
Abstract. This paper presents novel techniques to estimate the uncertainty in
extrapolations of spatially-explicit land-change simulation models. We
illustrate the concept by mapping a historic landscape based on: 1) tabular
data concerning the quantity in each land cover category at a distant point in
time at the stratum level, 2) empirical maps from more recent points in time
at the grid cell level, and 3) a simulation model that extrapolates land-cover
change at the grid cell level. This paper focuses on the method to show
uncertainty explicitly in the map of the simulated landscape at the distant
point in time.

The method requires that validation of the land-cover change model be
quantified at the grid-cell level by Kappa for location (Klocation). The
validation statistic is used to estimate the certainty in the extrapolation to a
point in time where an empirical map does not exist. As an example, we
reconstruct the 1951 landscape of the Ipswich River Watershed in Massa-
chusetts, USA. The technique creates a map of 1951 simulated forest with an
overall estimated accuracy of 0.91, with an estimated user’s accuracy ranging
from 0.95 to 0.84.

We anticipate that this method will become popular, because tabular
information concerning land cover at coarse stratum-level scales is abundant,
while digital maps of the specific location of land cover are needed at a finer
spatial resolution. The method is a key to link non-spatial models with
spatially-explicit models.
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1 Introduction

1.1 Uncertainty analysis in predictive models

Land-use and land-cover change modeling has become an extremely common
tool to understand and to extrapolate land-use change. Land-change
modelers commonly assess the goodness-of-fit of calibration (Wu and
Webster 1998, Lo and Yang 2002, Silva and Clarke 2002). Fewer modelers
assess the goodness-of-fit of validation (Lowell 1994, Kok et al. 2001, Pontius
and Schneider 2001). In this paper, we use a measurement of the goodness-of-
fit of model validation to assess the level of certainty we should expect in the
extrapolation by a land change model to a point in time where reference
information for validation does not exist. To do this, we draw on fuzzy set
theory, which has been used extensively in the remote sensing community
(Foody 1996, Zhang and Foody 1998, Lewis and Brown 2001, Foody 2002).
Specifically, we apply the concept of partial membership to a category in our
analysis of uncertainty in extrapolations by simulation models.
Models commonly predict future landscapes (Veldkamp and Lambin

2001). However, it is also important to generate maps of past land cover for
scientific applications where processes occur over decades, centuries,
millennia, or longer (Harrison et al. 1998, Hall et al. 1995). Examples are
climate change and soil nutrient dynamics. For these processes, the condition
of the landscape in the past can have a large influence on the condition of the
landscape in the present and future. Therefore, it is essential to develop
models that can take maximum advantage of the sparse data that exist for
past land cover. It would be helpful if modelers could use coarse-level tabular
data to make maps that have a spatial resolution similar to other
contemporary information at a finer grid cell-level resolution. For example,
data exist for historic land cover by global region over the last century
(Richards and Flint 1994), but modelers want to use that information
expressed on a one degree by one degree grid in order to make it compatible
with climate change models (Hall et al. 1995). It is even more common for
tabular data to exist at the resolution of the political unit, such as the town,
county, or state. Much of these data remain unconnected to GIS-based
models because the information is not in the form of digital maps.
Therefore, there exists a need to create methods that can allocate coarse

stratum-level tabular information concerning land cover to a finer resolution
grid. This is clearly a job for a spatial allocation simulation model. However,
simulation models are not perfect, so it is essential to develop tools to
measure the level of certainty that exists in the maps generated by spatial
allocation models. Unfortunately, the sophistication and complexity of many
models is much greater than our ability to validate them. It is frequently
impossible to know the level of confidence we should have in the output of
simulation models because we have poor tools to quantify the level of
certainty in the model. In recent research into methods of validation, a
central theme has been the need to analyze the validation at multiple
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resolutions (Kok et al. 2001). Another theme has been the need to separate
components of agreement due to specification of quantity of each land cover
category from the agreement due to specification of location of each land
cover category (Veldkamp and Lambin 2001).
This paper connects the ideas of the two previous paragraphs. This paper

shows a method by which a modeler can use a simulation model to allocate
coarse stratum-level tabular information of land cover to a finer resolution
map of grid cells. Most importantly, this paper shows the level of certainty
we can have in such simulated maps. We compute the certainty based on the
concepts of the latest tools for model validation. The validation technique is
somewhat independent of the particular model, hence the methods described
in this paper apply to models that predict crisp classified cells, such as:
Markovian, agent based, cellular automata, etc. This technique to assess
uncertainty is an essential tool to create a link between non-spatial models
that function on stratum-level information and spatial models that function
on finer grid cell-level information. We illustrate the procedure with an
example from a watershed in Massachusetts, USA.

1.2 Study area

The Ipswich River Watershed is located in northeastern Massachusetts,
thirty miles north of Boston (Fig. 1). The watershed covers 404 square
kilometers and includes all or parts of 22 towns. A national environmental
organization, American Rivers, designated the Ipswich River as one of the 20
most threatened rivers in the United States. It cited water withdrawals,
development, and pollution as reasons for the designation, stating that, ‘‘so

Fig. 1. The shaded polygons are the 22 towns of the Ipswich River Watershed within the State of

Massachusetts
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much water is removed from the Ipswich River Watershed for municipal
water supply, industry, and irrigation that the river can literally run dry’’
(Zarriello and Ries 2000).
When it does flow, the Ipswich River empties into Plum Island Sound,

which is one of the Long Term Ecological Research sites of the United
States’ National Science Foundation. It is important to understand the land-
use and land-cover change patterns of the Ipswich River Watershed because
of the watershed’s influence upon the ecology of Plum Island Sound. The
most common form of land-use change is deforestation for new residential
land.
Ecologists believe that historical land-cover legacy conditions help

determine the pattern of nutrient loading into the sound currently taking
place. Pontius et al. (2000) give some evidence that the density of forest
influences present nutrient export from the watershed. We do not know the
extent to which the spatial arrangement of past forest influences nutrient
export; therefore we would like to test the hypothesis that it does. To do this,
we need a map that shows the spatial distribution of historic forest cover. A
map of the historical landscape would provide an indication of the land-
cover legacy conditions, hence would enable scientists to test hypotheses
concerning the influence of past land use on present nutrient loading.
Unfortunately, maps at the grid cell-level are not available in digital form;
however tabular statistics of forest cover at the town level are available.
At the town level, it is possible to create a map that accurately portrays the

quantity of past forest cover because we have tabular data on historic forest
cover at the town level. We can use a simulation model to create a map of
historic forest cover at a finer grid cell-level resolution that is compatible with
our other maps. We want to know the certainty of the grid cell-level
information in the simulated map of historic land cover, specifically with
regard to the simulated location of the land use category. This paper supplies
a method to create a simulated map of historical land cover with a known
level of certainty at a fine grid cell-level resolution.

2 Methods

2.1 Data

Massachusetts Executive Office of Environmental Affairs supplied vector
maps used in this analysis free of charge through their internet site (MassGIS
2002). As is typical of free data, the maps lack sufficient metadata, so it is not
possible to know precisely the data’s quality concerning: georegistration
precision, RMS error, classification accuracy, etc. All maps were converted
to a uniform 30 m · 30 m grid because the land use change model requires
raster data. The conversion procedure assigns to each pixel the category
found at the centroid of the pixel. We select a 30 m · 30 m grid for both
scientific and practical reasons. Based on our communication with the map
maker (David Goodwin, personal communication), the vector data is likely
to be precise to approximately 30 m, but certainly not more precise than
30 m. More than 99% of the vector polygons contain an area larger than one
30 m · 30 m pixel. Conversion to a coarser resolution would substantially
distort the information in the vector data. Equally importantly, 30 m
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resolution is the finest resolution that produces digital files that are
acceptable in size for computation; finer resolutions would produce files
that are too large. Finally, we would like for our database to be generally
consistent with satellite imagery; and much satellite imagery is at the 30 m
resolution.
Three of the maps are land cover for 1971, 1991 and 1999. Figure 2 shows

the 1991 forest cover map. All cells are hard classified into a crisp set, which
means that each cell is completely in either the forest category or the non-
forest category. In this example, we analyze two land types because it is
easiest for the reader to grasp, however the method can apply to any number
of land types, as the equations demonstrate. In Fig. 2, the 22 towns that
occupy the watershed are outlined in gray. The entire analysis is stratified by
the 22 towns.
Data for land cover in 1951 are available in tabular form by town, i.e. by

stratum (MacConnell and Cobb 1974; MacConnell et al. 1974). From 1951
to 1999 the change in forest area shows a smooth decrease from 56% to 40%
of the study area.
An additional map gives the age of the housing stock at the census tract

level. Information on housing is important to consider when predicting forest
change because much of the recent deforestation is attributable to the
increase in residential area.

2.2 Approach overview

Table 1 shows the approach in terms of its two necessary model runs. The
first model run begins with the landscape of 1991 then simulates the

Fig. 2. Reference 1991 land cover map with 22 towns outlined in gray
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landscape of 1971. The purpose of the first model run is to validate the
model and to quantify its goodness-of-fit. The first run’s input information
consists of both tabular information at the town level and mapped
information at the grid cell level. The town-level information is the percent
of forest and non-forest in 1971. The grid cell-level information consists of
maps of the age of houses and land cover for 1991 and 1999. The output
for the first model run is a map of grid cells that are crisp classified as
either forest or non-forest simulated for 1971. For the uncertainty
assessment of the first model run, we validate the output by comparing
the simulated map of 1971 to the reference map of 1971. The validation is
measured by the statistic Kappa for location, denoted Klocation (Pontius
2000, 2002). Klocation describes the extent to which the model is able to
generate an accurate 1971 simulated map at the grid cell level. The purpose
of the first model run from 1991 to 1971 is to obtain the value of
Klocation, which indicates the confidence we have in the model’s ability to
specify the location of the grid cells within the towns. Klocation is an
important measure of the goodness-of-fit of the validation that we compute
and store for use in the second model run.
The third column of Table 1 describes the second model run, which

begins with the landscape of 1971 then simulates the landscape of 1951.
We call this the extrapolation run because we have no reference map for
1951 at the grid cell level. The town-level input information is the percent
of forest and non-forest for 1951, whereas the grid cell-level input
information is maps of house age and land cover for 1971 and 1999. The
output for the second model run is a map of grid cells crisp classified as
either forest or non-forest simulated for 1951. For the uncertainty
assessment of the second run, we adjust the output of the model to
convert it from crisp categories to fuzzy categories, so the cells express the
certainty of membership in the forest category. The adjustment is based
on the value of Klocation that the first model run generated. The
remainder of this methods section describes the simulation model, the
Klocation statistic, the uncertainty adjustment, and the 1951 map
accuracy assessment.

Table 1. Description of model runs

Information First run for validation Second run for extrapolation

Simulation duration from 1991 to 1971 from 1971 to 1951

Models inputs town-level % of forest in 1971 town-level % of forest in 1951

and grid cell-level maps of: and grid cell-level maps of:

a] land cover in 1991 (Fig. 2) a] land cover in 1971 (Fig. 4)

b] land cover in 1999 b] land cover in 1999

c] house age in 2000 c] house age in 2000

Model output of

crisp categories

grid cell-level maps of

simulated forest versus

non-forest in 1971 (Fig. 3)

grid cell-level maps of

simulated forest versus

non-forest in 1951 (Fig. 8)

Uncertainty analysis results Kappa for location = 0.80

(Fig. 5)

grid cell-level map of

probability of forest in 1951

(Fig. 9)
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2.3 The simulation model

The focus of this paper is the adjustment to the output from a simulation
model, which is the final step at the bottom of the third column in Table 1.
The specific simulation model used is not particularly important. In fact, the
adjustment method is applicable to a variety of Markovian, cellular
automata and agent based models. Nonetheless, it is helpful for the reader
to understand the specific model used in this application. Therefore, this
section gives a brief description of the model Geomod. For a comprehensive
explanation of Geomod, see Pontius et al. (2001).
Geomod is a GIS-based land-cover change model, which quantifies factors

associated with land-cover and can simulate the spatial pattern of land-cover
change forward or backward in time. In this paper’s application, Geomod
selects locations for forest cover according to three decision rules: (1)
allocation by town of the accurate quantity of forest and non-forest according
to tabular data, (2) selection of grid cells for forest cover change according to
a suitability map, and (3) prediction of persistence for the category that grows
during the simulation. The first decision rule allows Geomod to assign the
correct quantity of forest area and non-forest area to each town. The second
decision rule allows Geomod to replace forest on the landscape at those non-
forest cells that are likely to have been sites of recent deforestation according
to a suitability map. The suitability map is based on the house age and an
analysis of the pattern of land change between 1991 and 1999. The suitability
map shows relatively high likelihood for recent deforestation at locations that
have relatively new houses. The suitability map shows relatively low
likelihood for recent deforestation at locations that are either non-residential
or have relatively old houses. The third decision rule is particularly important
because land cover persistence dominates most landscapes.
The data indicate that there is more forest as we go further back in time.

Therefore, the effect of the third decision rule is that Geomod does not
change the cells that are already forest as Geomod simulates backwards in
time. If a cell is forest in 1991, then Geomod will predict that it will be forest
in 1971. If a cell is non-forest in 1991, then Geomod might predict that it was
forest in 1971, depending on its suitability. As Geomod simulates land cover
change backwards in time, it searches among only the non-forest cells to
determine which cells would most likely have been forest at a previous point
in time, depending on the suitability map. Geomod is doomed to fail at all
locations that experience afforestation between 1971 and 1991, which
constitute only 0.35% of the study area.
The 1991 reference map of land cover (Fig. 2) is used as the starting point

of the simulation to 1971. A simulated landscape is produced for 1971
(Fig. 3). The 1971 reference map of land cover (Fig. 4) is used for validation
against the 1971 simulated landscape. The output from Geomod is a map of
crisp classified cells, meaning that each cell is entirely within the forest
category or the non-forest category. Geomod does not compute the
probability of a cell being in a category. At the town level, the quantity of
forest and non-forest in the simulated map matches the 1971 reference
information. However the locations of some of the individual grid cells are
incorrect. Next, we use the Klocation statistic to measure the accuracy of the
simulation at the grid cell level.
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Fig. 3. Simulated 1971 land cover map resulting from the 1991 to 1971 Geomod prediction for

22 towns outlined in gray

Fig. 4. Reference 1971 land cover map for 22 towns outlined in gray

260 R. Gilmore Pontius et al.



2.4 Klocation statistic

Figure 5 shows that the agreement between the 1971 simulated map (Fig. 3)
and the 1971 reference map (Fig. 4) is 91%. Furthermore, Fig 5 separates the
overall percent correct into two components of agreement, called quantity
and location. Pontius (2000, 2002) give the details of the technique to
generate the individual components in Fig. 5. The first component is
attributable to the fact that the model allocates the correct quantity of forest
and non-forest to each town. If the simulation model were to allocate the
1971 quantity of forest and non-forest to grid cells selected randomly within
the towns, then the expected agreement between the 1971 simulated map and
the 1971 reference map would be the region shown as the bottom speckled
area on Fig. 5. In this case, the agreement attributable to the town-level
quantities is 53%. Equation 1 calculates this agreement.

Cell level agreement due to quantity �

Y ¼

PT

t¼1

PNt

n¼1
Wtn�

PJ

j¼1
MIN Rtnj, Rt � jð Þ

" # !

PT

t¼1

PNt

n¼1
Wtn

ð1Þ

where
Rtnj ¼ proportion of category j in cell n of town t, which is 0 or 1;
RtÆj ¼ proportion of category j in town t, which is between 0 and 1;
Nt ¼ number of cells in town t;
Wtn ¼ weight of cell n of town t, which is 1 for the cells in the study, and 0

else;
T ¼ number of strata, which is 22 towns in our example;
J ¼ number of categories, which is 2: forest and non-forest.

The middle cross-hatched segment of Fig. 5 shows the second component
of agreement, which is due to the model’s ability to specify the grid cell-level
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locations correctly within towns. The top, pinstriped segment of Fig. 5 is the
error associated with the model’s inability to allocate the grid cell-level
locations perfectly within towns.
If the simulation model were to allocate the forest and non-forest at

random grid cell locations within the towns, then the expected agreement
between the simulated map and the reference map for 1971 would be 53%. If
the simulation model were to allocate perfectly all the forest and non-forest
at the correct grid cell locations, then the agreement between the simulated
map and the reference map for 1971 would be 100%. Geomod’s simulation
attained 91% correct, which is 0.80 of the way between 53% and 100%,
therefore Kappa for location, denoted Klocation, is 0.80. Equation 2 gives
the formula for Klocation.

Klocation ¼ M�Yð Þ= Z�Yð Þ ð2Þ
where

M ¼ proportion agreement between reference map and model output;
Y ¼ proportion agreement due to quantity, given in equation 1;
Z ¼ maximum possible agreement between the reference map and a

perfect model output, given the specification of quantity of each
category.

Figure 5 shows an example where M ¼ 91%, Y ¼ 53% and Z ¼ 100%. Z
is 100% when the specification of quantity of each category is perfectly
correct, as in our example. But Z would be less than 100% if there were an
error in specification of quantity of at least one of the categories. Pontius
(2000, 2002) defines and describes in depth the Kappa for location statistic,
denoted Klocation. Klocation is a variation on the more common Kappa
index of agreement (Cohen 1960). In the case where Z ¼ 100%, Klocation is
equivalent to the standard Kappa Index of agreement, but this paper gives
the more generalized Klocation, so this paper’s methods can be used to assess
the uncertainty of a wider variety of applications. Klocation is designed
specifically to measure the agreement between two maps in terms of the grid
cell-level location of categories, given a specification of the quantity of each
category. Klocation measures this cell-level location-specific agreement
separately from the agreement attributable to the fact that each town has
the correct quantity of each land cover category. Equation 2 gives a version
of Klocation that is designed for the case where the analysis is stratified by
town, hence Y is given by Eq. 1.
Klocation measures how well the simulation model specifies the location of

forest and non-forest at the grid cell level within the towns. If the simulation
model were to allocate the land cover categories at random grid cell locations
within the towns, then the expected value of Klocation would be zero. If the
simulation model were to allocate perfectly the land cover categories at the
correct grid cell locations within the towns, then the value of Klocation
would be 1. Figure 5 shows a result for which Klocation is 0.80.

2.5 Uncertainty adjustment

Our final procedure is to run Geomod from 1971 to 1951, where the model
categorizes each cell as a crisp category, either forest or non-forest, then we
use Klocation of 0.80 to adjust the crisp classification of the 1951 simulated
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landscape. We select Klocation of 0.80 as our best guess at an appropriate
Klocation because 0.80 was the value attained in the validation of the 1991-
1971 Geomod run. The Geomod output for the 1951 simulated map shows
each grid cell as either pure forest or pure non-forest. The proportion of
forest and non-forest in each town is accurate because Geomod allocates
the 1951 tabular data. However, it is likely that some of the individual cells
are in the wrong location and some are in the correct location, but there is
no way to tell for certain which are correct and which are incorrect because
grid cell-level information for 1951 does not exist. Nonetheless, if we
assume a Klocation of 0.80 for the simulation from 1971 to 1951, then we
can adjust each simulated cell of 1951 to express the estimated level of
certainty for the 1951 simulated landscape. The logic of the adjustment is
as follows.
If Klocation is 1, then no adjustment to the crisp Geomod output is

necessary, because Klocation ¼ 1 implies that the Geomod simulation is
perfect. In other words, if Klocation is 1, then the probability that a 1951 cell
is forest, given that Geomod says it is forest, is 1; and the probability that a
1951 cell is non-forest, given that Geomod says it is non-forest, is 1.
Alternatively, if Klocation is 0, then Geomod’s ability to specify the grid

cell-level location is equivalent to random. When Klocation is 0, the
probability that a 1951 grid cell is forest is the proportion of the town that is
forest; and the probability that a grid cell is non-forest is the proportion of
the town that is non-forest. In other words, if Klocation is zero, then the
simulation model gives no additional information concerning the grid cell-
level location of forest or non-forest. When Klocation is zero, the only
information concerning the probability of a cell being forest or non-forest
derives from the town-level tabular data.
However, the model has a Klocation between 0 and 1. Therefore, the

probability of a cell being in a specific category, given that the model says it is
that category, is given by Eq. 3.

Pt jjMkð Þ ¼ Qt � jþ Klocation� 1�Qt � jð Þ½ � if j ¼ k

¼ Qt � j� 1�Klocationð Þ if j 6¼ k ð3Þ
where
Pt(j|Mk) ¼ the probability that a cell in town t is category j given that the

model says it is category k,
QtÆj ¼ proportion of town t that is category j,

Klocation ¼ the best guess at the model run’s grid cell-level certainty, which
ranges from 0 to 1.

2.6 Accuracy assessment with an unknown landscape

One of the most powerful aspects of this uncertainty adjustment method is
that we can calculate the expected agreement between the simulated output
and the real landscape of 1951, even though we do not have a map of the real
landscape of 1951. This technique depends on the assumptions that our
estimate of Klocation is appropriate, that the stratum-level quantities of land
cover are accurate, and that the grid cells of the unknown 1951 reference map
are hard classified into crisp categories.

Estimating the uncertainty of land-cover extrapolations 263



Note that if Klocation ¼ 0, then Eq. 3 implies that the adjusted
simulation output predicts that the probability of a 1951 grid cell being
forest is the proportion of the town that is forest, and that the probability
of a grid cell being non-forest is the proportion of the town that is non-
forest. In this case when Klocation ¼ 0, Eq. 4 gives the agreement between
the 1951 simulated map and the unknown 1951 reference map, where the
variable definitions are the same as in Eq. 1.

Agreement due to town level quantities �

A ¼

PT

t¼1

PNt

n¼1
Wtn

� �

�
PJ

j¼1
ðRt � jÞ2

" # !

PT

t¼1

PNt

n¼1
Wtn

ð4Þ

Equation 4 is a simplified version of Eq. 1. Equation 4 is true because in
each town, the proportion of cells hard classified as category j in the
unknown 1951 reference map is Rt�j. Also, in town t, for every cell of the
adjusted simulated map, the probability of being in category j is Rt�j when
Klocation = 0
We are interested in the case where Klocation is between 0 and 1. Equation

5 gives the estimated overall agreement between the 1951 simulated map and
the unknown 1951 reference map. Equation 5 is also the estimated overall
agreement between the 1951 adjusted map and the unknown 1951 reference
map. In Eq. 5, Z and Klocation are as defined in Eq. 2 and A is the
agreement given by Eq. 4.

Estimated overall agreement � B ¼ AþKlocation� Z�Að Þ ð5Þ
In our example’s application of Eq. 5, Z is 1 because Geomod allocates the

quantities that are specified by the 1951 tabular data, which we assume are
accurate. If Klocation ¼ 1, then Geomod’s unadjusted simulated map is
perfect, and equation 5 shows that the agreement with the unknown 1951
referencemap is 100%. IfKlocation ¼ 0, then the expected agreement between
Geomod’s unadjusted simulated map and the unknown 1951 reference map is
A, given by Eq. 4. In practice, Klocation is usually between 0 and 1.
Equation 5 gives the estimated agreement between the 1951 simulated

map and the unknown 1951 reference map. However, if the estimate of
Klocation is not accurate, then the actual agreement will vary from the
estimated agreement. Nevertheless, there is a limit to how much the actual
agreement can vary from the estimated agreement. The maximum
agreement between the unadjusted simulated map and the unknown
1951 reference map is 100%, which would be the case if Geomod
happened to specify the grid cell locations perfectly. The minimum
agreement is constrained by the quantities of land cover types in each
town. If any one category accounts for greater than half of the land cover
in a town, then the minimum agreement is greater than zero. Equation 6
gives the minimum agreement between the unadjusted simulated map and
the unknown 1951 reference map. Equation 6 is true because the cells of
both maps are hard classified into crisp sets.
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Minimum agreement due to town level quantities �

C ¼

PT

t¼1

PNt

n¼1
Wtn

� �

�
PJ

j¼1
MAX 0; 2�Rt � j½ � � 1ð Þ

" # !

PT

t¼1

PNt

n¼1
Wtn

ð6Þ

The procedure to adjust for uncertainty converts the unadjusted simulated
map from a hard classification into a fuzzy classification, where each
adjusted grid cell has some proportion of membership in each land cover
category. This adjustment constrains the maximum percent correct to be less
than 100%. It also constrains the minimum percent correct to be greater than
agreement given in Eq. 6. Equation 7 gives the maximum agreement between
the unknown 1951 reference map and the adjusted simulated map. Equation
8 gives the minimum agreement between the unknown 1951 reference map
and the adjusted simulated map.

Maximum adjusted agreement ¼ BþKlocation� Z� Bð Þ ð7Þ
Minimum adjusted agreement ¼ B�Klocation� B� Cð Þ ð8Þ

3 Results

Figure 6 shows the agreement between the unknown 1951 reference map and
the 1951 simulated map, including the levels and ranges of certainty. Figures
7–9 show the mapped results. The next several paragraphs relate Fig. 6 to
Figs. 7–9.
If the only information available were the fact that 56% of the entire study

area was forest in 1951, then one would make a map in which every pixel in
the landscape shows a fuzzy membership in the forest category of 0.56. Such
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Fig. 7. A 1951 land cover map where the membership in the forest category of every grid cell is

the proportion of forest within the cell’s town, for each of the 22 towns outlined in gray

Fig. 8. A 1951 land cover map simulated by Geomod where the membership of each grid cell is

hard classified into a crisp set of either forest or non-forest for 22 towns outlined in gray
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a map fails to provide any information on the spatial distribution of forest
and non-forest within the study area. Since the said map shows no town-level
stratification, Eq. 4 with T ¼ 1 computes the agreement between the said
map and the unknown 1951 reference map as 51%. Figure 6 shows this 51%
agreement as the speckled lower portion of the bar for the ‘‘All Unstratified’’
study area.
Figure 7 shows the 1951 landscape that one could portray if the only

information one had were the proportion of forest by town. In Fig. 7, every
grid cell in each town shows the proportion of forest within that town, which
ranges from 30% to 77% based on the 1951 tabular data. Every cell within a
specific town is homogenous and shows a fuzzy membership in the forest
category. In other words, Fig. 7 shows the results one would obtain if one
had a simulation model with Klocation of 0. Equation 4 computes the
agreement between Fig. 7 and the real unknown map of 1951 as 54%.
Figure 6 shows this 54% agreement as the speckled lower portion of the bar
for the ‘‘All Stratified’’ study area.
Figure 8 shows Geomod’s best guess at the 1951 landscape. Each cell is

hard classified as a crisp category of either forest or non-forest. The
proportion of forest and non-forest matches the 1951 tabular data. However,
the simulation result of Fig. 8 overstates the certainty in the grid cell-level
category membership, because Fig. 8 shows each cell classified as complete
membership in exactly one category. We suspect that some of the cells of
Fig. 8 are misclassified, however we do not know which ones are in the
wrong location and which ones are in the correct location because we do not
have a reference map of 1951 at the grid cell resolution. Figure 8 fails to
show the level of certainty we should have in the simulated classification.

Fig. 9. A 1951 land cover map simulated by Geomod and adjusted for uncertainty such that the

membership of each grid cell has a fuzzy membership in the forest category for 22 towns outlined

in gray
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Equation 5 computes the estimated agreement between Fig. 8 and the
unknown map of the real 1951 landscape as 91%, assuming Kloca-
tion ¼ 0.80. Figure 6 shows this 91% agreement as the sum of the dotted
portion and cross-hatched portion of the bar for the ‘‘All Stratified’’ study
area. The top pinstripe portion of Fig. 6 shows the expected 9% error in the
Geomod specification of grid cell-level location.
Figure 9 succeeds in showing the level of certainty we should have in the

simulated classification at the grid cell-level. Figure 9 derives from Fig. 8 and
a Klocation of 0.80. Figure 9 shows each cell containing a proportion of
membership in the forest category, based on both Eq. 3 and the town-level
tabular data of 1951. Therefore, Fig. 9 shows our most appropriate
representation of the 1951 landscape, because it portrays an appropriate
level of certainty. An important aspect of Fig. 9 is that it shows the correct
proportion of forest in each town according to the tabular data for 1951,
even though no cell is entirely forest or non-forest. According to Eq. 3, if a
cell is classified as forest in Fig. 8, then it has a probability between 0.86 and
0.95 of being forest, as shown in Fig. 9, depending on the town proportion of
forest. If a cell is classified as non-forest in Fig. 8, then it has a probability
between 0.84 and 0.94 of being non-forest, as shown in Fig. 9, depending on
the town proportion of non-forest. These conditional probabilities are
known popularly as user’s accuracies.
The expected agreement between the unknown 1951 reference map and

Fig. 8 is the same as the expected agreement between the unknown 1951
reference map and Fig. 9. Figure 6 shows this 91% agreement as the sum of
the dotted portion and cross-hatched portion of the bar for the ‘‘All
Stratified’’ study area. However, the possible variation in agreement is larger
for Fig. 8 than for Fig. 9. For Fig. 8, the maximum agreement is 100%, and
the minimum is 23% according to Eq. 6. Figure 6 shows this variation by the
thin vertical line of the box & whisker plot on the ‘‘All Stratified’’ bar. For
Fig. 9, the maximum agreement is 98% according to Eq. 7, and the
minimum is 37% according to Eq. 8. Figure 6 shows this variation by the
wide vertical line of the box & whisker plot on the ‘‘All Stratified’’ bar.
The first three bars of Fig. 6 show the levels of certainty of the simulation

for three towns. In the 1951 tabular data, the percent of forest in the towns of
Danvers, Rowley, and Boxford are respectively 30%, 49%, and 77%. The
level of certainty is low and the range in the certainty is large for Rowley,
where the proportions in the land cover categories are spread evenly. The
level of certainty is higher and the range in the certainty is smaller for
Danvers and Boxford, where one land cover category dominates.

4 Discussion

4.1 Value of information at various resolutions

The sequence of Figs. 7–9 shows the usefulness of the methodology. Figure 7
shows the map one can create with the information concerning only the
proportion of forest and non-forest at the spatial resolution of the town.
Figure 8 shows the map that a simulation model can create with perfect
information concerning the proportion of forest at the spatial resolution of
the town, but with imperfect information concerning the proportion of forest
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and non-forest at the spatial resolution of the grid cell. Figure 8 fails to
express uncertainty. Figure 9 shows the map that one can create with a
simulation model output of Fig. 8 and a measure of uncertainty at the grid
cell resolution, so Fig. 9 expresses the 1951 landscape with an appropriate
level of certainty.
The value of the information at these various resolutions is a function of

the landscape of 1951. For example, in 1951, the study area is 56% forest.
Therefore, with information at neither the town level nor the grid cell level,
the most we can say is that each cell has a 0.56 probability of being forest and
0.44 probability of being non-forest.
The value of the information in Fig. 7 is a function of the distribution of

the proportion of each category in each town. At one extreme, if the
proportion of forest in each town were exactly the same, i.e. 56% in each
town, then the town-level information would not be any more useful than the
study area-level information. At the other extreme, if each town were either
100% forest or 0% forest, then the town-level information would be
extremely useful because it would allow us to specify the category of each
grid cell within each town perfectly. Figure 7 shows a situation that is
between these two extremes. Equation 4 shows that the agreement between
Fig. 7 and the unknown real landscape of 1951 is 54%.
If the Geomod simulation shown in Fig. 8 is better than random at

specifying the locations of forest within the towns, then the agreement
between figure 8 and the unknown real landscape of 1951 is between 54%
and 100%. If the simulation from 1971 to 1951 shown in Fig. 8 is worse than
random at specifying the locations of forest within the towns, then the
agreement between Fig. 8 and the unknown real landscape of 1951 is
between 23% and 54%. We think that the model simulation between 1971
and 1951 is 0.80 of the way between random and perfect. Therefore the
estimated agreement between Fig. 8 and the unknown real landscape is 91%.

4.2 Is the model good?

Klocation of 0.80 is high, relative to most researchers’ experience with land-
use change modeling (Schneider and Pontius 2001, Hall et al. 1995).
Monserud and Leemans (1992) categorize a Kappa in the range from 0.70 to
0.85 as ‘‘very good’’. The reason for this high Klocation is landscape
persistence. That is, a good predictor of where forest will be at one point in
time is the location of the forest at some other point in time. In fact, if the
model would have predicted net change from 1991 to 1971 at random
locations, then the Klocation would have been 0.74 due to the fact that the
model generally predicts persistence. Hence, most of the apparent success of
the model is attributable to landscape persistence. The influence of Geomod’s
suitability map boosts the Klocation from 0.74 to 0.80.
If there had been no change between 1999 and 1971, then the Geomod

prediction of 1971 would have been perfect because when there is no change
in the quantity of any category, Geomod predicts no change in the grid cell
location. In this case, Klocation would have been 1. Obviously, if a landscape
never changes, then a perfect predictor of the state at a particular point in
time is the state of the landscape at some other point in time.
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In this sense, Geomod correctly predicts landscape persistence in terms of
location. Not all models have that characteristic. For example Markov
models can predict swapping of location among categories, even when there
is no net change in the quantity of categories. When the quantity of forest
does not change over time, then Geomod predicts neither deforestation nor
regrowth, even though deforestation on the real landscape at one location
can be countered by forest regrowth at some other location. In the Ipswich
River Watershed, there is very little of this type of swapping of location of
forest due to deforestation at one place and regrowth at another place,
therefore Geomod is relatively successful at predicting both land cover
persistence and one way change in quantity of forest. Geomod would likely
perform poorly on landscapes that are dominated by swapping.

4.3 Extrapolation beyond validation interval

We claim that the Klocation from the 1991–1971 simulation validation is our
best guess of model performance between 1971 and 1951. The Klocation
from 1991 to 1971 is a good selection if the process of land use change
between 1991 and 1971 is similar to the process between 1971 and 1951. If the
process during the two intervals is substantially different from one another,
then Eq. 3 should not use the Klocation from the 1991–1971 validation.
For example, the process of 1971–1991 land change was predominately one

of steady deforestation for new residential land. If this was also the case
between 1951 and 1971, the Klocation adjustment should be appropriate.
However, if the process of 1951–1971 land change involved a substantial
amount of forest regrowth at some locations combined with massive
deforestation at other locations of 1951 forests, then the Klocation from
1991 to 1971 would over estimate the certainty of the model performance
between 1971 and 1951. Based on what we know of the history of land-use
change in the region,we think therewas a steadymechanismof land-use change
between 1951 and 1991, therefore our adjustment methods should work well.
On the other hand, it can be possible for the adjustment method to

understate the level of certainty. For example, the range of time should have
a great influence on the selection of an appropriate Klocation, because forest
persistence has a large influence on Klocation. If we were to simulate from
1971 to 1970, then we would expect that the simulated map of hard classified
categories should be very accurate because landscape persistence should be
extremely high during one year. Therefore the appropriate Klocation to use
for the uncertainty adjustment should be close to 1 when simulating over
short time intervals. In our application, the time interval for validation is 20
years, and the time interval for extrapolation is 20 years. The proportion of
change during the validation interval is similar to the proportion of change
during the extrapolation interval.
We would not recommend the method for extrapolations farther back in

time beyond 1951 because we know that the process of land change
in Massachusetts was fundamentally different in the first half of the 1900s
than in the second half. Specifically, the predominant land conversion was
from non-forest to forest in the first half of the 1900s, as agricultural land
was abandoned. The second half of the 1900s experienced conversion from
forest to non-forest due to growth in residential areas. This method is
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recommended for extrapolations where the process of land conversion is
smooth and fairly consistent. The mathematics of the method will give a
result regardless of the true process of change, but one should take into
consideration qualitative knowledge of the process of land change when
interpreting the result.

4.4 Certainty concerning the quantity of land types

The next major development in this methodology should be to incorporate
certainty in the estimated quantity of the land cover types. In this paper’s
example, we assume that the town-level quantities of land cover types are
accurate. However, any estimate of quantity has some level of uncertainty. If
we were to combine the uncertainty of the town-level quantities with
uncertainty in the grid cell-level locations, then we would have a compre-
hensive analysis of uncertainty.
It would be especially important to incorporate the uncertainty in the town-

level quantities in order to be able to link non-spatially explicit models with
spatially explicit models. For example, many non-spatially explicit scenario
models predict the quantity of land cover types by strata, such as global
regions (Gallopin et al. 1997). The predictions of these stratified non-spatially
explicit models can be fed into a spatially explicit model, such as Geomod,
which could allocate the coarse stratum-level quantities to finer grid cells. Then
themethods of this paper could be used tomake statements about the gird cell-
level certainty of the predicted future landscape. However, when a non-spatial
model makes predictions of the future quantity of each land cover type by
stratification unit, there is obviously substantial uncertainty because the future
is usually difficult to predict. In order to have a comprehensive analysis of
certainty, we must combine the certainty of the quantities of the land cover
types with the certainty of the locations of the land cover types. This will be the
next step in the development of this paper’s method of uncertainty analysis.

5 Conclusion

We have provided a method to allocate coarse stratum-level information
concerning land cover to a finer resolution map of grid cells. Most
importantly, we have shown a method to assess the accuracy of an
extrapolated fine resolution map, even when a fine resolution reference map
does not exist. The method estimates the level of certainty and defines the
bounds of certainty in the resulting fine resolution map. This technique will
be useful for a variety of GIS applications where the researcher wants to take
advantage of stratum-level tabular information. The method also provides a
crucial tool to link non-spatial models with spatially explicit models, such as
Markov models, cellular automata models and agent based models.
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