
Introduction

Scientists typically attempt to deter-
mine whether historic land change has 
occurred by overlaying maps that have 

the same categories from two points in time, and 
assuming that the differences between the maps 
are attributable to changes on the ground (Yang 
and Lo 2002; Singh 1989; Liu and Zhou 2004). 
This procedure makes sense when the maps are 
perfectly accurate. However, scientists know 
that maps are not perfectly accurate and that 
the amount of error is frequently too large to 
ignore. This is a particularly important concern 
because the amount of change on the ground 
for many investigations is less than 15 percent, 
while the error in many maps may be as large 
as 15 percent. While the majority of research on 
accuracy assessment has focused on the assess-
ment of error in a single map, researchers are 
becoming increasingly interested in assessing 
the accuracy of maps that show change over 
time (Foody 2002; Khorram 1999; Lunetta and 
Elvidge 1999).

This paper addresses this topic and illustrates it 
with a case from Massachusetts, USA, where resi-
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dents are alarmed by the reported rate at which 
land in the State is being transformed (Breunig 
2003). A tour of the region reveals that much of 
this land transformation has been occurring in 
the City of Worcester and its nine surrounding 
towns (Figure 1). Figure 2 shows the difference 
between maps of 1971 and 1999 for seven cat-
egories of land cover. A naïve interpretation of 
Figure 2 would lead to the conclusion that the 
observed differences indicate land change at the 
black patches. However, even if there were no land 
change between 1971 and 1999, possible errors 
in either of the maps would result in differences 
between the two maps. It is not immediately clear 
which portions of the observed differences in Figure 
2 are attributable to map error versus real land 
change on the ground, because uncertain data 
form the foundation of both of the contributing 
maps. This paper establishes a general technique 
to examine maps of a mutual categorical variable 
at two points in time in order to attribute the 
differences to two possible sources: error in the 
maps and change on the ground.

The most common technique to compare two 
maps statistically between two points in time uses 
a crosstabulation matrix. The numbers in regu-
lar font in Table 1 constitute a crosstabulation 
matrix of two maps for the study area in central 
Massachusetts, with the 1971 categories as the rows 
and the 1999 categories as the columns, where 
each entry in the matrix is a percent of the study 
area. A crosstabulation matrix is sometimes called 
a transition matrix when it compares two maps 
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from different times (Pontius 
et al. 2004b). All values on the 
diagonal indicate agreement 
between the two maps and all 
values off the diagonal indicate 
disagreement. 

Values on the diagonal are 
usually attributed to land per-
sistence on the ground. In some 
cases, land on the diagonal has 
not persisted on the ground, 
but it appears on the diagonal 
due to map error. Values off the 
diagonal are usually attributed to 
land transitions on the ground 
between different categories. In 
some cases, land off the diagonal 
has not experienced change on 
the ground, but it appears off the 
diagonal due to map error. Error 
found in the 1971 and/or 1999 
maps can induce the transition 
matrix to indicate more or less 
change than has actually occurred 
on the ground.

This problem is especially troubling when the 
percent of error in the maps is larger than the 
percent of change on the ground. It is common 
for research concerning land transformation to 
examine landscapes that experience between 5 

and 25 percent change between two points in 
time (Pontius et al. 2004b; Yang and Lo 2002). 
A standard acceptable overall accuracy for land 
cover mapping studies has been set between 85 
and 90 percent (Anderson et al. 1976; Lins and 
Kleckner 1996). In practice, land cover classifica-
tion accuracies can be even lower. This implies 

Figure 1. The study area in central Massachusetts consisting of the city of Worcester and its nine surrounding towns. 

Figure 2. Differences in seven land-cover categories between maps of 1971 
and 1999.



160                                                                                                          Cartography and Geographic Information Science Vol. 33, No. 2                                                                                                                                                              161 

that if two different scientists each make a map 
of the same location for the same time, and they 
make errors independently, then we could expect 
substantial difference between the maps (Heuvelink 
and Burrough 1993). 

There are established methods to compare the 
accuracies of different map makers when they 
attempt to make maps of the same location for 
the same time (Congalton et al. 1983; Stehman 
1997; Paine and Kiser 2003). If two scientists make 
a map of the same location for different times, 
the change-map product derived from the two 
classifications may exhibit accuracy similar to the 
accuracy obtained by multiplying the accuracies 
of each individual classification (Fuller et al. 2003; 
Mas 1999; Stow 1999). Thus, if two producers were 
to make a map of different times, each with an 
accuracy rate of 85 percent, the accuracy rate of 
the resulting change-map would be approximately 
85 percent × 85 percent = 72 percent, leading 
to a possibly poor estimate of land change if the 
uncertainty is ignored. 

Yang and Lo (2002), for 
example, report accuracies 
of between 85 and 90 percent 
for classifications used in a 
study of the greater Atlanta 
metropolitan area between 
1973 and 1997/1998. They 
also report a total transition 
to urban of approximately 
18 percent of the land. It is 
not clear how to interpret the 
reported 18 percent disagree-
ment between the two maps 
because it is not immediately 
obvious that the maps possess 
accuracy sufficient to detect 
18 percent land change with 
certainty.

It could be possible to com-
pute the expected accuracy of 
the map-change product based 
on simplifying assumptions 
combined with information 
from a systematic accuracy 
assessment. However, many 
of the available maps have 
no reported assessment of 
accuracy, and it is impossible 
to acquire ground information 

when at least one of the maps is from the distant past. 
Nevertheless, scientists should perform some type 
of analysis concerning accuracy even in situations 
where precise information does not exist, because 
knowledge about uncertainty is crucial for proper 
interpretation. Lack of precise information con-
cerning accuracy does not warrant ignoring this 
potentially serious issue.

This paper proposes methods to examine the 
implications of map error for the assessment of 
land change on the ground and to flag transitions 
that map error can explain, even in situations where 
precise information concerning the accuracy of the 
maps is not available. The paper has three specific 
goals: (1) to determine whether error can explain 
specific types of observed categorical transitions 
between two maps; (2) to represent visually the 
differences between the maps that error cannot 
explain, and (3) to examine how sensitive the 
results are to possible variation in map error.

1   Each number is expressed as a percent of the study area to the nearest integer, where a zero means a positive number less than 
one half and a dash means that no pixels were observed in the particular transition. The user’s accuracy in both maps is assumed 
to be 85 percent for each category.  

Table 1. Matrix D in regular font, matrix F1 in bold, and matrix F2 in italics.1

1999
Total

Built Agriculture Range Forest Water Wetland Barren
19

71

Built
29
25
30

0
1
0

0
0
0

1
3
3

0
1
1

0
0
0

0
0
0

30
30
36

Agriculture
1
1
1

3
2
2

0
0
0

0
1
1

0
0
0

—
0
0

—
0
0

5
5
4

Range
1
1
1

0
0
0

1
1
1

0
1
1

—
0
0

0
0
0

0
0
0

2
2
2

Forest
7
4
4

0
1
1

0
1
1

49
48
43

0
1
1

0
1
1

0
0
0

56
56
51

Water
0
1
1

—
0
0

—
0
0

—
1
1

5
3
3

0
0
0

—
0
0

5
5
5

Wetland
0
0
0

—
0
0

0
0
0

0
0
0

—
0
0

1
0
0

—
0
0

1
1
1

Barren
0
0
0

—
0
0

0
0
0

0
0
0

—
0
0

0
0
0

0
0
0

0
0
0

Total
38
32
38

3
4
3

2
2
2

50
55
50

5
5
5

1
1
1

0
0
0

100
100
100
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Methods

Data
The Resource Mapping Project (RMP) of the 
University of Massachusetts at Amherst per-
formed photo interpretation to create land 
cover maps for Massachusetts in 1971 and 1999. 
These maps constitute the basis for much of the 
research on land-use change in Massachusetts, 
because the maps are freely available from the 
State’s geographic information system website 
(MassGIS 2002). For the 1971 layer, the RMP 
aggregated the original 104 classes and eventu-
ally digitized 21 categories. The authors of this 
paper performed further aggregation to seven 
categories defined by Anderson et al.’s (1976) level 
1. Table 1 lists these seven categories in its column 
and row headers. Category aggregation tends to 
decrease both the error in individual maps and the 
difference between maps from two points in time 
(Pontius and Malizia 2004). Aerial photography 
is the basis of the 1971 information. The RMP 
digitized the 1999 data from digital orthophotos. 
Check plots were examined on the 1971 and 1999 
data to compare the final digitized land-cover map 
to the photographic information.

Statistical information concerning accuracy 
does not exist in a systematically quantified 
form. Assessment using ground information has 
never been performed for the maps, and it is now 
impossible to obtain ground information from 1971 
and 1999. Consequently, we will make an initial 
assessment of the maps based on the assumption 
that the accuracy for both maps is 85 percent in 
order to illustrate the proposed methods. We then 
perform sensitivity analysis to examine how the 
results are sensitive to variation in the assumed 
level of accuracy.

Strategy
Figure 3 illustrates our methodological 
approach, which tackles the general problem of 
the comparison of maps from two points in time. 
For our example, time 1 is 1971 and time 2 is 
1999. A systematic accuracy assessment would 
produce for maps of time 1 and time 2 the 
matrices C1 and C2, respectively. These matri-
ces are the standard confusion matrices that 
compare sampled map information in the rows 
to sampled ground information in the columns 
(Congalton and Green 1999; Rosenfield and 
Fitzpatrick-Lins 1986; Stehman and Czaplewski 
1998).

For clarity, we refer to map maker X as the one 
who makes errors specified by C1 and map maker 
Y as the one who makes errors specified by C2. 
In situations where matrices C1 and C2 are not 
available, we make an educated guess concerning 
the map accuracy based on similar studies and 
discussions with the map makers. For our particu-
lar case of land change in central Massachusetts, 
we assume initially that matrix C1 gives a user’s 
accuracy of 85 percent for each category at time 
1 and that matrix C2 gives a user’s accuracy of 85 
percent for each category at time 2.

The user’s accuracy for a particular category is 
the probability that a sampled pixel is classified 
accurately, given that it is classified as that par-
ticular category in the map. Thus each category 
has its own user’s accuracy. If the user’s accuracy 
is 85 percent for a category, then that category has 
15 percent commission error. We assume that the 
15 percent commission error for each category is 
distributed evenly among the other six categories, 
such that the percent of a given category that is 
confused with a different category is 2.5 percent 
for each of the other six categories. Eventually, we 
perform sensitivity analysis to see how the results 
vary as a function of variation in the assumptions 
concerning accuracy.

The matrix D indicates the observed difference 
between the maps of time 1 and time 2. The rows 
of matrix D show the categories of the map of time 
1 and its columns show the categories of the map 
of time 2. Our approach to analyze D is similar 
to statistical hypothesis testing, where the null 
hypothesis is that there is no land change between 
the two points in time. If the null hypothesis were 
true, then any positive numbers among the off-
diagonal entries of D would be attributable to 
error. If an off-diagonal entry of D is larger than 
what we would expect due solely to error, then 
we reject the null hypothesis and conclude that 
there is evidence of land change on the ground for 
the transition that corresponds to the particular 
entry. The burden of proof is on the data to show 
that an off-diagonal entry in D is larger than the 
magnitude that error could explain. Consequently, 
we need to compute a matrix that shows how D 
would appear if the null hypothesis were true; 
therefore, we need to consider how the landscape 
would appear, if the null hypothesis were true.

We consider two cases: 1) the landscape on the 
ground at both times is the same as the landscape 
estimated at time 1, and 2) the landscape on the 
ground at both times is the same as the land-
scape estimated at time 2. For each of the cases, 
we compute the matrix that we would expect for 
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matrix D, given the types of errors specified in 
matrices C1 and C2.

For the first case, if there were no errors in 
the maps, then matrix D would be a diagonal 
matrix, where the column and row totals would 
be equal to the distribution of categories at time 
1 as estimated by the ground information for 
time 1. A diagonal matrix is a matrix for which 
all the off-diagonal entries are zero. If there were 
errors in the maps specified by C1 and C2, then 
matrix D would probably contain some positive off-
diagonal entries due solely to error. We compute 
matrix F1 such that it is the matrix that we would 
expect under the assumption that the landscape 
on the ground at both times is the same as the 
landscape estimated at time 1, and that matrixes 
C1 and C2 describe the errors in the maps. We 
compare matrix D to F1 to find whether observed 
off-diagonal entries in D are larger than expected 
off-diagonal entries in F1.

For the second case, we compute matrix F2 such 
that it is the matrix that we would expect under 
the assumption that the landscape at both times 
is the same as the landscape estimated at time 2 
and that matrixes C1 and C2 describe the errors 
in the maps. We compare matrix D to F2 to find 
whether observed off-diagonal entries in D are 
larger than expected off-diagonal entries in F2.

The most important results derive from the 
comparison of D versus F1 and D versus F2. If 
an off-diagonal entry in matrix D is greater than 
the corresponding entry in matrices F1 or F2, then 
there is evidence to reject the null hypothesis in 
favor of the conclusion that there is land change 
on the ground, because map error cannot explain 
completely the particular type of transition. If 
an off-diagonal entry in matrix D is less than 
the corresponding entry in matrices F1 or F2, 
then there is not sufficient evidence to reject the 
null hypothesis because map error can explain 

Figure 3. Logic of methods showing flows of information among five matrices: C1, C2, F1, F2, and D. If matrices C1 and 
C2 are not available, they can be based on values from similar studies and/or analyzed with sensitivity analysis.
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completely the particular type of difference. The 
next subsection gives the mathematical details to 
compute F1 and F2 as a function of the informa-
tion in D, C1, and C2.

Matrix Algebra
The methods require raster maps from two 
points in time, where each pixel is classified as 
a member of exactly one category of a shared 
categorical variable. The methods also require J-
by-J confusion matrices C1 and C2 that describe 
the accuracy of the maps from time 1 and time 
2 respectively, based on pixels sampled on the 
ground, where the sample in time 1 may be 
selected independently from the sample in time 
2. With these requirements, let:
t  =  time such that t = 1 or t = 2; 
J  =  number of categories in the analysis;
i  =  index for a category in a map;
j  =  index for a category on the ground;
k  =  index for a category in a map;
ntij = entry in row i and column j of matrix Ct 

that gives the sampled number of pixels 
that are classified as category i in the map 
of time t and observed as category j on the 
ground at time t;

nti+ = sampled number of pixels that are classi-
fied as category i in the map of time t;

nt+j = sampled number of pixels observed as 
category j on the ground at time t;

nt++ = sampled number of pixels for the accu-
racy  assessment at time t;

Nti+ = population number of pixels that are cat-
egory i in the map of time t;

Nt+j = unknown population number of pixels 
that are category j on the ground at time t;

Nt++ = population number of pixels in the study 
area at time t where N1++ = N2++ ;

wtij = probability of a pixel being classified as 
category i in a map given that it is category j 
on the ground when Ct describes the map’s 
errors;

dik = entry in row i and column k of matrix D;
ftik= entry in row i and column k of matrix Ft; and
htik = entry in row i and column k of matrix Ht.

The first task is to use the information from 
the accuracy assessment to estimate the popula-
tion number of pixels that are category j on the 
ground at time t. We must know the method of 
sampling of pixels for the accuracy assessment in 
order to interpret the information in Ct properly 
(Congalton 1988b; Stehman 2001). We consider 
two cases: simple random sampling and stratified 
sampling. If simple random sampling were used 
across the study area to select the nt++ observations, 
then Nt+j would be estimated by Equation (1).

If stratified sampling were used, then the esti-
mate of Nt+j would be slightly more elaborate. 
In stratified sampling, we treat each group of 
pixels classified as category i as a stratum in the 
map of time t. The nti+ observations are sampled 
randomly from among the Nti+ pixels in stratum 
i. For this type of sampling, Nt+j is estimated by 
Equation (2).

Next, we would like to compute the probability 
that a pixel selected randomly from the study area 
is classified as category i by a map maker, given 
that it is category j on the ground. In probability 
theory notation, this conditional probability is 
expressed as P(class = i | ground = j). Equation 
(3) works from the definition of conditional prob-
ability.

Equation (4) computes the entries of a matrix 
Wt according to the concept of Equation (3) and 
the entries in confusion matrix Ct. For t = 1, each 
w1ij gives the estimated probability of a pixel being 
classified as category i by map maker X, given that 
it is category j on the ground. For t = 2, each w2ij 
gives the estimated probability of a pixel being 
classified as category i by map maker Y, given that 
it is category j on the ground. In particular, wtjj is 

(1)

(2)

(3)
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the producer’s accuracy for category j for the map 
maker whose errors are specified by Ct.

The producer’s accuracy for a particular category 
is the probability that a pixel is classified correctly, 
given it is that particular category on the ground. 
Each category can have its own producer’s accuracy. 
It is useful to express matrix Wt as J column vec-
tors, denoted as Vtj where each column vector has 
dimension J-by-1 and corresponds to a particular 
category j. The sum of the entries in each column 
vector Vtj is 1.

If the null hypothesis were true, then any pixel 
that is a member of category j on the ground at 
time 1 would also be a member of category j on 
the ground at time 2. However, this pixel would 
not necessarily appear on the diagonal of matrix 
D because the classification might be wrong at 
either or both times. If the pixel is category j on 
the ground, then w1ij is the probability that X would 
classify it as category i and w2kj is the probability 
that Y would classify it as category k. Therefore 
w1ij multiplied by w2kj is the probability that the 
randomly selected pixel of category j on the 
ground is classified as category i by maker X and 
as category k by maker Y, assuming independence 
of the classification errors of the two map makers. 
So, if a pixel truly persists as category j on the 
ground, then the probability it would appear in 
row i and column k of the difference matrix D is 
expressed by matrix Ej in Equation (5).

The superscript T denotes the transpose of 
vector V2j. Therefore, each matrix Ej is a J-by-J 
matrix, where j = 1, … , J. Matrix Ej shows the 
classification according to map maker X in the 
rows and according to map maker Y in the col-
umns. The entries of matrix Ej give the conditional 
probability of a pixel selected randomly from a 
map being classified as category i by maker X and 
category k by maker Y, given that it is category j 
on the ground.

In order to test our null hypothesis for each of 
the two cases, we need to know the probability 
that a pixel selected randomly from the map is 
classified as category i by maker X and category 

k by maker Y, given each of our two cases, which 
are: 1) the landscape on the ground at both times 
is the same as the landscape estimated at time 1; 
and 2) the landscape on the ground at both times 
is the same as the landscape estimated at time 2. 
Equation (6) gives the desired J-by-J matrix for 
each case t. Equation (6) does this by computing 
the weighted average of all J matrices (E1 , … , EJ), 
where the weight is the estimated proportion of 
each category on the ground at time t.

The entry in row i and column k of matrix Ft 
is the probability that a pixel selected randomly 
from the study area is classified as category i by 
X and category k by Y, given that both X and Y 
make a map of the landscape at time t. The only 
difference between F1 and F2 is that Equation (6) 
uses the estimated category proportions of time 
1 to compute F1 and the estimated category pro-
portions of time 2 to compute F2. Table 1 shows 
the entries for F1 and F2.

Simple subtraction reveals how the off-diagonal 
entries of F1 and F2 compare to the correspond-
ing entries in matrix D. If the entry in row i and 
column k in D is greater than the corresponding 
entry in Ft, then there is evidence of a measurable 
transition from category i in time 1 to category k 
in time 2. If the entry in row i and column k in D 
is less than the corresponding entry in Ft, then 
error can explain the apparent transition from 
category i to category k.

For cases where error cannot explain the differ-
ence in the map completely, it is useful to compute 
the remaining proportion of the difference that 
error cannot explain. Equation (7) computes the 
proportion of the observed transition from cat-
egory i to category k that error cannot explain, 
given the entries in matrices D and Ft.

The entries denoted as htik form a matrix Ht for 
each case t as shown in Table 2. The goal is to 
examine the differences between the maps, so htik is 
interesting for only non-diagonal entries. If there 
is no observed difference for the transition from 
i to k in matrix D, then htik is undefined.Equation 
(8) defines Gt as the total amount of difference 

(4)

(5)

(6)

(7)
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between the maps that error cannot explain. It 
computes how much larger each off-diagonal entry 
in matrix D is compared to the corresponding 
entry in matrix Ft, then sums those differences 
and expresses the sum as a proportion of the study 
area. Equation (8) excludes the diagonal entries 
of the matrices by not allowing i to equal k.

Visualization
It is desirable to visualize the amount of differ-
ence that error cannot explain by modifying 
Figure 2. The modification reduces the darkness 
of each black patch in Figure 2 by the degree to 
which error can explain the particular type of 
difference. If error can explain completely the 
observed difference for a particular patch, then 
the patch becomes white. If error can explain 
partially the observed difference for a particular 
patch, then the patch becomes gray, where the 
darkness of the gray relates directly to the per-
cent of the transition that error cannot explain 
as given by Table 2. If error cannot explain any 
of the observed difference for a particular patch, 
then the patch remains black. Figure 4 shows the 

implications of Equation (7) 
when it uses matrix F1, and 
Figure 5 shows the implica-
tions when Equation (7) uses 
matrix F2.

Sensitivity to Unknown 
User’s Accuracies
We examine the sensitivity of 
the results to various assump-
tions concerning the possible 
levels of accuracy. Sensitivity 
analysis compares the results for 
31 levels of accuracy between 
70 percent and 100 percent, 
in increments of 1 percent. At 
each level, the specified accu-
racy is the assumed user’s accu-
racy for all categories, where the 

commission error for each category is distributed 
evenly among the other six categories. Sensitivity 
analysis provides an approach to determine the 
accuracy required to detect a specified amount of 
land change on the ground, given the observed 
difference in the maps.

Figure 4 shows how map accuracy on the hori-
zontal axis influences the amount of difference in 
the maps that error cannot explain on the verti-
cal axis. As accuracy increases, each ftik shrinks in 
Equation (8), so Gt grows. When accuracy is 100 
percent, each ftik is zero; thus Gt is the amount of 
difference observed in the maps as specified by 
D. Figure 6 compares the results based on matrix 
F1 to the results based on matrix F2.

Results
Table 2 shows evidence of four transitions that 
error cannot explain when the assumed accu-
racy of the maps is 85 percent. The transitions 
are from agriculture, range, forest, and barren in 
1971 to built in 1999. We reject the null hypoth-
esis for those four transitions because the entries 
in both H1 and H2 are positive. The zeroes in 
Table 2 show that error can explain nearly all 
of the other observed differences between the 
maps when the assumed error in the maps is 15 
percent.

Figures 4 and 5 show the implications visually, 
at the assumed user’s accuracy of 85 percent for 

Table 2. Matrix H1 in bold and matrix H2 in italics.2

2  Each number is expressed as a percent of the particular transition that error cannot explain, where a zero means the entry in D is 
less than the corresponding entry in Ft and a dash means undefined due to division by zero. The user’s accuracy in both maps is 
assumed to be 85 percent for each category. The diagonal is blank because the method focuses on change, not persistence. 

(8)

1999

Built Agriculture Range Forest Water Wetland Barren
19

71
Built

0
0

0
0

0
0

0
0

0
0

0
0

Agriculture
15
22

0
0

0
0

0
0

—
—

—
—

Range
33
40

0
0

0
0

—
—

0
0

0
0

Forest
39
37

0
0

0
0

0
0

0
0

0
0

Water
0
0

—
—

—
—

—
—

0
0

—
—

Wetland
0
0

—
—

0
0

0
0

—
—

—
—

Barren
37
40

—
—

0
2

0
0

—
—

0
0
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Figure 4. Percent of observed difference that error cannot explain according to matrix H1, assuming the user’s accuracy 
in both maps is 85 percent for each category. The darkness of the patch relates directly to the percent of the transition 
that error cannot explain.

Figure 5. Percent of observed difference that error cannot explain according to matrix H2, assuming the user’s accuracy 
in both maps is 85 percent for each category. The darkness of the patch relates directly to the percent of the transition 
that error cannot explain. 
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every category. The 
assumed error can 
explain more than 
half of the transitions 
from agriculture, range, 
forest, and barren to 
built, so those transi-
tions are light gray. 
Error can explain all 
other observed dif-
ferences completely 
according to H1, and 
all others except the 
transition from barren 
to range according to 
H2. Consequently, 
Figures 4 and 5 indi-
cate less land change 
than Figure 2.

Figure 6 shows the 
results of the sensitivity 
analysis. Results based 
on F1 are nearly iden-
tical to those based on 
F2. When the user’s 
accuracies are below 
77 percent, then error can explain nearly all of 
the observed difference between the maps. When 
the user’s accuracies are 85 percent, then error can 
explain 8 percentage points of the 11 percentage 
points of observed difference. When the user’s 
accuracies are 91 percent, then error can explain 
about half of the observed difference.

Discussion

Assumption Concerning Independence 
of Errors
The proposed method assumes that the prob-
ability of error by maker X is independent of the 
probability of error by maker Y. The assumption 
is unlikely to be perfectly correct due to two pos-
sible interrelated types of autocorrelation in the 
error. First, error is likely to exhibit spatial auto-
correlation due to the fact that some regions of 
a study area are usually easier to classify than 
others, and these regions are frequently clus-
tered spatially (Congalton 1988a). For example, 
the error in a large homogeneous patch of forest 
is likely to be relatively small, compared to the 
error in transition zones where many edges and 
small patches exist.

Second, the error is likely to exhibit temporal 
autocorrelation if some locations are systematically 
easier to classify accurately than others over time. 
For example, if categories on flat slopes are more 
accurate than those on steep slopes, then classifica-
tion errors will likely exhibit temporal autocorrela-
tion because slopes usually persist over time. If the 
characteristics that cause spatial autocorrelation 
persist over time, then the spatial autocorrelation 
will tend to cause temporal autocorrelation. For 
example, if a large homogenous patch of forest is 
protected from disturbance over time, then it will 
be relatively easy to classify accurately over time. 
For these reasons, it may be reasonable to suspect 
that two map makers would make errors in similar 
locations when they attempt to make maps of the 
same place and time (Steele et al. 1998). 

If the error of maker X is correlated positively 
with the error of maker Y, then our methods’ 
assumption concerning independence of errors 
would induce matrices F1 and F2 to overestimate 
the proportion of the difference that error could 
explain. In order to improve the methods, future 
research should focus on spatial and temporal 
autocorrelation among the errors (Muchoney and 
Strahler 2002). Inclusion of either type of autocor-
relation would certainly make the calculations of 
matrices F1 and F2 more complicated.

Figure 6. Observed difference between maps of 1971 and 1999 that error cannot explain 
as a function of map accuracy. Results based on matrix F1 shown by the circles are nearly 
identical to the results based on matrix F2 shown by the triangles.
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Assumptions Concerning the Confusion 
Matrices
When interpreting these results, we must 
remember that the example applies two impor-
tant assumptions concerning the structure of 
the confusion matrices: 1) both maps have the 
same user’s accuracy for every category; and 
2) each category is likely to be confused with 
equal probability among the other six catego-
ries. We make these assumptions and combine 
them with sensitivity analysis because accuracy 
assessment information does not exist for our 
data. However, if confusion matrices C1 and 
C2 were to exist, then they might indicate that 
some classes are more likely to be accurate than 
others. Furthermore, some subsets of categories 
are more likely to be confused with each other 
than other subsets (Rogan and Chen 2003). For 
example, it is usually easier to confuse wetland 
with forest than wetland with built, because wet-
land and forest can appear similar in aerial pho-
tographs and share similar spectral response 
patterns. If the necessary information concern-
ing accuracy were available, then the proposed 
methods would account for variation in the 
accuracy of individual classes, because the math-
ematics of our methods can use category-specific 
information that C1 and C2 would contain.

The structure of the confusion matrices also 
assumes that each pixel belongs entirely to exactly 
one category. This assumption considers neither 
the possibility of multiple classes occurring in a 
single pixel nor the possibility for ambiguity in the 
definitions of the categories. In order to allow for 
these possibilities, the confusion matrices could be 
designed using methods for mixed pixels (Pontius 
2002; Pontius and Suedmeyer 2004; Pontius and 
Cheuk 2006) and/or perhaps according to the 
logic of fuzzy sets (Woodcock and Gopal 2000; 
Green and Congalton 2004).

Estimate of Land Change and 
Persistence
Proper interpretation requires that the reader 
be cognizant of what the proposed methods 
can and cannot do. The proposed methods test 
whether the observed differences between the 
maps are inconsistent with a null hypothesis 
of persistence. They are designed to flag par-
ticular transitions for additional examination 
by considering whether error can explain the 
observed differences between maps. Therefore, 
the methods can be used to determine whether 

the accuracy of the maps is sufficiently high to 
detect with certainty the suspected amount and 
type of land transition on the ground.

The proposed methods are not designed to 
estimate the amounts and types of land change 
on the ground. The methods do not test whether 
the amounts and types of observed categories in 
the maps are systematically different than the 
amounts and types of categories on the ground. 
This point is especially important when we con-
sider the possibility that the error might cause the 
maps to show more agreement than exists on the 
ground. One would need a different approach 
to test whether error can explain the apparent 
persistence (Fuller et al. 2003). The interpreter 
should be careful to avoid the potential trap of 
accepting the null hypothesis of persistence when 
error can potentially explain the difference between 
the two maps.

Given the information concerning the maps and 
their errors, it is not immediately obvious what 
should be our best estimate for each category’s 
amount of persistence and for each type of tran-
sition on the ground. An important next step in 
the development of these methods would be to 
design an estimator for the amount of each type of 
land transition on the ground, based on matrices 
D, C1, and C2.

Application to Land Change Modeling
The methods in this paper should be useful to 
scientists who develop models that predict land 
change. Typically, land change models begin 
with an initial map of time 1, produce a pre-
diction map for time 2, and then are assessed 
with a validation map of time 2 (Pontius et al. 
2004a). If a model considers J categories, then 
there are J × J possible transitions to consider 
between two points in time. Some models con-
sider as many as 15 different categories, so such 
models can become extremely complex and can 
require substantial computing power in order 
to consider many small transitions. If error can 
explain some of the apparent transitions, then it 
might not be worth for the model to attempt to 
predict those transitions. Our methods enable 
the modeler to examine which apparent transi-
tions could potentially be ignored. An important 
next step for the development of these methods 
in the context of land change modeling would 
be to design techniques to compute three pair-
wise comparisons among three maps: the initial 
map of time 1, the prediction map of time 2, 
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and the validation map of time 2 (Petrova and 
Pontius 2005).

Conclusions
This paper proposes methods that are designed 
to allow a scientist to measure the degree to 
which error can explain observed differences 
between maps of land cover at two points in 
time, based on the confusion matrices for the 
two maps. The null hypothesis assumes no 
change on the ground between the two points 
in time, so if error cannot explain the observed 
differences, then there is strong evidence to 
reject the null hypothesis and to conclude that 
there exists land change on the ground. In the 
case of central Massachusetts, we observe 11 
percent difference between maps from 1971 
and 1999 for seven categories, while detailed 
information concerning map accuracy does 
not exist. Sensitivity analysis shows that if the 
maps were 91 percent correct, the error could 
explain about half of the observed differences. 
If the maps were 85 percent correct, then error 
could explain nearly all the observed differences 
between the maps, except four transitions that 
indicate gains to the built category. If the maps 
were less than 77 percent correct, then error 
could explain virtually all the observed differ-
ences between the maps. When interpreting 
these results, the reader must be cognizant of 
simplifying assumptions concerning the error 
structure in the maps. We hope that other sci-
entists will use and extend the methods of this 
paper to examine how information concerning 
map accuracy can help to improve the level of 
sophistication in the measurement of land-use 
and land-cover change.
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