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Abstract. This paper investigates the influence of category aggregation on 
measurement of land-use and land-cover change. To date, research concerning 
data aggregation has examined primarily the effects of modifying the unit of 
observation (i.e., the modifiable areal unit problem and the ecological inference 
problem); here, we examine the effects of changing the categorical definition, 
such as the conversion from many, detailed Anderson Level II classes to fewer, 
broader Anderson Level I classes. Cross-tabulation matrices are used to analyze 
the change between two times for aggregated and unaggregated versions of 
identical landscapes. A mathematical technique partitions the Total change as 
the sum of Net (i.e., quantity change) and Swap (i.e., location change). This pa-
per shows that the Total and Net exhibited by maps between two points in time 
can be substantially reduced through land-use category aggregation, but cannot 
be increased. Swap, however, can be reduced or increased by the aggregation of 
categories. We derive five principles that dictate the effect of aggregation and 
illustrate the principles using both simplified examples and empirical data. The 
empirical data are from three Human Environment Regional Observatory sites. 
The principles are mathematical facts that apply to the analysis of any categori-
cal variable. 

1   Introduction 

1.1   Measuring Change on a Map 

Land-use and land-cover change (LUCC) analysis has become an integral component 
of geographic, economic, and ecological research. Changes in land-use and land-
cover are either directly responsible for, or synergistically enhance, many forms of 
environmental change including biodiversity loss, land degradation, and climatic 
variation [6, 7]. Scientists study change in landscapes over time to determine its 
causes and effects as well as to model future landscapes. Such research directly af-
fects conservation and development policy. This paper specifies how a decision in the 
early stages of a LUCC investigation regarding the definition of land-use and land-
cover categories can have a profound effect on subsequent analysis and conclusions. 
Comparison of maps from an initial time A and a subsequent time B is the most 
common method to analyze LUCC. A typical first step in this comparison is the cal-
culation of a cross-tabulation matrix. Table 1 demonstrates the format of a typical 
cross-tabulation matrix, where the rows represent the categories of the land-use map 
at time A and the columns show the categories at time B. 
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Table 1. Cross-tabulation matrix to compare maps from two points in time for three categories. 

 

  Time B   
  Category 1 Category 2 Category 3 Total Time A Loss 

Category 1 P11 P12 P13 P1+ P12 + P13 
Category 2 P21 P22 P23 P2+ P21 + P23 

Ti
m

e 
A

 

Category 3 P31 P32 P33 P3+ P31 + P32 

 Total Time B P+1 P+2 P+3 1  
 Gain P21 + P31 P12 + P32 P13 + P23   

 
Pij denotes the proportion of the map that shows a transition from category i at time 

A to category j at time B. Entries on the diagonal represent persistence on the map 
between the two points in time, thus Pjj identifies the proportion of the map that per-
sists as category j. This matrix also calculates the Total amount of each category for 
each point in time. Entry Pi+ sums the amount of category i at time A, while entry P+j 
sums the amount of category j at time B. To this standard matrix we append an addi-
tional row and column to calculate the amount of Gain and Loss for each category 
between time A and time B. The Loss for category i is calculated by summing the off-
diagonal entries for category i at time A. Thus, the amount of Loss for category i is 
equivalent to Pi+ – Pii . The Gain for category j is calculated by summing the off-
diagonal entries for category j at time B, which is equivalent to P+j – Pjj . 

Table 2 shows how these basic statistics are further processed to yield more infor-
mation that is fundamental to comparing maps of a shared categorical variable [10]. 
The Loss, Gain, and Total columns of Table 2 show that the sum of the Loss and the 
Gain for each category between time A and time B is the Total for that category. The 
left side of equation 1 expresses this relationship for category j. 

Table 2. Map change budgets derived from the cross-tabulation matrix in Table 1. 

Category Loss Gain Total  Net Swap 

1 P12+P13 P21+P31 
P12+P13+ 
P21+P31 

|(P12+P13)-(P21+P31)| MIN(P12+P13, P21+P31) * 2 

2 P21+P23 P12+P32 
P21+P23+ 
P12+P32 

|(P21+P23)-(P12+P32)| MIN(P21+P23, P12+P32) * 2 

3 P31+P32 P13+P23 
P31+P32+ 
P13+P23 

|(P31+P32)-(P13+P23)| MIN(P31+P32, P13+P23) * 2 

Map 
P12+P13+ 
P21+P23+ 
P31+P32 

P12+P13+ 
P21+P23+ 
P31+P32 

P12+P13+ 
P21+P23+ 
P31+P32 

[|(P12+P13)-(P21+P31)| + 
|(P21+P23)-(P12+P32)| + 
|(P31+P32)-(P13+P23)|]/2

MIN(P12+P13, P21+P31) + 
MIN(P21+P23, P12+P32) + 
MIN(P31+P32, P13+P23)  

 

jSwapjNetjTotaljGainjLoss +==+  
(1) 

The situation is slightly different for the map-level analysis where Total equals the 
sum of Losses, which is also equal to the sum of Gains for the entire map. This is 
because a Loss of any category implies a Gain of another category. The bottom row 
of Table 2 demonstrates the relationship that equation 2 dictates for the map level of 
analysis, this is denoted with subscript M. 

 MMMMM SwapNetTotalGainLoss +===  (2) 
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The Total column of Table 2 shows that the Total at the map level is equal to the 
sum of the off-diagonal entries of Table 1. The right-hand side of equations 1 and 2 
show that at both the category level and at the map level, the Total can be partitioned 
as the sum of Net and Swap. 

Net (i.e., quantity change) is the amount of uncompensated change for a category. 
For category j, the Net is equal to |P+j - Pj+|. If P+j is greater than Pj+ then the category 
is Net gaining, if P+j is less than Pj+ then the category is Net losing. Table 2 shows 
that the Net at the map level is one half the sum of the Net for the individual catego-
ries [10]. 

Figure 1 demonstrates this concept, where the urban areas experience Net gain 
while the forest areas experience Net loss. Urban sprawl emanating from the city of 
Worcester in the central Massachusetts study area is overtaking the other categories 
on the map, most notably the eastern forest areas. In Figure 1, urban is a Net gaining 
category while forest is a Net losing category. 

Urban
Agriculture
Rangeland

Forest
Water
Wetland
Barren °

1971 1999

Kilometers
0 10 20

 

Fig. 1. These maps show the land-use change in the Massachusetts study area between 1971 
and 1999. The change on these maps is predominantly Net gain of urban and Net loss of forest. 

Swap (i.e., location change) is the amount of compensated change for a category. 
Swap for a category is equal to twice the minimum of the Gain or Loss for the cate-
gory (i.e., Swap is equal to twice the minimum of P+j and Pj+ for category j). This is 
because the category-level Swap derives from pairing as many gaining pixels with 
losing pixels of the same category as possible; while the Net is the remaining un-
paired pixels. Table 2 shows that Swap at the map level is equal to one half of the sum 
of the Swap for the individual categories [10]. 

Figure 2 demonstrates the concept of Swap in a map of the border between Ari-
zona, U.S. and Sonora, Mexico. The rangeland and barren lands retain a relatively 
similar quantity of their respective categories on the map while the locations of those 
categories change. The change observed on these maps is due mainly to classification 
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error. The maps show a considerable amount of apparent transition between the 
rangeland and barren categories probably because of the difficulty in distinguishing 
between these two land-use/cover categories using remotely sensed data. While both 
categories lose a large amount between time A and time B, they also gain a substan-
tial amount that compensates for the loss, which yields a set of maps dominated by 
Swap. 
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Fig. 2. These maps show the land-use change in the Arizona study area between 1986 and 
1999. The change on these maps is predominantly Swap in the rangeland and barren categories. 

1.2   The Problem of Aggregation 

Figures 3 and 4 illustrate the potentially important effect of category aggregation on 
the measurement of LUCC. Both figures show maps of the landscape of Kansas’ Grey 
County for 1985 and 2001. Figure 3 shows these maps classified at a modified Ander-
son Level II [1]; whereas Figure 4 shows the same maps aggregated to Anderson 
Level I to allow for comparison with the maps in Figures 1 and 2. The Anderson clas-
sification system was employed in the cross-site analysis to provide a standard metric 
with which to compare sites. Level I of this classification system can distinguish a 
map of 9 classes, which can be sub-divided to make a total of 37 possible categories 
of land uses or covers at Level II [1]. 

While the unaggregated maps in Figure 3 show nine categories at Level II, the ag-
gregated maps in Figure 4 show only five categories at Level I. This is due to the 
amount of categorical detail that is identified within the agriculture category at 
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Anderson Level II. Many categories at Anderson Level II (confined feeding opera-
tions, other cropland, cool season crops, warm season crops, and two season crops) 
become one category in Anderson Level I (agriculture). 

This change in category definition has a substantial influence on the amount of 
change measured on the map. At Anderson Level II, there is 61% Total in the maps 
between 1985 and 2001. Of that change, 48% is Swap while 13% is Net. Almost all of 
this change is due to the seasonal variation within the detailed agricultural categories. 
Analysis of the same landscape at Anderson Level I yields substantially different 
results. At Anderson Level I, 13% change is observed on the maps. Swap accounts for 
10% of that change while Net claims the small remaining portion. This demonstrates 
the dramatic effect that the categorical scale can have on analysis, a problem we chris-
ten the “category aggregation problem” (CAP). 
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Fig. 3. These maps show the land-use change in the Kansas study area between 1985 and 2001. 
These maps are classified using Anderson Level II classification. Most of the change on the 
maps is Swap. 

While some scientists might have an intuitive idea of how an aggregation scheme 
can change the information in a dataset, this paper provides scientists with a mathe-
matical explanation for the effects of the manipulation of the categorical definition. It 
is important that scientists know exactly how category aggregation influences the 
measurement of difference between two maps, because category aggregation is an 
extremely common practice and the effect of some aggregation schemes are not intui-
tive. Scientists aggregate categories for many reasons. One of the most important 
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reasons is to allow for comparison across diverse sites, times, and datasets. It is usu-
ally easiest to compare various maps when each map has the same categories; the 
most common way to attain this is to aggregate the data from available maps to a 
common set of broad categories. A second important reason for aggregation is to 
allow for simplification and reduction of the data. Usually the scientist wants to focus 
on the dynamics of the most important categories, while the available data may con-
tain many more categories than just the most important ones. Scientists do not want 
the aggregation step to eliminate some potentially important information or to intro-
duce some spurious signals. If scientists know exactly how an aggregation scheme 
influences the information in the maps, then they can reformat the data with confi-
dence, ultimately in order to use a larger array of maps and statistical techniques. 
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Fig. 4. These maps show the land-use change in the Kansas study area between 1985 and 2001. 
These maps are classified using Anderson Level I classification. Most of the change is Swap; 
however, there is considerably less change here than on the same maps classified using Ander-
son Level II. 

1.3   Literature Review 

Scale has been identified as a research priority within the field of GIS [11, 12]. The 
CAP falls under this broad issue and should be a concern for any investigation of 
categorical information, spatially explicit or otherwise. This problem is related to 
other issues of scale, including the modifiable areal unit problem and ecological infer-
ence problem. 



Effect of Category Aggregation on Map Comparison      257 

The modifiable areal unit problem (MAUP) has been a concern in geography and 
related fields for over half a century [2, 14]. A detailed investigation of the problem 
began during the late 1970s. Openshaw [9] defined two components of the MAUP, 
the scale problem and the aggregation problem. The aggregation problem realizes 
there are numerous ways of defining the boundaries of zones, and as a result, differing 
conclusions are often drawn from these differing delineations [8]. The scale problem, 
however, is more relevant to the CAP. Openshaw [9] describes the scale problem as 
“the variation in results that can often be obtained when data for one set of areal units 
are progressively aggregated into fewer and larger units for analysis” (p. 8). The CAP 
can be considered a cousin of the MAUP because both problems examine the effect of 
aggregating from detailed information to generalized information. However, the CAP 
differs fundamentally from the MAUP because the MAUP modifies the unit of obser-
vation, while the CAP modifies the variable definition. Openshaw and Taylor [8] 
showed that researchers can obtain nearly any measurement of association between 
the two maps by modifying the unit of analysis. However, this is not the case for the 
CAP. This paper derives the mathematical principles that constrain the effect of cate-
gorical aggregation on statistical results. 

Research on the ecological inference problem also has implications for the cate-
gory aggregation problem. The ecological inference problem, also referred to as the 
ecological fallacy problem, occurs when conclusions drawn from aggregate data are 
applied at the individual level [4]. The ecological inference problem acknowledges 
that the relationships observed for groups do not always hold for individuals. There-
fore, conclusions regarding a landscape established through the use of aggregated 
categorical land-use information may not hold true when the same landscape is ana-
lyzed using more detailed categories. In this analogy, we regard the detailed catego-
ries on the unaggregated maps as the individuals and the broader categories on the 
aggregated maps as the groups. 

Scientists have made only limited progress on the modifiable areal unit problem 
and the ecological inference problem [4, 13]. For the CAP, we have been able to dis-
till the fundamental concepts that dictate the effect of category aggregation, which the 
methods and results sections describe. 

2   Methods 

2.1   Strategy 

This section of the paper demonstrates the category aggregation problem through the 
aggregation of various combinations of three categories that compose a simple exam-
ple map. We focus on the effect of a single step of aggregating two of the three cate-
gories in order to give insight into more complex multi-category aggregations. Ag-
gregation of several categories can be considered a step-wise process where two 
categories are aggregated per step. The order in which categories are combined does 
not affect the analysis of the final aggregated maps. Therefore, the principles gleaned 
from dissecting a single step of aggregation can be extrapolated to apply to any com-
bination of any number of categories. Below, the mathematics that govern the process 
of a single step of aggregation are illustrated with simple example maps. These prin-
ciples are then applied using empirical data in an examination of the three study land-
scapes mentioned above, located in Massachusetts, Arizona, and Kansas. 
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2.2   Examination of Illustrative Examples 

Figure 5 shows maps of the example landscape at time A and time B. Through the 
transition on these unaggregated maps, category 1 loses while categories 2 and 3 gain. 
Just over 70% of the map undergoes a transition between time A and time B. Net 
accounts for 37% of the map change while Swap accounts for 33%. There are three 
possible ways to combine the categories such that the aggregated maps are composed 
of exactly two categories. 

One possible combination is the union of categories 2 and 3. Both these categories 
experience a Net gain from time A to time B in the pre-aggregated maps, thus the 
resulting category also shows Net gain. The post-aggregation maps are shown in Fig-
ure 6. By combining categories 2 and 3, the amount of Total on the map is reduced 
from 70% to 50%. The Net is maintained at 37% while the Swap on the maps is re-
duced to 13%. 

Another possible aggregation is the union of categories 1 and 2, a Net losing and 
Net gaining category, respectively. The resulting category, 21∪ , is Net losing (Fig-
ure 7). The combination of these categories results in the decrease of the Total ob-
served on the map from 70% to 41%. The Net is reduced to 25% while the Swap on 
the maps is reduced to 16%. 

The final possible aggregation with these maps is the union of categories 1 and 3. 
Between time A and time B category 1 loses, while category 3 gains. Category 

31∪ experiences Net loss (Figure 8). The Total on the aggregated maps is reduced to 
50% and the Net decreases to 12%, while the Swap actually increases to 38% of the 
study area. 

 

 

Fig. 5. These example maps illustrate the principles of aggregation. The numbers in this budget 
and those in Figures 6-8 refer to map pixels, not percentages. 
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Fig. 6. These maps represent the same example landscapes in Figure 5, however the two Net 
gaining categories (categories 2 and 3) have been aggregated. Net is maintained yet Swap 
decreases. 

 

Fig. 7. These maps represent the same example landscapes in Figure 5, however a Net losing 
category and a Net gaining category (categories 1 and 2, respectively) have been aggregated. 
Both Net and Swap decrease. 
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Fig. 8. These maps represent the same example landscapes in Figure 5, however a Net losing 
category and a Net gaining category (categories 1 and 3, respectively) have been aggregated. 
Net decreases and Swap increases. 

2.3   Effect of Aggregation on Change Budgets 

Table 3 demonstrates how the aggregation of categories affects the amount of change 
on the maps. The original maps are composed of three categories, as in Table 1; how-
ever, categories 2 and 3 are aggregated to form a single category called 32 ∪ in Ta-
ble 3. 

Table 3. Cross-tabulation matrix to examine the effect of aggregating categories 2 and 3. 

  Time B    

   Category 1 Category 2 U 3 Total Time A Loss 

Category 1 P11 P12 + P13 P1+ P12 + P13 

Ti
m

e 
A

 

Category 2 U 3 P21 + P31 P22 + P23 + P33 + P32 P2+ + P3+ P21 + P31 

 Total Time B P+1 P+2 + P+3 1  

  Gain P21 + P31 P12 + P13   
 

 
Comparison of the cross-tabulation matrices associated with the original maps and 

the subsequent aggregated maps yields substantial information about the effects of the 
manipulation. The amount of persistence between time A and B on the unaggregated 
maps (i.e., P11 , P22 and P33) remains as persistence in the aggregated maps. The 
amount of the maps that transitions between the two aggregated categories becomes 
persistence after aggregation. That is, entries P23 and P32, which were off-diagonal in 
the cross-tabulation table for the unaggregated maps, become part of the diagonal, and 
therefore persistence, in the aggregated maps. This movement to the diagonal elimi-
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nates P23 and P32 from the calculation of Gain and Loss and thereby from the Total 
and its components of Net and Swap. Thus, Total can only be decreased or main-
tained through aggregation. 

Therefore, the effect of aggregation is more pronounced where there are large tran-
sitions between the aggregated categories. If the aggregated categories do not transi-
tion (i.e., P23 = P32 = 0), then aggregation has no effect on the Total. The amount of 
persistence remains the same in the pre and post-aggregation maps for category 1. 
The amount of category 1 that transitions between time A and B also remains the 
same. Category 1 can transition to only category 32 ∪ in the post-aggregation maps. 
Therefore, the sum of P12 and P13 yields a new entry that represents the amount of 
category 1 that transitions to the new aggregated category (Table 3). Conversely, 
entries P21 and P31 are summed to yield an entry representing the amount of the maps 
that transitions from the new aggregated category to category 1. Thus, the distribution 
of the Net and Swap on these aggregated maps is determined by the relative sizes of 
the Loss and Gain of category 1. Table 4 illustrates the effect of the aggregation on 
the change budget for a situation where categories 2 and 3 are aggregated. 

Table 4. Map change budgets derived from the cross-tabulation matrix of Table 3. 

Category Loss Gain Total  Net Swap 

1 P12+P13 P21+P31 
P12+P13+ 
P21+P31 

|(P12+P13)-(P21+P31)| MIN(P12+P13, P21+P31) * 2 

2 U 3 P21+P31 P12+P13 
P21+P31+ 
P12+P13 

|(P21+P31)-(P12+P13)| MIN(P21+P31, P12+P13) * 2 

Map P12+P13+ 
P21+P31 

P12+P13+ 
P21+P31 

P12+P13+ 
P21+P31 

|(P12+P13)-(P21+P31)|  MIN(P12+P13, P21+P31) + 
MIN(P21+P31, P12+P13) 

 

2.4   Application to Kansas, Massachusetts, and Arizona Sites 

To examine the effect of aggregation in practice, we use empirical data of three Hu-
man Environment Regional Observatory (HERO) study sites. The HERO Network is 
funded by the National Science Foundation and is composed of four sites located in 
Arizona, Kansas, Massachusetts, and Pennsylvania. The network addresses three core 
research themes: land-cover change, greenhouse-gas emissions, and the impact of 
these activities on climate. One explicit purpose of the HERO research is to compare 
land cover across its various sites, therefore we must create datasets that facilitate 
cross-site comparison, and hence we want to aggregate the available data to a com-
mon set of land categories. We investigate the effect of aggregation using data from 
Grey County in Kansas, central Massachusetts, and the Sonoran region of Arizona 
and Mexico. 

Section 1.2 describes the Kansas data. In the central Massachusetts region, land-
cover information was acquired from the Commonwealth [5], which delineates twenty 
land categories for the ten town region at two times: 1971 and 1999. This information 
is then aggregated to the Anderson level I classification, leaving seven categories. The 
southern Arizona data for 1986 and 1999 were classified through remote sensing to 
Anderson level I; however, we suspect that the method confused two categories, 
rangeland and barren. In this instance, we combine these two Anderson level I catego-
ries to create an aggregated classification with only six categories. 
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3   Results 

3.1   Generalizable Effects of Aggregation 

Our investigation reveals that five important principles govern the effects of category 
aggregation. Each principle is a mathematical fact that applies to any categorical vari-
able and expresses the effect of the aggregation as a function of the transitions among 
the categories on the unaggregated maps. The post-aggregation Total, Net, and Swap 
are dependent upon whether the categories being aggregated transition among each 
other in the unaggregated maps and whether they exhibit Net loss or Net gain when 
transitioning from time A to time B on the unaggregated maps. All five principles are 
based on the fact that the Total observed on the maps is equal to the sum of the Net 
and Swap (equation 2). Thus, the difference in the Total due to aggregation is equal to 
the sum of the differences in Net and Swap as expressed in equation 3. 

MMM ∆Swap∆Net∆Total +=  (3) 

The first principle applies to all cases and is the foundation for the other principles. 
Principles 2 and 3 apply to cases where a losing category is aggregated with another 
losing category or where a gaining category is aggregated with another gaining cate-
gory. Principle 2 describes the effect of aggregation on Net while principle 3 de-
scribes the effect on Swap. Principles 1 and 2 are used to prove principle 3. Alterna-
tively, principles 4 and 5 apply to cases where a losing category is being aggregated 
with a gaining category. Principle 4 describes the effect of this aggregation on Net 
while principle 5 describes the effect on Swap. We use principles 1 and 4 to prove 
principle 5. 

3.2   Principle 1 

The first principle states “if any categories that transition between each other are ag-
gregated, then the amount of Total on the map is reduced by the amount of their tran-
sitions.” Mathematically speaking, equation 4 explains the principle where categories 
i and j are aggregated. 

 ( )jiijM PP∆Total +−=  (4) 

When two categories are combined, the transitions between them move to the di-
agonal. Thus the aggregation of categories i and j will decrease the amount of Total 
by Pij + Pji because these values will be converted to persistence and be brought onto 
the diagonal. Consequently, the aggregation of categories cannot increase the amount 
of Total observed on the maps. This principle is evidenced in Tables 1 and 3. These 
tables show the aggregation of categories 2 and 3; as a result of this aggregation, en-
tries P23 and P32, which were off the diagonal in Table 1, are moved onto the diagonal 
in Table 3. The only instance of aggregation in which the Total is not reduced is when 
categories that do not transition to each other are combined, i.e., when Pij + Pji = 0. 

3.3   Principle 2 

The second principle states “if either a Net losing category is aggregated with a Net 
losing category or a Net gaining category is aggregated with a Net gaining category, 
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then the Net on the map is maintained”. Mathematically, if ( 0PP ii ≤− ++ and 

0PP jj ≤− ++ ) or ( 0PP ii ≥− ++  and 0PP jj ≥− ++ ) then equation 5 applies. 

0∆NetM =  (5) 

This is shown by Tables 2 and 4, where categories 2 and 3 are being aggregated 
and the resulting Net of category 32 ∪  is equal to the sum of the individual Nets of 
categories 2 and 3. The proof of this is as follows. In Table 2, the Net for category 2 is 
equal to |(P21+P23) – (P12+P32)| while the Net for category 3 is equal to |(P31 + P32) – 
(P13 + P23)|. If both categories experience a Net loss, then the absolute value signs are 
irrelevant, thus the Net for the unaggregated categories is equal to (P21+P23) – 
(P12+P32) for category 2 and (P31 + P32) – (P13 + P23) for category 3. The two Net 
losing categories are added together during the aggregation, so the values for P23 and 
P32 cancel. The resulting Net is (P21+P31) – (P12+P13), which is equal to |(P21+P31) – 
(P12+P13)|, which is the Net for the aggregated category according to Table 4. Alterna-
tively, if the two aggregated categories each demonstrate a Net gain, then a similar 
situation results. The Net for category 2 is |(P21+P23) – (P12+P32)|, which would be 
equivalent to (P12+P32) – (P21+P23). Similarly, the Net for category 3 is |(P31 + P32) – 
(P13 + P23)|, which would be equal to (P13 + P23) – (P31 + P32). During the aggregation, 
again cells P32 and P23 cancel and the Net for the aggregated categories is (P12+P13) – 
(P21+P31), which is equal to |(P21+P31) – (P12+P13)|. Therefore, 

3  23  2 NetNetNet +=U  so the pre-aggregation Net equals the post-aggregation Net, 

thus 0∆NetM =  . 

3.4   Principle 3 

The third principle establishes “if either a Net losing category is combined with a Net 
losing category or a Net gaining category is combined with a Net gaining category, 
then the Swap on the map decreases by the amount of their transitions”. Mathemati-
cally, if ( 0PP ii ≤− ++ and 0PP jj ≤− ++ ) or ( 0PP ii ≥− ++  and 0PP jj ≥− ++ )then 

equation 6 results. 

( )jiijM PP∆Swap +−=  (6) 

The aggregation of categories i and j decreases the amount of Swap by Pij + Pji 
when the categories being combined exhibit a similar direction of Net. Equation 6 
results when equation 4 and equation 5 are substituted into equation 3. Thus principle 
3 is a direct consequence of principles 1 and 2. This third principle applies to all cases 
where the second principle applies because both principles involve the aggregation of 
categories that have a similar direction of Net. Principles 2 and 3 apply also to in-
stances where a category that undergoes Net on the unaggregated maps is combined 
with one that has zero Net, but still transitions with other categories. 
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3.5   Principle 4 

The fourth principle states “if a Net losing category is aggregated with a Net gaining 
category, then Net on the map decreases by the smaller of the two Nets of the individ-
ual categories being aggregated”. Mathematically, if 0PP ii ≤− ++  and 0PP jj ≥− ++  , 

then equation 7 applies. 

( )++++ −−−= jjiiM PP,PPMIN∆Net  (7) 

To prove principle 4, we examine a general case where categories 1 and 2 are ag-
gregated to form category 21∪ . Net for an unaggregated map is calculated in equa-
tion 8. 

2

PP

2
PPPP

2

PP

  Netn Aggregatio-Pre

J

3j
jj

2211

J

1j
jj

M

∑∑
=

++
++++=

++ −

+
−+−

=

−

=

(8) 

To complete the proof, we must show that equation 9 is true. Equation 9 expresses 
the pre-aggregation Net as the sum of the • Net and the post-aggregation Net. The • 
Net is located just to the right of the equal sign in equation 7, while the post-
aggregation Net constitutes the remainder of the right-hand side of equation 9 in 
square brackets. 
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Without loss of generality, call the Net losing category 1 and call the Net gaining 
category 2. There are two cases that need to be considered. The first case is where 
category 1 Net loses the same as or less than category 2 Net gains, i.e., 

++++ −≤− 2211 PPPP . If this case occurs, then we examine the behavior of catego-

ries 1 and 2 in equation 8. All of the Net loss of category 1 is paired with a subset of 
the Net gain of category 2 such that equation 10 holds. Equation 10 can then be sub-
stituted into equation 8 to yield equation 9. 
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The second case is where category 2 Net gains less than category 1 Net loses, i.e., 

++++ −<− 1122 PPPP . If this case occurs, again we examine the behavior of catego-

ries 1 and 2 in equation 8. All the Net gain of category 2 is paired with a subset of the 
Net loss of category 1 such that equation 11 holds. Equation 11 can be substituted into 
equation 8 to yield equation 9. 
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3.6   Principle 5 

The fifth principle states that “if a Net losing category is aggregated with a Net gain-
ing category, then the Swap on the map can decrease, increase, or be maintained.” 
Stated mathematically, if 0PP ii ≤− ++  and 0PP jj ≥− ++ then equation 12 results. 

( ) ( )jiijjjiiM PPPP,PPMIN∆Swap +−−−= ++++  (12) 

Equation 12 is the consequence of substituting equation 4 and equation 7 into 
equation 3. Thus principle 5 is the direct consequence of principles 1 and 4. Principle 
1 establishes the decrease in Total and principle 4 establishes the decrease in Net. 
Equation 3 implies the difference in Swap on the maps is equal to the difference in 
Total minus the difference in Net. If the decrease in Total is greater than the decrease 
in Net, then the Swap decreases. If decrease in Net is greater than the decrease of 
Total, then the Swap increases. If decrease in Total equals the decrease in Net, then 
the Swap is maintained. 

3.7   Empirical Results 

Figure 9 shows the effect of aggregation on land-use maps of study areas in Massa-
chusetts, Arizona, and Kansas.  

 

 

Fig. 9. This figure shows the amount of Total, Net, and Swap for each of the three study areas 
investigated at two different levels of categorical scale to illustrate the effect of aggregation on 
the maps. The height of the bar corresponds to the amount of Total on the maps. 

In central Massachusetts, the twenty-category, unaggregated maps show 12% Total 
between 1985 and 1999; 8% is Net while the remaining 4% is Swap. After the aggre-
gation to Anderson Level I, 11% of the maps show change where again 8% is Net and 
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the remainder is attributable to Swap. In the Arizona maps, the rangeland and barren 
categories are combined, both of which are losing categories. The amount of Total on 
the mapped landscape decreases from 37% to 17%. The Net on the maps remains 
unchanged at 7% while the Swap shrinks from 30% to 11%. 

4   Discussion 

4.1   Interpretation of Kansas, Massachusetts, and Arizona 

The empirical data demonstrate how the principles manifest on maps composed of 
more than three categories (Figure 9). The Arizona case provides the simplest of the 
empirical cases. The two most dynamic of the original Anderson Level I categories, 
rangeland and barren, are aggregated. Both are Net losing categories, so principles 1, 
2, and 3 apply. There is a substantial amount of Swap in each of the two categories 
and the two categories transition between each other because of confusion in their 
classification. When they are aggregated, Total decreases according to principle 1, the 
Net is maintained according to principle 2, and Swap decreases from 30% to 11% 
according to principle 3. 

The maps of the Kansas study site also show drastic effects of aggregation, where 
nine categories are aggregated to five. The aggregated categories are a mix of Net 
losing and Net gaining where there are substantial transitions among the categories. 
This leads to a dramatic reduction in the Total observed on the maps, from 61% to 
13% based on principle 1. The Net shrinks from 13% to 4% by principle 4 and the 
Swap is reduced from 48% to 10% through principles 3 and 5. 

Of the empirical examples, the maps of the central Massachusetts site have the 
most categories aggregated, from twenty categories to seven. There is a mix of Net 
gaining categories and Net losing categories; however none of the transitions among 
the aggregated categories are extremely large so the effect of the aggregation is small. 
Where the original maps show 12% Total, composed of 8% Net and 4% Swap, the 
aggregated maps exhibit 11% Total, where Net remains nearly unaltered at 8%. Forest 
is one of the original twenty categories. It accounts for 8% of the Total on the unag-
gregated maps; nearly all of this change is Net loss. It is not aggregated with any other 
categories, so its 8% change is maintained. Most of the other categories gain parts of 
the map surrendered by forest. The majority of the aggregations in these maps are 
gaining categories with other gaining categories; therefore little effect is seen on the 
Net as dictated by principle 2. Swap is not reduced as dramatically as in the other 
study sites because Swap is already small on the unaggregated maps. Thus, the Mas-
sachusetts example demonstrates that the number of categories aggregated is not nec-
essarily important; instead, it is more important how the aggregated categories transi-
tion on the unaggregated maps. 

4.2   Broader Applications 

The category aggregation problem extends well beyond analysis of LUCC. It is en-
countered commonly in accuracy assessment. Aggregation of land categories can 
have a tremendous effect on the error matrices used to assess the accuracy of cate-
gorical maps. For example, Helmer et al. [3] demonstrate how this problem manifests 
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in the accuracy assessment of a vegetation cover map. Initially, Helmer et al. classi-
fied the land cover in Puerto Rico using a 26-category classification. Their map had a 
classification accuracy of 79%. They reduced the total number of categories in their 
initial map to 19 through aggregation of categories that were being confused in the 
classification. As a result, the classification accuracy of their map rose to 83%. The 
process of aggregating categories during the production of categorical maps, espe-
cially those derived from satellite imagery, is extremely common, however it is un-
usual for scientists to document the effects of such manipulation in the early stages of 
analysis, as these authors did. Instead, most authors offer only the final classification, 
which makes readers blind to one of the scientist’s most important decisions concern-
ing the production of the maps. This example shows that the CAP is not limited to 
analysis of change. It demonstrates that researchers should investigate the effects of 
the problem as it applies to analysis of any categorical data. 

The five principles extend to the aggregation of any categorical data because all the 
principles apply to any cross-tabulation analysis (Tables 1-4). While we examine the 
effect of this problem in terms of a spatially-explicit variable, i.e., land-use/cover, 
these principles apply also to the aggregation of non-spatial categorical data such as 
census data or labor statistics where job category definitions are analyzed by detailed 
sub-sectors nested within broader economic sectors. Just as the MAUP and ecological 
inference problem are general and transdisciplinary, the CAP is important for analysis 
that goes far beyond applications in geography. 

5   Conclusions 

A decision in the early stages of investigation regarding aggregation of categories can 
have a profound effect on subsequent analysis and conclusions. This paper distills five 
mathematical principles that dictate these effects. Principle 1 states that an aggrega-
tion can not increase the Total change. The behavior of unaggregated categories on 
the original maps must be considered to examine the effect of aggregation on Net and 
Swap. If the aggregation is of either a Net losing category with another Net losing 
category or a Net gaining category with another Net gaining category, then principles 
2 and 3 apply. If a Net losing category is combined with a Net gaining category, then 
principles 4 and 5 apply. Scientists should consider the influence of category aggrega-
tion on the analysis of any categorical variable because the effects can be substantial. 
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