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Land-Use & Cover Change Modeling 
 
Land-Use & Cover Change (LUCC) modeling is a rapidly growing scientific field because land-
use change is one of the most important ways that humans influence the environment. The issue 
is so important that scientists have formed an international organization, called “LUCC,” which is 
connected with the International Human Dimensions of Global Change Program and the 
International Geosphere Biosphere Program. The LUCC organization holds regular meetings and 
provides a communication infrastructure for professional scientists interested in land 
transformation (LUCC 2002). Their publications articulate priorities for land-use change research, 
which include modeling as particularly important (Turner II et al. 1995; Lambin et al. 1999). The 
last year of the formal LUCC program is 2005; it is likely that a Global Land Program will pick up 
where LUCC leaves off. 
 
Additional literature on land-use change modeling is growing rapidly. It is increasingly common for 
professional journals to dedicate special issues to LUCC (Veldkamp and Lambin 2001; Bian and 
Walsh 2002). Agarwal et al. (2002) provides a summary of many LUCC models. Additional 
reviews include Baker (1989) and Lambin (1994). 
 
It is difficult to compare the performance of the numerous models because LUCC models can be 
fundamentally different in a variety of ways. For example, some models, such as IDRISI’s 
GEOMOD, simulate change between two land categories (Silva and Clarke 2002; Pontius et al. 
2001) while others, such as IDRISI’s CA_MARKOV, can simulate change among several 
categories (Li and Reynolds 1997; Wagner 1997; Wu and Webster 1998; Pontius and Malanson 
2005). Still others simulate change in real variables as opposed to categorical variables 
(Veldkamp and Fresco 1996). Most models are for raster data, while some are for vector data. 
Even if all researchers were to use the same model, comparison among model performance 
would still be difficult because researchers usually focus on one specific study region. Therefore, 
it is difficult to separate the quality of the model from the complexity of the landscape and of the 
data. For example, if a model performs poorly, it is difficult to know whether the conceptual 
foundation of the model is weak, or the phenomenon of land change at the study site is 
particularly complex, or the data is particularly detailed. Alternatively, if a model performs well, it 
is difficult to know whether the conceptual foundation of the model is strong, or the phenomenon 
of land change at the study site is particularly simple, or the data is very simplified. Perhaps most 
importantly, there is not yet an agreed upon method to measure the performance of LUCC 
models, so two modelers who use the same model on the same landscape with the same data 
might evaluate one simulation run differently depending on the criteria used for evaluation. 
Land-use change modelers seem to agree that the intellectual foundation of validation for land 
use change models is insufficient. The literature on rigorous validation of LUCC models is scant 
(Kok et al. 2001; Pontius 2002; Pontius and Schneider 2001; Pontius et al. 2004a). This paper 
attempts to address these issues. It presents a land-use change model called GEOMOD. In 
addition, it presents an intellectual foundation and statistical methods to validate land-use change 
models from the GEOMOD approach. All the concepts are illustrated with an application to 
simulate the land-use change in Central Massachusetts, USA. One advantage of using IDRISI for 
land-use change modeling is that in one software package you have: 1) the data, 2) the 
simulation model, and 3) the statistical techniques of goodness-of-fit. 



Overview of the GEOMOD Approach 
Pontius et al. (2001) give the most complete peer-reviewed description and application of 
GEOMOD. The version of GEOMOD currently in IDRISI is essentially the same model published 
under the names “GEOMOD1” and “GEOMOD2” (Hall et al. 1995a, 1995b, 1995c; Huffaker and 
Pontius 2002; Menon et al. 2001). It is the model that has been used frequently to analyze 
baseline scenarios of deforestation for carbon offset projects, as called for by the international 
agreements on climate change, such as the Kyoto Protocol. It has been used to predict land 
change: 1) at the continental scale for Africa, Asia and Latin America, 2) at the country scale for 
Costa Rica and India, and 3) at the local scale within India, Egypt, United States and several 
countries in Latin America. There are other examples that we learn about regularly since 
GEOMOD was incorporated into IDRISI. 
 
GEOMOD is a grid-based land-use and land-cover change model, which simulates the spatial 
pattern of land change forwards or backwards in time. GEOMOD simulates the change between 
exactly two land categories denoted as 1 and 2. For simplicity of explanation, we refer to 
categories 1 and 2 as “non-developed” and “developed” respectively, but 1 and 2 could represent 
any two categories for any particular application. The user must supply a map of a beginning time 
and information concerning the number of grid cells of each category at an ending time, and then 
GEOMOD selects the location of the grid cells to classify as one of the two categories for the 
ending time. If there is a net increase in the developed category as the simulation proceeds from 
a beginning time to the ending time, then GEOMOD will search among the non-developed grid 
cells in order to select the cells that are most likely to be converted to become developed during 
the time interval. Conversely, if there is a net increase in the non-developed category as the 
simulation proceeds from a beginning time to a ending time, then GEOMOD will search among 
the developed grid cells in order to select the cells that are most likely to be converted to non-
developed during the time interval. 
  
The minimum input requirements are: the beginning time, the ending time, an image of the 
beginning time for two land cover types that must be denoted by 1 and 2, and an estimate of the 
number of cells of each of the two categories at the ending time. Most users also include either a 
suitability map that has already been created or driver maps that GEOMOD uses to create its 
own suitability map. Some users have a map of the true landscape at the ending time, which can 
be used for validation as described below. GEOMOD’s most important output is a map of the 
simulated landscape of developed versus non-developed cells at the ending time. If any of the 
maps have a mask, then the modeler should make certain that all maps have the exact same 
mask. GEOMOD has been designed such that it can take maximum advantage of data that can 
vary highly in availability, completeness, precision, currency, and accuracy. For example, 
GEOMOD requires only one beginning land-use map for calibration, while some algorithms for 
other popular models require maps from four times for calibration (Silva and Clarke 2002). 
 
We illustrate the concepts of this chapter with an application of GEOMOD to the landscape of 
Central Massachusetts, USA. Figure 1 shows the study area’s 10 towns, which are Worcester 
and the nine towns that surround Worcester, Massachusetts, USA. Figures 2-4 show a process of 
land transformation from 1971 to 1985 to 1999 for two categories, developed and non-developed 
(MassGIS 2002). We use information from 1971 and 1985 to calibrate GEOMOD, then GEOMOD 
simulates the increase in development from 1985 to 1999, at which point we validate GEOMOD’s 
prediction with the image of the real landscape of 1999. Figure 5 is a crosstabulation of Figures 3 
and 4, thus Figure 5 shows the phenomenon of land-use change that GEOMOD attempts to 
simulate.  
 
Figure 6 shows an extrapolation of the quantity of non-developed area for each town. The 
symbols in the figure show the correct data according to the images for 1971, 1985 and 1999. For 
each town, the line is interpolated exactly through the points for 1971 and 1985, then the line is 
extrapolated to 1999, so that the line estimates the real quantity of non-disturbed area for 1999. 
For many towns, such as Worcester, the extrapolation comes extremely close to the real quantity 



in 1999, therefore the line intercepts the symbol for 1999. For a few towns, such as Shrewsbury 
and West Boylston, the line fails to predict the real 1999 quantity precisely. Thus Figure 6 shows 
how to use information from 1971 and 1985 to calibrate the prediction of the quantity of remaining 
non-developed land in 1999, with a known level of accuracy. We then use GEOMOD to simulate 
the locations of this estimated quantity of land-use change, as described below. 

GEOMOD’s Decision Rules to Specify the Location of Change 
GEOMOD selects the locations of land to be converted according to four decision rules. The first 
decision rule is mandatory so there are no options for it in the user interface. Any of the later 
three decision rules can be either included or excluded at the discretion of the user. 
 
The first decision rule concerns persistence on the landscape. GEOMOD simulates within each 
stratum a one way change, either from non-developed to developed or from developed to non-
developed. For example, if the user-specifies a net increase of cells in the developed category, 
then GEOMOD simulates change from non-developed to developed for that number of additional 
cells. All other cells within that stratum will persist and no cells will show change from developed 
to non-developed. GEOMOD does not allow for conversion from non-developed to developed in 
some cells and from developed to non-developed in other cells simultaneously within the same 
stratum. The next rule concerns the strata. 
 
The second decision rule allows for regional stratification. GEOMOD can simulate land change 
within a series of regions called strata, which are typically political regions for which tabular data 
commonly exist. If stratification is desired, the user must specify a stratum map (figure 1). For 
each stratum, the user specifies the quantity of each category at the ending time. GEOMOD can 
predict conversion from non-developed to developed in some strata and from developed to non-
developed in other strata. Figure 7 shows the GEOMOD prediction of the 1999 landscape based 
on the first and second decision rules only, with a time step of 14 years. The quantity of non-
developed area specified in Figure 6 is distributed among each of the 10 towns. Within each 
town, the new development is spread pseudo-randomly, since GEOMOD is not using any rules to 
specify where within the town the new development is likely to occur. In order to specify where 
the new development is likely to occur within the towns, GEOMOD must use the third and/or the 
fourth decision rules. 
 
The third decision rule concerns the neighborhood constraint. It is based on a nearest neighbor 
principle, whereby GEOMOD restricts land change within any one time step to cells that are on 
the edge between developed and non-developed. This rule simulates the manner in which new 
development can grow out of previous development. For example, if GEOMOD is converting from 
non-developed to developed, then the neighborhood constraint mode will restrict the search to 
only those cells within a small square window around any developed cells. The width of the 
window, denoted by W, is called the neighborhood search width, which can be set by the user. 
The smallest possible search width is 3, which implies that any conversion from non-developed to 
developed must occur within one cell of an existing developed cell. The simulation updates the 
definition of edge at every time step. If GEOMOD must convert more cells than are available 
within a search width of W, then GEOMOD converts all available cells within the search width of 
W and begins to convert cells within a search width that is just sufficiently wide to contain the 
necessary number of cells that need converting. Figure 8 shows the GEOMOD result when the 
decision rules are persistent and the neighborhood constraint only, with a time step of 14 years. 
GEOMOD predicts the amount of new development based on the prediction of quantity of total 
non-developed area in each town shown in Figure 6. Notice that all of the predicted new 
development is located on the 1985 edge of developed and non-developed. 
 
The fourth decision rule concerns a suitability map, which shows the suitability for land cover 
category 2, which is the developed category in our example. With this rule, GEOMOD simulates 
additional development by searching the landscape for the location of the non-developed cells 



that have the highest suitability value. If GEOMOD is simulating from developed to non-
developed, then GEOMOD searches for the developed cells with the smallest suitability. 
 
The user can create a customized suitability map by using Image Calculator in IDRISI or an 
IDRISI module such as MCE (Eastman et al. 1995). Alternatively, GEOMOD can create the 
suitability map based on driver maps, which are usually maps of biogeophysical attributes. Each 
driver map must show a categorical variable, not a real variable. If the user would like to use a 
real variable, such as slope, then the user must reclassify the real numbers to categorical bins, 
such as: category 1 = [0 degrees, 1 degree), category 2 = [1 degree, 2 degrees), etc. 
 
GEOMOD creates the suitability map empirically, by using several driver maps and the land-
cover map from the beginning time. GEOMOD’s suitability map has relatively high values at 
locations that have biogeophysical attributes similar to those of the developed land of the 
beginning time, and has relatively low values at locations that have biogeophysical attributes 
similar to those of non-developed land of the beginning time. 
 
GEOMOD’s suitability map is created in two steps. First, GEOMOD reclassifies each driver map 
such that the grid cells of each category of the driver map are assigned a percent-developed real 
number, obtained by comparing the driver map to the beginning time land-cover map. The 
percent-developed real number of each category in the driver map is computed as the ratio of the 
quantity of developed grid cells of that category to the quantity of all grid cells of that category. 
 
After each attribute map is reclassified, GEOMOD creates the suitability map by computing for 
each grid cell a weighted sum of all the reclassified attribute maps. Hence, the suitability in each 
cell is calculated according to the following: 
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Where: 
R(i) = suitability value in cell(i), 
a = a particular driver map, 
A = the number of driver maps, 
Wa = the weight of driver map a, and 
Pa(i) = percent-developed in category ak of attribute map a, where cell(i) is a member of category 
ak. 
 
We sometimes use the term “lubrication values” to refer to the percent-developed real numbers 
that are denoted Pa(i). The larger the lubrication, the easier it is for land category 2 to overtake 
the grid cell. All of the lubrication values for each category of each driver map are given in the text 
file that has the extension LUB. There are a set of such numbers for each driver for each stratum. 
If a specific category is missing from the driver map, then its lubrication value is flagged by the 
value -1. The weights have no influence on the lubrication values. The weights influence only the 
process to aggregate the lubrication values from various driver maps. 
 
Figure 9 shows a popular driver map, slope. This slope map shows categories of bins of slope as 
described above. GEOMOD overlays the slope map with the beginning time image of 1985, to 
produce the suitability map shown in Figure 10. GEOMOD reclassifies each category of slope to 
exactly one real number, which is the percent of the category that is developed according to the 
beginning time image. 
 
GEOMOD performs this same type of reclassification with a map of land-use of 1971, shown in 
Figure 11. Figure 11 shows 21 categories of land-cover. GEOMOD reclassifies each category to 
a real number, which is the percent of the category that is developed in 1985. Figure 12 is the 
resulting suitability image. 



 
Figure 13 is the average of Figures 10 and 12. Thus, Figure 13 is a suitability map that has been 
calibrated by comparing the beginning time image of 1985 with two driver maps, slope and 
historic land cover of 1971. 
 
Figure 14 shows the 1999 landscape that GEOMOD predicts when GEOMOD uses only the 
persistence rule and the suitability map of Figure 13. Thus, Figure 14 is equivalent to a 
reclassification of Figure 13, whereby the largest suitability values show the locations of predicted 
new development. Just as in the previous predictions, GEOMOD predicts the amount of new 
development based on the prediction of quantity of total non-developed area. 
 
Figure 15 is a prediction of 1999 that is based on the rules of persistence, regional stratification 
and a suitability map. GEOMOD creates the suitability map by town, based on the slope and 
historic land cover of 1971. Therefore, each town has its own lubrication values. Also, the quantity 
of new development is specified by town according to Figure 6. We consider Figure 15 to be our 
best simulation run, so we will use it in the remainder of this paper to discuss techniques of 
validation. 
  
A model is said to be “dynamic” when the conditions at one time influence the decisions at other 
times. For example, GEOMOD is not dynamic in the sense that the suitability map does not 
change over time. On the other hand, when the neighborhood constraint rule is used with a small 
time step, then GEOMOD is dynamic in the sense that GEOMOD re-computes for each year the 
cells as candidates for change by re-computing which grid cells are on the edge between 
developed and non-developed. 

GEOMOD Environmental Impact Analysis 
GEOMOD can analyze the environmental impact of any particular simulation run. The 
environmental impact occurs in the cells where GEOMOD simulates land change. GEOMOD 
computes the impact as the product of three images as specified in Equation 2. 
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Where: 
Impact(i) is the actual environmental impact in cell i, 
Resource(i) is the environmental resource in cell i, 
Ratio1(i) is the ratio of potential impact / environmental resource in cell i, 
Ratio2(i) is the ratio of actual environmental impact / potential impact in cell i. 
 
Ratio1 and Ratio 2 can be either an image or a constant. The value of each cell or the constant 
must be in the inclusive interval [0,1]. 
 
A common example is the application of predicting carbon dioxide emission attributable to land-
use change. In this case, the resource is the biomass of vegetation in each cell at the beginning 
time. Ratio1 is the ratio of mass of carbon / mass of biomass. Usually this ratio is approximately 
0.5, since carbon accounts for about half of the mass in vegetation. Ratio2 is the proportion of the 
carbon that is released to the atmosphere when the grid cell is converted from non-developed to 
developed. Ratio2 can vary depending on the method of land change. If the method of 
development is to burn the biomass, then the ratio is much higher than if the method is to cut the 
biomass. 
  
If the user selects to perform the environmental impact option, then GEOMOD can produce 
additional images that show the environmental impact. GEOMOD can produce an image of the 
cumulative environmental impact over the duration of the simulation, where each cell of simulated 
change shows the real number value of the environmental impact. Cells that do not show 



simulated change have an environmental impact of zero. If GEOMOD uses several time steps, 
then GEOMOD can produce images of environmental impact at each time step. 
  
As a hypothetical example, Figure 16 shows the biomass existing at the beginning time image of 
1985 for the Central Massachusetts example. We assume that half of this biomass is carbon and 
that 80% of the carbon is removed from the landscape when a grid cell becomes disturbed. 
Therefore, Figure 17 shows the environmental impact in terms of decrease in carbon stock as a 
result of the simulated new development from 1985 to 1999, shown in Figure 15. 

Guidelines for the use of GEOMOD 
The GEOMOD philosophy calls for a clear distinction between the information used for calibration 
and the information used for validation. This means that the only legitimate inputs for GEOMOD 
are inputs that would have been available to a scientist at the beginning time. For example, 
suppose GEOMOD simulates progressive development between the years 1985 and 1999, and 
the user would like to validate the output from GEOMOD for the year 1999. The only legitimate 
inputs would be the information that would have been available in the year 1985, such as the 
road network of 1985. It would not be legitimate to use the road network of any date after 1985. If 
a driver map were the distance to roads of 1999, then GEOMOD’s output would likely be accurate 
when compared with the map of 1999, however the output would not be a legitimate prediction, 
because the roads of 1999 would not have been unknown in 1985. GEOMOD will generate a 
suitability map for whatever combination of driver maps that the user gives it, but that does not 
mean that any driver is scientifically legitimate, especially when the user wants to validate the 
model rigorously. 
 
The majority of literature that we have encountered fails to distinguish clearly between which 
information is used for calibration and which is used for validation. Some authors do distinguish 
clearly which information was used for calibration and which was used for validation. Excellent 
examples include Brown et al. (2002), Geoghegan et al. (2001), Mertens and Lambin (2000), and 
Schneider and Pontius (2001). We can assess properly the predictive capability of models in only 
those cases where there is a clear distinction between calibration information and validation 
information. 
 
In some cases, the user will want to use some information of the ending time to calibrate the 
model. For example, if the user is interested in GEOMOD’s ability to specify only the location of 
grid cells, then the user can force the simulated map to have the correct quantity of non-
developed and developed cells in each stratum. This will allow for a legitimate validation, as long 
as the measure of the validation takes into consideration that GEOMOD used the information of 
the quantity of each category in each stratum from the ending time. The section on validation 
explains how to account for this type of practice when measuring the validation. The motivation 
for using the correct quantity is to measure GEOMOD’s ability to specify the location of cells for 
each category, unconstrained by any errors in the specification of the quantity of cells for each 
category. This validation procedure is recommended when the user lacks an independent 
prediction of the quantity of cells of each category. 

Validation 
Importance of Validation with Three Maps 
After GEOMOD or any other model creates a simulated map of the ending time, it is desirable to 
validate the accuracy of the prediction. It is extremely important to validate the model output in an 
intelligent manner because a naïve interpretation of the accuracy can give extremely misleading 
results. For example, if only 10% of the landscape actually changes between the beginning time 
and the ending time, then the agreement between the beginning time image and the ending time 
image is 90%. So a naïve model that predicts no change between the beginning time and the 
ending time would have an accuracy of 90%. In other words, it is possible to obtain very high 



agreement in terms of percent correct due to simply a large signal of persistence on the 
landscape. It is important to know how the simulation model performs with respect to an 
alternative naïve model that predicts persistence only. Therefore, it is essential to assess the 
validity of the simulation output with respect to the reference maps of both the ending time and 
the beginning time. For example, the Atlanta Metropolitan Area is renown for its land use change 
due to urban sprawl, however 75% of the landscape persisted between 1973 and 1999, which are 
the years of rapid change (Yang 2002; Yang and Lo 2002; Lo and Yang 2002). Therefore a naïve 
model that predicts persistence only over 26 years would have an accuracy of 75%, which is a 
success rate that some modelers consider good. For most landscapes, the percent of persistence 
is much higher. 
 
After soliciting many sophisticated land change modelers, we have been able to find only a few 
examples where the agreement between the simulated map and the ending time map is greater 
than the agreement between the beginning time map and the ending time map at the resolution of 
the raw data. If you know of a case, please contact the author of this chapter. There are many 
published papers where the agreement between the beginning time map and the ending time 
map appears to be better than the agreement between the simulated map and the ending time 
map, although this characteristic is usually not mentioned in these papers (Brown et al. 2002; 
Chen et al. 2002; Lo and Yang 2002; Manson 2002; Schneider and Pontius 2001; Geoghegan et 
al. 2001; Wear and Bolstad 1998). This illustrates the importance of thinking carefully about the 
techniques of validation and underscores the importance of using good validation tools, such as 
those that are available in IDRISI. Below we offer alternative approaches to validation, especially 
techniques that consider information from the beginning time map. 
 
The authors endorse two types of approaches to validate the simulation. First is a visual 
approach and second is a statistical approach. The first approach is important because a visual 
examination is the quickest way to reveal spatial patterns, which a particular statistical method 
may fail to detect. The second approach is essential because the visual approach is subjective 
and can be misleading for a variety of reasons. For example, different palettes can cause the 
same image to appear very differently. In both the visual approach and the statistical approach, a 
naïve comparison usually reveals a large agreement, while a more sophisticated comparison 
usually shows that only a small portion of the agreement is attributable to the predictive ability of 
the model. Therefore, we recommend the following procedures for each of the approaches. 
 
Under both the visual and statistical approach, the modeler should consider the entire study area, 
which is every grid cell that is not in the mask. Most importantly, if all the analyses are performed 
for the entire study area, then the presentation of the results is clear and the comparison of 
several model runs is uniform. This seems like an obvious suggested procedure, however many 
modelers are tempted to restrict the area of validation to only a portion of the landscape where 
change occurs, or to only an area that is initially non-developed. Their motivation is to focus on 
the ability of the model to predict a certain type of change. The danger of such a restricted focus 
is that it can hide various weaknesses or strengths of the model. For example, when GEOMOD 
simulates conversion from non-developed to developed, it can not simultaneously simulate 
conversion from developed to non-developed within the same stratum. Some scientists might see 
this as a weakness of GEOMOD. If the validation area is the entire study area, then we can see 
this weakness clearly. On the other hand, if the validation of GEOMOD is restricted to only those 
regions that were non-developed at the beginning time, then we will not see that GEOMOD 
generates an error for every cell that truly converts from developed to non-developed. This 
situation is especially important in the case where land cover category 1 means forest and 
category 2 means non-forest. GEOMOD is unable to predict accurately a landscape that 
experiences both substantial deforestation and reforestation simultaneously. But, if the cells that 
are initially non-forest were masked, then the mask would hide the fact that GEOMOD predicts all 
reforestation incorrectly. Alternatively, if there were no reforestation, the mask would hide the fact 
that GEOMOD predicts the persistence of non-forest correctly. 



Visual Approach 
For the visual approach, the modeler should first make a map of the actual change that the model 
attempts to predict, such as Figure 5. The CROSSTAB module should be used where the first 
image is the beginning time map and the second image is the ending time map. The resulting 
crosstabulation map should have at most five categories. The categories could be: persistence of 
category 1, conversion from category 1 to 2, conversion from category 2 to 1, persistence of 
category 2 and the mask, if any. Predictive simulation models usually attempt to identify the 
locations of the cells that change. 
 
After the map of real change is created, the CROSSTAB module can be used again to compare 
the map of real change to the simulated map of the ending time. In this case, the first map should 
be the map of real change (Figure 5) and the second map should be the simulated map of the 
ending time (Figure 15). Depending on the landscape and the simulation model used, the result 
should show at most nine categories as follows, where “Beginning” means the category in the 
beginning time map, “Ending” means the category in the ending time map, “Simulated” means the 
category simulated by the model for the ending time, 1 means non-developed and 2 means 
developed: 
 
A. Beginning = 1, Ending = 1, Simulated = 1 
B. Beginning = 1, Ending = 1, Simulated = 2 
C. Beginning = 1, Ending = 2, Simulated = 1 
D. Beginning = 1, Ending = 2, Simulated = 2 
E. Beginning = 2, Ending = 1, Simulated = 1 
F. Beginning = 2, Ending = 1, Simulated = 2 
G. Beginning = 2, Ending = 2, Simulated = 1 
H. Beginning = 2, Ending = 2, Simulated = 2 
I. Beginning = 0, Ending = 0, Simulated = 0 
 
Cases A, D, E and H are correct and cases B, C, F and G are errors. However, simple 
persistence between the beginning time and the ending time account for cases A and H. 
Furthermore, the cases B and F show situations for which the model simulated an error at a 
location where a naïve model that predicts persistence only would have predicted correctly. In the 
strata where GEOMOD predicts conversion from 1 to 2, only case D shows agreement that is 
attributable to the model. In the strata where GEOMOD predicts conversion from 2 to 1, only case 
E shows agreement that is attributable to the model. Recall that GEOMOD does not predict 
conversion from 1 to 2 at some cells while simultaneously predicting conversion from 2 to 1 at 
other cells within the same stratum. Therefore, if GEOMOD simulates conversion from 1 to 2 
within a stratum, then GEOMOD can not generate cases E or G in that stratum and GEOMOD is 
guaranteed to fail at predicting any true conversion from 2 to 1 in that stratum. Conversely, if 
GEOMOD simulates conversion from 2 to 1 within a stratum, then GEOMOD can not generate 
cases B or D in that stratum and GEOMOD is guaranteed to fail at predicting any true conversion 
from 1 to 2 in that stratum. Other simulation models, such as IDRISI’s CA_MARKOV model, could 
generate all cases A-H. We recommend a visual examination of all cases as a first step in 
validation. We recommend also that the modeler examine the number of grid cells in each of the 
cases, which can be computed easily with the module HISTO. Figure 17 shows the validation of 
the simulation shown in Figure 18. 

Statistical Approach 
The second method of validation is statistical. There are an infinite number of different ways to 
compare maps statistically (Turner et al. 1989; Congalton and Green 1999). The challenge is to 
find a technique that: 1) is easy to interpret, 2) offers information that is helpful to improve the 
model, and 3) answers the fundamental question, “How similar are two maps?” Some 
researchers consider complex measures of pattern such as fractal dimension, patch density, etc. 
(Messina and Walsh 2001; Crews-Meyer 2002). Before considering these relatively complex 
measures, we think that the modeler should consider two simpler measures. We prefer to 



address two elementary questions: 1) “How well do the pair of maps agree in terms of the 
quantity of cells in each category?”, and 2) “How well do the pair of maps agree in terms of the 
location of cells in each category?” In fact, it is necessary to know the answers to these question 
in order to interpret the more complex measures of pattern (Gustafson and Parker 1992). 
 
There are two modules, VALIDATE and ROC, in IDRISI that are useful to address these 
questions. The VALIDATE module examines the agreement between two maps that show the 
same categorical variable. The ROC module examines the agreement between a Boolean map of 
one category and a suitability map for that category. 
 
Both VALIDATE and ROC compare exactly one pair of maps. But in any analysis of validation, it 
is necessary to consider also the beginning time map. Therefore, a comprehensive validation 
should examine the results from two pairs of maps: 1) the true ending time map versus the 
simulated ending time map, and 2) the true ending time map versus the beginning time map. In 
both of these comparisons, we will refer to the true ending time map as the “reference map” and 
the other map as the “comparison map”. In both comparisons, the statistical methods answer the 
question “How well does the comparison map explain the reference map?”, where the statistical 
agreement between the maps indicates the level of explanation. 
 
Under either of these techniques of statistical measurement it is essential to understand clearly 
the difference between error due to location versus error due to quantity. Therefore, the reader 
should examine closely Figure 19, which illustrates the fundamental concepts. Figure 19 shows a 
pair of maps containing two categories: light and dark.  At the simplest level of analysis, we 
compute the proportion of cells that agree between the two maps.  The agreement is 12/16 and 
the disagreement is 4/16.  At a more sophisticated level, we can compute the disagreement in 
terms of two components: A) disagreement due to quantity, and B) disagreement due to location.  
A disagreement of quantity is defined as a disagreement between the maps in terms of the 
quantity of a category.  For example, the proportion of cells in the dark category in the 
comparison map is 10/16 and in the reference map is 12/16, therefore there is a disagreement 
due to quantity of 2/16.  A disagreement of location is defined as a disagreement such that a 
swap of the location of a pair of cells within the comparison map increases overall agreement with 
the reference map.  The disagreement of location is determined by the amount of spatial 
rearrangement possible in the comparison map, so that its agreement with the reference map is 
maximized.  In the example, it would be possible to swap the #9 cell with the #3, #10, or #13 cell 
within the comparison map to increase its agreement with the reference map.  Any of these is the 
only swap we can make to improve the agreement, given the quantity of each category in the 
comparison map.  Therefore the disagreement of location is 2/16.  The distinction between error 
of quantity and error of location is the foundation of our philosophy of map comparison. The user 
must keep these concepts in mind when using the VALIDATE and ROC modules. 

The VALIDATE Module Technique 
The VALIDATE module offers one comprehensive statistical analysis that answers 
simultaneously the two important questions: 1) “How well do a pair of maps agree in terms of the 
quantity of cells in each category?”, and 2) “How well do a pair of maps agree in terms of the 
location of cells in each category?” The VALIDATE module can perform this comparison when 
the pair of maps show any categorical variable, which can have any number of categories. For 
applications to validation of GEOMOD, there are two categories, denoted as 1 and 2. 
 
The methods of VALIDATE have been created recently at Clark University, so the reader will not 
find explanations in common statistical books. To learn more about these techniques, see Pontius 
and Suedmeyer (2004), Pontius (2002), and Pontius (2000). For applications of these techniques, 
see Pontius et al. (2004a), Pontius et al. (2004b), Pontius et al. (2001), Schneider and Pontius 
(2001). 
 



The modeler should run the VALIDATE module twice. The first run should have the true ending 
time map as the reference map and the beginning time map as the comparison map. The second 
run should have the true ending time map as the reference map and the simulated ending time 
map as the comparison map. With the output from these two runs of VALIDATE, we can examine 
how the agreement between the beginning time map and the true ending time map compares to 
the agreement between the simulated ending time map and the true ending time map. 
 
Using our Central Massachusetts example, Figures 20 and 21 are the output from VALIDATE 
when reference image is the true 1999 landscape and the comparison image is the true 1985 
landscape. Figure 22 and 23 are the output from VALIDATE when the reference image of the true 
1999 landscape and the comparison image is the 1999 landscape that is simulated by GEOMOD. 
In Figures 20-23, VALIDATE uses the image of the 10 towns as a strata image. 
 
In all four figures, the vertical axis of the graphs show the proportion of the landscape, not 
including the mask. The vertical axis is separated into components of agreement and 
disagreement, based on the similarities and differences between the two maps. Each component 
is associated with either the first question concerning the quantity of cells in each category or the 
second question concerning the location of cells in each category. The graphic is a quick way to 
see how the pair of maps agree and disagree in the two ways asked by the two fundamental 
questions. We discuss these components in more detail in the next subsection below. 
 
In Figures 21 and 23, VALIDATE plots the vertical axis perpendicular to a horizontal axis that 
shows resolution. The fine resolution of the raw data is on the left of the horizontal axis and the 
resolution becomes coarser as one moves toward the right on the horizontal axis. Figures 21 and 
23 show a geometric sequence of resolutions: 1, 2, 4, 8, 16, … , 1024. The final coarsest 
resolution is 1116 because the entire study area is in one grid cell at that resolution. A resolution 
of n means that the raw grid cells of the study area are aggregated into coarse cells, each 
consisting of a square of n-by-n raw grid cells. The aggregation process is identical to the 
procedure used by IDRISI’s CONTRACT module with the aggregation option, which is a 
simplified version of the moving window technique of Costanza (1989). At each resolution, the 
statistical analysis is performed on the coarse grid cells. We use 1 to denote the resolution of the 
raw data, for which there are 1008 columns and 1116 rows in the Central Massachusetts 
example. Therefore, there are 504 columns and 558 rows at a resolution of 2, and there are 252 
columns and 279 rows at a resolution of 4, and so on, until there is one row and one column at a 
resolution of 1116, at which point the entire image is in one grid cell. 
 
All of the components of agreement and disagreement are shown at multiple resolutions. It is 
important to examine the components at multiple resolutions in order to see how the pair of maps 
agree and disagree in terms of general location of the categories. For example, at the finest 
resolution of 1, the analysis is performed on a cell-by-cell basis, using the cells of the raw data. It 
is common that many cells disagree on a cell-by-cell basis, especially if the comparison map is 
slightly misregistered. If the analysis is performed at a slightly coarser resolution, then the cell-by-
cell disagreement converts to agreement as discussed below. 

Components of Agreement and Disagreement 
Each of the curves in Figures 21 and 23 correspond to one of seven statistical calculations 
denoted as N(n), N(m), H(m), M(m), K(m), P(m), and P(p). The other eight calculations in 
Figures 21, 22, and 24 influence neither the components of agreement nor the components of 
disagreement. VALIDATE computes these statistics for each resolution. This section interprets 
each of the seven statistical expressions in terms of the two fundamental questions: “How well do 
the maps agree in quantity?”, and “How well do the two maps agree in location?” In the notation 
of each expression, the argument in bold represents three possible levels of information of 
quantity:  
 

1: n = no information 



2: m = medium information 
3: p = perfect information  

 
Similarly, the functions denoted by the capital letters indicate three possible levels of information 
of location:  
 

1: N = no information 
2: H = medium stratum-level information but no grid cell level information 
3: M = medium stratum-level information and medium grid cell-level information 
4: K = medium stratum-level information and perfect grid cell-level information 
5: P = perfect stratum-level information and perfect grid cell-level information 

 
These levels of information are the possible levels of information that could be available to a 
scientist who creates the comparison map. Mathematical definitions for each expression are 
shown in Figure 24, which is taken from Pontius and Suedmeyer (2004), who give a detailed 
description of each expression. The remainder of this section interprets each expression in terms 
of intuitive concepts. All of these expressions are useful to compare maps of any number of 
categories, where the number of categories is denoted as J. For the GEOMOD example, J=2. 
 
Expression N(n) is the agreement between the reference and a map that has a membership of 
1/J to each category in every grid cell. If each cell of the reference map shows complete 
membership in exactly one category, then N(n)=1/J, which is usually the case at the finest 
resolution. If each cell of the reference map shows partial membership in many categories, then 
typically N(n)>1/J, which is usually the case at coarser resolutions. N(n) is the expected 
agreement between the reference map and a map in which every raw fine-resolution grid cell is 
assigned to one of the J categories with a probability of 1/J. 
 
Four of the five points that are functions of m give the agreement between the reference map and 
a modified comparison map. N(m) is the agreement between the reference map and a modified 
comparison map, where the modification is to randomize the locations of the raw cells within the 
comparison map. Expression H(m) is the agreement between the reference map and a modified 
comparison map, where the modification is to randomize the locations of the cells within each 
stratum of the comparison map. When the modification randomizes the location of the grid cells, 
each cell remains within its stratum (i.e., no grid cells move across stratum boundaries). 
 
Expression M(m) is the agreement between the reference map and the unmodified comparison 
map. M(m) is the proportion of grid cells classified correctly, which is the most commonly used 
measure of agreement between maps. 
 
Expression K(m) is the agreement between the reference map and a modified comparison map, 
where the modification is to rearrange as perfectly as possible the locations of cells within each 
stratum of the comparison map in order to maximize the agreement between the modified 
comparison map and the reference map. The method of modification swaps the location of the 
grid cells, with the constraint that each cell remains within its stratum (i.e., no grid cells move 
across stratum boundaries). 
 
Expression P(m) is the agreement between the reference map and a modified comparison map, 
where the modification is to rearrange as perfectly as possible the locations of cells within the 
entire comparison map in order to maximize the agreement between the modified comparison 
map and the reference map. The method of modification swaps the location of the grid cells 
anywhere within the comparison map (i.e., rearrangement of location of grid cells is allowed to 
occur across stratum boundaries). Therefore P(m) = 1 if and only if the proportion for each 
category in the comparison map is the same as the corresponding proportion in the reference 
map. 
 



Expression P(p) is the agreement between the reference map and a map that has perfect 
information of both quantity and location. Therefore, P(p) is always 1. 
 
When considered as a set, the seven mathematical expressions N(n), N(m), H(m), M(m), K(m), 
P(m), and P(p) constitute a sequence of measures of agreement between the reference map and 
other maps that have increasingly accurate information. Therefore, usually 0 < N(n) < N(m) < 
H(m) < M(m) < K(m) < P(m) < P(p) = 1. This sequence partitions the interval [0,1] into 
components of the agreement between the reference map and the comparison map. M(m) is the 
total proportion correct, and 1-M(m) is the total proportion error between the reference map and 
the comparison map. Hence, the sequence of N(n), N(m), H(m) and M(m) defines components of 
agreement, and the sequence of M(m), K(m), P(m) and P(p) defines components of 
disagreement.  
 
Table 1 defines these components mathematically. Beginning at the bottom of the table and 
working up, the first component is agreement due to chance, which is usually N(n).  However, if 
the agreement between the reference map and the comparison map is worse than would be 
expected by chance, then the component of agreement due to chance may be less than N(n). 
Therefore, Table 1 defines the component of agreement due to chance as the minimum of N(n), 
N(m), H(m), and M(m). The component of agreement due to quantity is usually N(m)-N(n); Table 
1 gives a more general definition to account for the possibility that the comparison map’s 
information of quantity can be worse than no information of quantity. The component of 
agreement at the stratum level is usually H(m) – N(m); Table 1 gives a more general definition to 
restrict this component of agreement to be non-negative. Similarly, the component of agreement 
at the grid cell level is usually M(m) – H(m); Table 1 restricts this component of agreement to be 
non-negative. Table 1 also defines the components of disagreement. It is a mathematical fact that 
M(m) < K(m) < P(m) < P(p), therefore the components of disagreement are the simple definitions 
of Table 1. 

Interpretation of Components 
It is usually most helpful to interpret the components of disagreement, because usually the 
purpose of the assessment is to find ways to improve the method of creating the comparison map 
so that it agrees more closely with the reference map. Therefore, we want to budget the error so 
we can see the largest sources of error in the comparison map. The components of disagreement 
separate the error into specific interpretable sources. 
 
The disagreement at the grid cell level, K(m)-M(m), is the amount of error associated with the fact 
that the comparison map fails to specify perfectly the correct locations of categories at grid cells 
within strata. In other words, if we were to rearrange the grid cells within each stratum of the 
comparison map, then we could improve the agreement between the reference map and the 
comparison map from M(m) to K(m). K(m) = 1 if and only if the quantities of each category in 
each stratum in the comparison map are the same as the quantities in the corresponding strata in 
the reference map. 
 
The disagreement at the stratum level, P(m)-K(m), is the amount of error associated with the fact 
that the comparison map fails to specify perfectly the correct quantity of each category within 
each stratum. In other words, if we were to rearrange the grid cells of the comparison map, and to 
allow rearrangement across stratum boundaries, then we could improve the agreement between 
the reference map and the comparison map from M(m) to P(m). 
 
The disagreement due to quantity, P(p)-P(m), is the amount of error associated with the fact that 
the comparison map fails to specify perfectly the correct quantity of each category according to 
the reference map. Thus 1-P(m) is the error of pure quantity, and indicates nothing about the 
spatial arrangement of the cells. 
 



If the largest component of disagreement is the grid cell level, then the scientist would probably 
want to work to improve the specification of the location of each category at the grid cell level in 
the comparison map. If the largest component of disagreement is the stratum level, then the 
scientist would probably want to improve the specification of the quantity of each category at the 
stratum level in the comparison map. If the largest component of disagreement is quantity, then 
the scientist would probably want to improve the specification of the quantity of each category in 
the comparison map. 
 
After the scientist interprets the components of disagreement, then it can be also helpful to 
interpret the components of agreement. The components of agreement specify distinct 
characteristics in which the comparison map agrees with the reference map. 
 
The agreement due to chance, N(n), is the agreement that a scientist could achieve with no 
information of location and no information of quantity. Therefore, N(n) can be a good baseline 
upon which to compare the actual agreement. The agreement due to quantity, N(m) – N(n), is the 
additional agreement when the comparison map is somewhat accurate in terms of its 
specification of quantity of each category. The agreement due to stratification, H(m) – N(m), is 
the additional agreement when the comparison map is somewhat accurate in terms of its 
specification of quantity of each category within each stratum. The agreement due to grid cell 
level location, M(m) – H(m), is the additional agreement when the comparison map is somewhat 
accurate in terms of its specification of the grid cell level location of each category within each 
stratum. 

Interpretation of Multiple Resolutions 
The points N(n), N(m), H(m), M(m) increase as the resolution becomes more coarse. It can be 
helpful to examine the resolution at which each point begins to rise suddenly. 
 
The rate at which N(n) increases is a function of the reference map only. If the various categories 
in the reference map are fairly evenly spread, then N(n) will rise rapidly at relatively fine 
resolutions. If the various categories of the reference map are arranged in large clusters, N(n) will 
remain flat until the resolution surpasses the size of the clusters, at which point N(n) will rise 
rapidly. N(m) and H(m) behave in a similar manner. 
 
The behavior of M(m) at multiple resolutions offers substantial insight into the similarity between 
the comparison map and the reference map. As resolution becomes more coarse, M(m) will 
remain flat until it reaches a resolution at which the maps agree. For example, suppose many 
cells disagree in terms of cell-by-cell location at the resolution of the raw data, denoted as a 
resolution of 1. If the correct category in a cell of the reference map is no where near the 
corresponding cell in the comparison map, then M(m) will remain flat at fine resolutions. If the 
correct category in a cell of the reference map is near the corresponding cell in the comparison 
map, then M(m) will rise at fine resolutions. In other words, M(m) rises quickly at the resolution 
that corresponds to the distance at which the correct categories are found, which is the distance 
at which errors of location occur. 
 
Both the agreement due to grid cell location and the disagreement due to grid cell location tend to 
decrease as resolution becomes coarser. This is because the grid cell level location becomes 
less important as the cells become coarser. Ultimately, grid cell-level location loses meaning at 
the final resolution where the entire study area is in one grid cell. At that resolution, the 
component of agreement due to grid cell location and the component of disagreement due to grid 
cell location is zero. 
 
An interesting question is “At what resolutions is the agreement between the simulated map and 
the ending time map larger than the agreement between the beginning time map and the ending 
time map?” For most cases, the agreement between the beginning time map and the ending time 
map is greater at fine resolutions, while the agreement between the simulated time map and the 



ending time map is greater at coarser resolutions. The resolution at which the agreement is the 
same represents the distance at which the simulation model begins to perform better than a null 
model that predicts persistence only. Figure 25 shows that for our example this resolution is 
approximately 32, which corresponds to grid cells of approximately one square kilometer. 
VALIDATE can save text files, so crucial statistics can be imported easily into graphics software. 
Pontius et al. (2004) have produced a VBA program to make such graphs, and the reader can 
write to rpontius@clarku.edu to request the program. 
 
The points K(m), P(m) and P(p) are independent of the resolution of the grid cells because they 
are functions of only the quantity of each category in the maps. Therefore, those three points 
remain constant as resolution changes. 

The ROC Module Technique 
The ROC module offers a statistical analysis that answers one important question: “How well is 
the category of interest concentrated at the locations of relatively high suitability for that 
category?” The answer to this question allows the scientist to answer the general question, “How 
well do the pair of maps agree in terms of the location of cells in a category?”, while not being 
forced to answer the question “How well do the pair of maps agree in terms of the quantity of cells 
in each category?”. Thus the ROC analysis is useful for cases in which the scientist wants to see 
how well the suitability map portrays the location of a particular category but does not have an 
estimate of the quantity of the category for the simulation. For the application to the validation of 
GEOMOD, typically the reference map would show the “developed” category, and the 
comparison map would be the suitability map that GEOMOD generates from the driver maps. In 
some cases, the scientist does not want to commit to any particular estimate of the quantity of 
simulated development at the ending time, but the scientist still would like to measure how well 
the suitability map agrees with the location of development (Mertens and Lambin 2000). In this 
sense, the ROC measures agreement of pure location, because its measure is based on many 
thresholds to specify the quantity of the category; it is not associated with a particular single 
threshold. 
 
Pontius and Schneider (2001) explain how to use the ROC technique to examine how well a 
suitability map portrays the likely locations of the developed category. Schneider and Pontius 
(2001) apply the ROC method to compare several modeling techniques. The ROC statistical 
method has been used in many applications (Egan 1975; Metz 1978; Swets 1986a, 1986b, 
1988). It is just starting to be used in GIS, but has been used widely in ecology (Miller and 
Franklin 2002). Pontius and Pacheco (2005) have recently developed a multiple-resolution ROC. 
 
When the question is: “How well does the suitability map predict the locations of new additional 
development beyond the beginning time image?” then it makes sense to mask the grid cells that 
are already developed at the beginning time image. The ROC module in IDRISI allows for such a 
mask. In our Central Massachusetts example, the mask has a 1 in cells that are non-developed in 
1985 and a 0 elsewhere, derived from Figure 3. The reference image is the Boolean image of 
new development, which is a 1 if there is real new development between 1985 and 1999, and 0 
elsewhere, derived from figure 5. The comparison image is the suitability map that GEOMOD 
creates, shown in figure 13. The ROC considers many possible thresholds, each of which results 
in a prediction of the quantity of new development. For each threshold, the ROC analysis 
reclassifies the suitability map so that the suitability values that are greater than the threshold are 
reclassified as predicted new development and all other cells are classified as predicted 
persistence of non-development. At each possible threshold, the ROC analysis measures the 
agreement between the reference map and the reclassified suitability map. In this manner, the 
ROC analysis considers the goodness-of-fit at many possible values of quantity of the predicted 
category, without committing to any single predicted quantity of the predicted category. The ROC 
curve aggregates the measure of agreement at all thresholds into the ROC curve. The area under 
the curve indicates the overall agreement between the Boolean reference map and the suitability 
map. ROC of 0.5 indicates agreement equivalent to random chance, when the grid cells are hard 



classified. ROC of 1 indicates perfect agreement. Perfect agreement means that all of the 
suitability values that are in the locations of new development are larger than the other suitability 
values that are in the locations of persistence of non-development. Figure 26 shows the ROC 
curve where each subsequent threshold classifies 1% more of the landscape as new 
development. The area under the curve in Figure 26 is 0.599, meaning that the suitability map is 
slightly better than an alternative suitability map that has the suitability values placed at random 
locations. 
 
The previous paragraph describes the most common type of ROC analysis. It answers the 
question, ”How well does the suitability map specify the locations of true new development 
among those locations that are initially non-developed?”. This approach is inconsistent with our 
validation principals mentioned earlier in previous sections of this chapter. First, the approach of 
the previous paragraph masks part of the study area in order to eliminate the cells that are 
already developed. This type of masking can make the suitability map appear better than it really 
is when there is substantial conversion from developed to non-developed on the real landscape. 
Second, the approach of the previous paragraph encourages the observed ROC statistic to be 
compared to a baseline of randomness. Recall that if the suitability values are in randomly 
selected locations, then ROC = 0.5. However, according to the GEOMOD validation philosophy, 
we should compare any statistic to a baseline of a null model that predicts persistence only. 
 
Therefore, we recommend the following two runs of the ROC module. In both runs, the only mask 
is the mask of the entire study area, which has a 1 if the cell is in the study area, and 0 else. Also, 
the suitability map of each run shows a suitability of 1 for cells that are developed in 1985, which 
indicates the highest likelihood for the developed cells of 1985 to remain developed in 1999. 
 
Consider a ROC analysis of a null model that predicts persistence only. Each cell of the suitability 
map of the null model can have one of exactly two possible unique suitability values. If the cell is 
developed in 1985, then its suitability value for development in 1999 is 1. If the cell is non-
developed in 1985, then its suitability value for development in 1999 is 0. It is easy to create this 
suitability map using the RECLASS module in IDRISI and GEOMOD’s 1985 beginning time 
image (Figure 3). For such a suitability map, it makes sense to specify one specific threshold, 
which is the threshold that separates the suitability values of 1 from the suitability values of 0. 
This threshold will separate the map into two parts, where 34% of the cells are above the 
threshold (hence classified as developed) and 66% of the cells are below the threshold (hence 
classified as non-developed). The ROC module allows the user to specify this particular 
threshold. By default, IDRISI’s ROC analysis will automatically consider thresholds of 0% and 
100%. Figure 27 shows the resulting ROC curve for the GEOMOD example. The ROC curve 
shows three threshold levels as the green squares on the green line. The area under the two 
green segments is 0.925. This green ROC curve should be compared to an ROC curve for the 
suitability map that GEOMOD creates, as described in the next paragraph. 
 
Image Calculator in IDRISI can be used to make the Boolean suitability map mentioned in the 
previous paragraph to cover GEOMOD’s suitability map using the COVER function. The result is 
a suitability map that has a value of 1 in any cell that is developed in 1985 and various smaller 
suitability values in cells that are non-developed in 1985, as shown in Figure 28. Figure 28 
distinguishes among the cells that are non-developed in 1985, therefore it is more sophisticated 
than a suitability map of the null model. Therefore, the thresholds are set to distinguish among the 
cells in Figure 28 that are non-developed in 1985. Figure 27 shows the ROC curve when there 
are 9 thresholds, set at 0%, 34%, 40%, 50%, 60%, 70%, 80%, 90% and 100%. Notice that the 
ROC curve for the suitability map of the null model is 0.925, while the area under the ROC curve 
for GEOMOD’s suitability map is 0.937. This result is consistent with Figure 26, which shows that 
the suitability map is slightly better than random at specifying the location of new development. 
Hence, GEOMOD’s suitability map is slightly better than a null suitability map. 
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Table 1: Definition and values of seven components of agreement derived from the mathematical 

expressions of Figure 24. 
 

Name of 
Component  Definition 

Disagreement due 
to quantity P(p)-P(m) 

Disagreement at 
stratum level P(m)-K(m) 

Disagreement at 
grid cell level K(m)-M(m) 

Agreement at grid 
cell level MAX [M(m)-H(m), 0] 

Agreement at 
stratum level MAX [H(m)-N(m), 0] 

Agreement due to 
quantity 

If MIN [N(n),N(m), H(m), M(m)]=N(n),  
then MIN [N(m)-N(n), H(m)-N(n), M(m)-N(n)],  

else 0 

Agreement due to 
chance MIN [N(n),N(m), H(m), M(m)] 

 



 
 
Figure 1: Study area image stratified into 10 towns of Central Massachusetts, USA. 



 
 
Figure 2: Image of developed versus non-developed of 1971. 



 
 
Figure 3: Beginning time image of developed versus non-developed of 1985. 



 
 
Figure 4: Validation image of developed versus non-developed of 1999. 



 
 
Figure 5: Image of land change between 1985 and 1999. 



20

30

40

50

60

70

80

90

1971 1985 1999
Year

Pe
rc

en
t N

on
-D

ev
el

op
ed

Auburn
Boylston
Grafton
Holden
Leicester
Millbury
Paxton
Shrewsbury
West Boylston
Worcester
TOTAL

 
 
Figure 6: Percent non-developed for the 10 towns of the study area. The line interpolates the 
points of 1971 and 1985, then extrapolates to 1999, where it predicts with some error. 



 
 
Figure 7: Predicted new development 1985-1999 image using the stratification rule only. The 
simulated changes are difficult to see because they are individual cells scattered among the 
persistence of non-development. 
 
 
 

 
 
Figure 8: Predicted new development 1985-1999 image using the constraint rule only. The 
simulated changes are difficult to see because they are cells on the edge of developed versus 
non-developed of 1985. 



 
 
Figure 9: Image of slope, categorized into bins of one degree. 



 
 
Figure 10: Suitability map created from the slope map and the 1985 beginning time image. 



 
 
Figure 11: Image of historical land use for several categories of 1971. 



 
 
Figure 12: Suitability map created from the historic land use map of 1971 and the 1985 beginning 
time image. 



 

 
 
Figure 13: Suitability map created from the average of two suitability maps of Figures 10 and 12. 



 
 
 
Figure 14: Predicted new development 1985-1999 image using the suitability map only. 
 
 
 

 
 
Figure 15: Predicted new development 1985-1999 image using the suitability map and regional 
stratification. 



 

 
 
Figure 16: Environmental resource image of biomass of 1985 in tons of biomass per cell. 



 

 
 
Figure 17: Environmental impact image of decrease in tons of carbon per cell as a result of 
simulated development from 1985 to 1999 shown in Figure 15. 
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Figure 18: Visual validation of simulated development from 1985 to 1999 shown in Figure 15. 
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Figure 19: Demonstration puzzle to illustrate error of location versus error of quantity.  Each map 
shows a categorical variable, with two categories: dark and light. Numbers identify the individual 
grid cells. 



 

 
 
Figure 20: Components of agreement and disagreement for the comparison between the real 
1999 map and the real 1985 map. 



 

 
 
Figure 21: Components of agreement and disagreement for the comparison between the real 
1999 map and the real 1985 map at multiple resolutions. 



 

 
 
Figure 22: Components of agreement and disagreement for the comparison between the real 
1999 map and the simulated 1999 map. 



 

 
 
Figure 23: Components of agreement and disagreement for the comparison between the real 
1999 map and the simulated 1999 map at multiple resolutions. 



 

 Information of Quantity 

In
fo

rm
at

io
n 

of
 L

oc
at

io
n 

n 

M
(x

) 

∑∑

∑∑ ∑

= =

= = =
⎥
⎦

⎤
⎢
⎣

⎡

D

d

N

n
dn

D

d

N

n

J

j
dnjdnjdn

d

d

W

ARMINW

1 1

1 1 1
) , (

∑∑

∑∑ ∑

= =

= = =
⋅ ⎥

⎦

⎤
⎢
⎣

⎡

D

d

N

n
dn

D

d

N

n

J

j
jddnjdn

d

d

W

ERMINW

1 1

1 1 1
)  ,  (

∑
=

J

j
j J

RMIN
1

..
)1  ,  ( ∑

=

J

j
jj

SRMIN
1

....
)  ,  (

∑

∑ ∑

=
⋅

= =
⋅ ⎥

⎦

⎤
⎢
⎣

⎡

D

d
d

D

d

J

j
d.jjdd

W

ERMINW

1

1 1
.

)  ,  (

∑

∑ ∑

=
⋅

= =
⋅ ⎥

⎦

⎤
⎢
⎣

⎡

D

d
d

D

d

J

j
jdjdd

W

SRMINW

1

1 1
..

)  ,  (

∑

∑ ∑

=
⋅

= =
⋅ ⎥

⎦

⎤
⎢
⎣

⎡

D

d
d

D

d

J

j
d.jjdd

W

FRMINW

1

1 1
.

)  ,  (

∑
=

J

j
jj

RRMIN
1

....
)  ,  (

∑∑

∑∑ ∑

= =

= = =
⎥
⎦

⎤
⎢
⎣

⎡

D

d

N

n
dn

D

d

N

n

J

j
dnjdnjdn

d

d

W

SRMINW

1 1

1 1 1
) , (

∑∑

∑∑ ∑

= =

= = =
⎥
⎦

⎤
⎢
⎣

⎡

D

d

N

n
dn

D

d

N

n

J

j
dnjdnjdn

d

d

W

BRMINW

1 1

1 1 1
) , (

∑∑

∑∑ ∑

= =

= = =
⋅ ⎥

⎦

⎤
⎢
⎣

⎡

D

d

N

n
dn

D

d

N

n

J

j
jddnjdn

d

d

W

FRMINW

1 1

1 1 1
)  ,  (

∑∑

∑∑ ∑

= =

= = =
⋅ ⎥

⎦

⎤
⎢
⎣

⎡

D

d

N

n
dn

D

d

N

n

J

j
jddnjdn

d

d

W

SRMINW

1 1

1 1 1
)  ,  (

∑∑

∑∑ ∑

= =

= = =
⋅⋅ ⎥

⎦

⎤
⎢
⎣

⎡

D

d

N

n
dn

D

d

N

n

J

j
jdnjdn

d

d

W

SRMINW

1 1

1 1 1
)  ,  (

∑∑

∑∑ ∑

= =

= = =
⋅⋅ ⎥

⎦

⎤
⎢
⎣

⎡

D

d

N

n
dn

D

d

N

n

J

j
jdnjdn

d

d

W

RRMINW

1 1

1 1 1
)  ,  (

H
(x

) 
K

(x
) 

P(
x)

 
N

(x
) 

m p 

∑∑

∑∑ ∑

= =

= = =
⎥
⎦

⎤
⎢
⎣

⎡

D

d

N

n
dn

D

d

N

n

J

j
dnjdn

d

d

W

J
RMINW

1 1

1 1 1

)1 , (

Figure 24: Mathematical expressions of agreement between the reference map and various 
components of possible information in a comparison map. The vertical axis shows information of 
location and the horizontal axis shows information of quantity.  The text defines the variables. 
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Figure 25: Multiple resolution goodness-of-fit for both the GEOMOD simulation and a null model 
of persistence only. 
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Figure 26: ROC curve for agreement between reference map of Boolean 1985-1999 development 
and suitability map for post-1985 development for only cells that are non-developed in 1985 for 
101 thresholds. ROC=59.9% 
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Figure 27: ROC curve for agreement between 1999 reference map of Boolean development and 
1985 beginning time map of Boolean development for the entire study area. ROC = 92.5% for 
one threshold at 33.913% and other ROC of 93.7% for nine thresholds: 0, 33.91, 40, 50, 60, 70, 
80, 90, 100. 



 

 
 
Figure 28: Adjusted suitability map for post-1985 development in which developed cells of 1985 
have a suitability of 1. 
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