are candidates for post-1920 disturbance. Otherwise
the calibration techniques for post-1990 prediction are nearly identical to the calibration
techniques for post-1920 prediction.

One method is to use logistic regression where the independent variable is slope.
The dependent variable is 1 if the cell is disturbed between pre-human and 1990, and 0
if the cell is non-disturbed in 1990. The propensity values are the fitted values for the
cells that are non-disturbed in 1990.

The method to create the second propensity for post-1990 disturbance map is to
create a map of distance to forest edge of 1990. For the non-disturbed cells of 1990, the
larger propensities are closer to 1990 forest edge and smaller propensities are farther
from forest edge as described by Equation (7):

(7)

where P′(n′) = propensity of cell n′ to become disturbed after 1990; n′ = index of cell that
is non-disturbed in 1990 = 1, 2, . . . , N′; and N′ = number of cells that are non-disturbed
in 1990.

The propensity for post-1990 disturbance map shows the locations of the relative
likelihood of post-1990 disturbance. It says nothing about the quantity of future disturb-
ance, thus it says nothing about the probability of future disturbance. The next section
shows how to convert the propensity for post-1990 disturbance map to a probability
for post-1990 disturbance map.

2.6 Extrapolation of post-1990 disturbance

In a manner similar to the prediction of post-1920 disturbance, each propensity for
post-1990 disturbance map is sliced by several thresholds, to generate I bins. The first
threshold is one (i.e.  = 1) and each subsequent threshold  is such that Equa-
tions (8) and (9) hold:

(8)

(9)

′ ′ = ′
′

P n
n

n
( )  

distance between cell  and the nearest disturbed cell
maximum distance between any cell  and the nearest disturbed cell

′T0 ′Ti

′ ′ = ′ < ′ ′
=

S n T P ni i( )              ( )
     else
1
0

if

′ ′












− ′ ′












= ′

′=

′

−
′=

′

∑ ∑S n S n
N

I
i

n

N

i
n

N

( )   ( )   
1

1
1



Using the Relative Operating Characteristic 479

© Blackwell Publishing Ltd. 2003

where  = predicted disturbance for cell n at threshold ; i = index of threshold =
0, 1, . . . , I;  = threshold i; and I = number of bins created by the thresholds, which
is the same as in Equation (3).

Then Equation (10) assigns Zi to each cell in bin i of the propensity for post-1990
disturbance map. Recall that Zi is the user’s accuracy for the disturbed category of bin
i obtained from the validation between 1920 and 1990.

(10)

After Equation (10) assigns a user’s accuracy value, Zi, to each non-disturbed cell
of 1990, we can compute an implied proportion of disturbance using Equation (11):

(11)

If we were to interpret each Zi value as a probability, then the proportion of dis-
turbance, Q1, would be the proportion of expected disturbance. However, Q1 is the
proportion of disturbance in 1920, so it should not necessarily be used to make a state-
ment about the proportion of disturbance predicted in some future landscape, especially
when the time of that future landscape is not yet specified.

To create a map of the probability of future disturbance, it is necessary to specify
a quantity of future disturbance. This quantity can be specified completely independ-
ently of the other components of this analysis. For example, this quantity could come
from some completely different scenario model that gives a quantity of disturbance for
the entire region. Assume this quantity of future disturbance is a proportion, Q2, of the
number of non-disturbed cells of 1990. Equation (12) gives the necessary adjustment to
each value of V(n′), in order to construct a map of probability of future disturbance,
W(n′), where the implied proportion of disturbance is Q2.

(12)

where Q2 = proportion of non-disturbed cells of 1990 that become disturbed after 1990,
specified independently.

Specifically, if Q2 < Q1, then each probability of disturbance, V(n′), is shrunk by
the ratio Q2/Q1. If Q1 < Q2, then each probability of disturbance is grown by a technique
that is equivalent to shrinking the probability of non-disturbance, 1−V(n′), by the ratio
Q1/Q2. The technique of Equation (12) assures that the resulting probability is con-
strained to the interval [0, 1].

If the validation component of the analysis shows that the prediction of location is
equivalent to random, then each Zi is identical, hence each cell in the final probability
map is a constant value, W(n′) = Q2. If the validation component of the model shows
that the prediction of location is perfect, then each Zi is either 0 or 1, hence each cell
in the final probability map is a value far from Q2 and much closer to 0 or 1. In our
example, we use Q2 = 0.5 for illustration, hence Figure 6 shows a map of probability of
disturbance when half of the non-disturbed cells in 1990 become disturbed. Figure 6
shows the prediction of post-1990 disturbance with a level of certainty based on the
validation of the prediction of the 1920–1990 disturbance.
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3 Results

The most important results concern the range of the probability for disturbance among
the cells in Figure 6. The probabilities of post-1990 disturbance range from 0.37 to 0.91
when the propensity for disturbance map is based on distance to forest edge. The prob-
abilities of post-1990 disturbance range from 0.49 to 0.76 when the propensity for
disturbance map is based on slope. These results indicate that the predictions of location
of disturbance based on distance to forest edge are more certain than the predictions
based on slope, since the former method yields a wider range of probabilities.

These results relate directly to Figure 5, which shows that 0.70 is the area under the
ROC curve based on the distance to edge variable and 0.62 is the area under the ROC

Figure 6 Map of user’s accuracy of the newly disturbed category, adjusted to express 50%
forest loss from 1990 based on distance to forest edge
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curve based on the slope variable. If the propensity for disturbance values were located
at random, then the area under the ROC curve would be 0.5. A perfect ROC value is 1.0.
Thus, the measure of the goodness-of-fit of validation for the location of the 1920–1990
disturbance is slightly less than half way between random and perfect.

The ROC ranged from 0.49 to 0.51 among 10,000 Monte Carlo runs, where each
run simulated a predicted landscape where the location of the predicted 1920–1990
disturbance was randomized. Therefore, the ROC values of 0.62 and 0.70 are signific-
antly greater than random.

The monotonic logistic regression gives larger fitted values on flatter slopes and
smaller fitted values on steeper slopes. Therefore, if we were to use a simple heuristic
rule to generate the propensity for disturbance map by putting larger propensity values
on flatter slopes, then the results would have been the same as the results from the
logistic regression.

4 Discussion

4.1 ROC and Bin Size

Like any statistical analysis, this analysis has its subjective components. The two
most subjective components of this analysis are: (1) the selection of the ROC as the
criterion to determine the best method to generate the propensity for disturbance
map, and (2) the specification of the thresholds, which determines the number of cells
in each bin.

There are two reasons why the ROC is well suited to validate predictive models.
First, the ROC allows analysis of propensity for disturbance values, where a value has
meaning in terms of its order in relation to the other values. ROC is an excellent method
for analyzing propensity of disturbance values where there is not a natural interpreta-
tion of a value’s magnitude, independent of the other values. Second, ROC analyzes the
specification of location independently from the specification of any particular quantity
of predicted disturbance. ROC accomplishes this by examining the goodness-of-fit of the
validation at many thresholds, then aggregating the information at all thresholds into
one measure of agreement. When modelers attempt to improve the predictive ability of
models, it is helpful to have separate information concerning the goodness-of-fit of
location versus the goodness-of-fit of quantity.

The subjective decision concerning the number of bins, hence the number of cells
per bin, can influence the results of this type of ROC-based analysis. At an extreme, the
smallest number of bins is one, which would be the case if there were only two thresh-
olds, at 1 and −∞. In this extreme case, the analysis could not show useful results, because
all cells would be in the same bin, therefore the analysis could not distinguish among
cells. At the other extreme, the maximum number of bins is the number of individual
cells, which would occur when the number of thresholds equals the number of cells plus
one. This would mean that each cell would be its own bin. However, if each cell were
its own bin, then each Zi would be either one or zero. That is, Zi would be one if the
cell were disturbed between time 1 and time 2, and Zi would be zero if the cell were not
disturbed between time 1 and time 2. We use Zi as the probability that bin i will become
disturbed after time 2. It is a violation of the concept of prediction to claim that the
future state of any bin is guaranteed, especially when each bin is a specific grid cell.
Therefore, when the number of cells in each bin is extremely small, the apparent
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certainty in the results is artificially inflated, since each Zi would be close to zero or one.
Therefore, there should be many cells in each bin.

What do we mean by “many”? In the Western Ghats example, there are 635 cells in
each bin. We think this number is more than sufficient for this particular application. As
a rule of thumb, we recommend at least 100 cells per bin, so that the proportion (Zi) will
have two significant digits. Ultimately, the decision concerning the number of cells per bin
and the number of bins is analogous to the subjective decision a scientist makes when
creating bins for a histogram. The size of the bins can influence to a limited extent the
spatial distribution of the probability of the category. The size of the bins cannot influence
the average probability in the study area because that average probability is determined
solely by the proportion of the category in the map. The scientist must use the knowledge
of the phenomenon in question to decide the appropriate bin size for the specific application.

4.2 Quantity of Future Disturbance

A major strength of this analysis is that it assesses information of location independently
from information of quantity. Therefore, it is easy to combine this analysis with other
models that focus on specification of quantity only. For example, some models specify
the quantity of land required for scenarios of future economic growth (Raskin et al.
1996). The techniques presented in this paper would allow a scientist to create a map
of probability of disturbance at specific locations, given any particular quantity of dis-
turbance specified by another model.

Specification of the time when the disturbance will occur can be set independently
from the location and quantity of disturbance, since only the specification of the quan-
tity of disturbance is necessary to create a map of probability of future disturbance. If
the scientist thinks that the disturbance will occur rapidly, then the future time will
occur sooner than if the scientist thinks the disturbance will occur slowly. In our West-
ern Ghats example, Figure 6 portrays a landscape in which 50% of the non-disturbed
cells of 1990 are disturbed after 1990. To estimate when this quantity of disturbance
will be reached, we interpolate a line using the quantity of non-forest land in 1920 and
1990. Assuming a constant annual amount of additional disturbance in the future, 50%
of the non-disturbed land of 1990 will become disturbed by approximately 2030.

The quantity of predicted future disturbance has implications for the selection of
the method to create the propensity for disturbance map. Figure 5 shows that distance
to forest edge is better than slope at predicting disturbance when the proportion of
disturbance is small, since the ROC curve for the distance to edge is higher than the
ROC curve for the slope, near the origin. However, when the proportion of predicted
future disturbance is large, then slope is slightly better than the distance to edge map at
specifying the locations of disturbance between 1920 and 1990. So if the goal is to
predict a landscape with a small to medium amount of post-1990 disturbance, then the
propensity for disturbance map should be based on distance to edge. If the goal is to
predict a landscape with a large proportion of post-1990 disturbance, then the propen-
sity for disturbance map should be based on slope.

4.3 Maximum Certainty

The spread in the probabilities reflects the level of certainty in the model’s predictive
ability. If the computed probabilities are near zero or one, then the level of certainty of
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location is high. If the computed probabilities are closer to the proportion of predicted
disturbance, then the level of certainty of location is lower.

The amount of total certainty in the prediction is a combination of the certainty
associated with the specification of location and the certainty associated with the spe-
cification of quantity. This paper examines only the certainty in the specification of
location. The next important step in the development of this methodology is to combine
the certainty of the predicted location with the certainty of the predicted quantity. As
a consequence, the predicted probabilities of Figure 6 reflect a maximum level of
certainty, since they fail to consider the certainty in the prediction of the quantity of
disturbance.

There is an additional reason why the computed probabilities of Figure 6 reflect the
maximum level of certainty that the decision-maker should have in the model’s pre-
dictive ability. The technique assumes that the model’s predictive ability between time 1
and time 2 will be the same as its predictive ability beyond time 2. This should be true
if the basic mechanisms of disturbance between time 1 and time 2 are the same as the
mechanisms beyond time 2. For example, between 1920 and 1990, the technology in
the Western Ghats was such that proximity to forest edge was important in deciding
which forested locations to disturb. However, the change in future technology may
change the predictive ability of the distance to forest edge variable. If the change in
future technology makes distance to edge even more important than it was in the past,
then the methodology will underestimate the level of certainty. If the change in future
technology makes distance to edge less important than it was in the past, then the
methodology will overestimate the level of certainty. To err on the side of caution, we
should interpret Figure 6 as showing the maximum level of certainty that we should
have in the prediction. Decision-makers should find the information about this upper
bound on the certainty helpful, because it will enable them to decide on the maximum
level of trust to put in the predictions.

5 Conclusions

We have presented a method whereby a scientist can generate a map that shows the
probability of a category appearing at a specific location, given a particular predicted
quantity of the category. The required inputs are: (1) maps that show a Boolean categor-
ical variable at times 0, 1 and 2, (2) a technique to create a map that shows the relative
propensity for membership in the Boolean category, and (3) a predicted proportion of
the category at time 3. The technique shows an upper bound on the certainty that a
scientist should have in a predicted spatial distribution.
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