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Abstract

Scientists need a better and larger set of tools to validate land-use change models, because it is essential to know a
model’s prediction accuracy. This paper describes how to use the relative operating characteristic (ROC) as a quantitative
measurement to validate a land-cover change model. Typically, a crucial component of a spatially explicit simulation model
of land-cover change is a map of suitability for land-cover change, for example a map of probability of deforestation. The
model usually selects locations for new land-cover change at locations that have relatively high suitability. The ROC can
compare a map of actual change to maps of modeled suitability for land-cover change. ROC is a summary statistic derived
from several two-by-two contingency tables, where each contingency table corresponds to a different simulated scenario of
future land-cover change. The categories in each contingency table are actual change and actual non-change versus simulated
change and simulated non-change. This paper applies the theoretical concepts to a model of deforestation in the Ipswich
watershed, USA. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. Validation in land-cover change models

The international scientific community has called
for research into land-cover change, specifically for
research into models that predict spatial patterns of
future change (Turner et al., 1995; Lambin et al.,
1999). Modelers are satisfying this need with a va-
riety of approaches (Wilkie and Finn, 1988; Baker,
1989; Lambin, 1994, 1997; Pontius, 1994; Hall
et al., 1995; Veldkamp and Fresco, 1996; Geoghegan
et al., 1997; Mertens and Lambin, 1997; Liverman
et al., 1998; Wu and Webster, 1998). In most cases,
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the models are connected to a raster-based geographic
information system (GIS). The models predict which
grid cells are likely to experience future land-cover
change. Scientists must develop statistical methods to
validate such models, because it is essential to know
a model’s prediction accuracy. This paper offers a
method of validation that uses a quantitative mea-
surement called the relative operating characteristic
(ROC). The ROC technique applies to any model that
predicts a homogenous category in each grid cell.

Fig. 1 shows the general flow of logic of a typical
method to calibrate, run and validate a land-cover
change model. The calibration phase uses maps of
factors that guide the location of future change, such
as protection status, slope, and proximity to roads.
These factor maps can be combined with one or more
maps of historical land cover to complete calibra-
tion. The model usually uses the information in the
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Fig. 1. Flow of logic among components necessary to validate a
land-cover change model.

calibration maps to construct some type of map of
suitability or probability of land-cover change, such
as Fig. 2. Suitability maps can be created through
logistic regression, or through multi-criteria methods
(Schneider and Pontius, 2001; Hall et al., 1995). Each
model run uses the map of suitability to generate a
map of simulated future change, placing simulated
change in cells that have the largest suitability val-
ues. If the suitability map were perfect, the order
of the suitability values would match the order in
which humans change the landscape, with the largest
suitability values being changed first. For validation,
a map of simulated future change is compared to a
map of recent real land-cover change, such as Fig. 3.
For appropriate validation, the map of reality used
for validation should not be used in calibration. An

index of agreement measures similarity between the
simulated change and real change. Several model
runs can generate a series of simulated maps, each
with a different quantity of change, hence each with
a different level of agreement with the map of reality.

1.2. Validation complication

When the modeler overlays the map of a simulated
landscape on the map of reality, a contingency table
can summarize the results, as in Table 1, for cases
where each grid cell is a homogenous land type. The
rows of Table 1 show categories of the map of the
model’s output and the columns show the categories
of the map of reality. The entries are the number
(or proportion) of cells that fall into each category
combination. Therefore the proportion correct is
(A + D)/(A + B + C + D).

The proportion correct is sensitive to the model’s
ability to simulate quantity, which is the marginal
distribution in the row totals in Table 1. Fig. 4 shows
how the model’s quantity of change restricts the per-
cent correct. The horizontal axis shows the percent
of grid cells that the model specifies as change. The
vertical axis shows the percent of grid cells classi-
fied correctly by the model. Fig. 4 shows an example
where the quantity of change in the map of reality
is 10%, while the quantity of change in a modeled
scenario can range from 0 to 100%.

For Fig. 4, let us consider the upper limit on per-
cent correct. In order for the model to attain 100%
correct classification, it must specify the quantity of
change correctly as 10%, and it must specify the
location correctly via the map of suitability. Notice
that many different suitability maps can lead to 100%
correct classification. If the top 10% of suitability
values are distributed in any way among the locations
of actual change, then there will be 100% correct

Table 1
Two-by-two contingency table showing the proportion (or number)
of grid cells in a map of reality versus a map of a modeled scenario

Model Reality

Change Non-change Total

Change A B A + B
Non-change C D C + D

Total A + C B + D A + B + C + D
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Fig. 2. Map of suitability for deforestation after 1985 in the Ipswich watershed.

classification, regardless of how the bottom 90% of
suitability values are distributed. However, the max-
imum percent success is constrained by the quantity
of simulated change in the modeled scenario. The
percent of success cannot occur in the solid white
upper left and upper right triangles of Fig. 4. If the
model specifies some quantity of change other than

Fig. 3. Map of real deforestation from 1985 to 1991 in the Ipswich watershed.

quantity of change found in the map of reality, then
the simulation’s percent correct must be less than
100%, even when the map of suitability is perfect.

Now consider the lower limit on percent correct.
The solid black lower left and lower right triangles
of Fig. 4 show levels of percent correct that are not
attainable due to the model’s specification of quantity
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Fig. 4. Range for percent of landscape classified correctly by a model as a function of percent of landscape changed in a modeled scenario,
where 10% of landscape is changed in reality.

of change. That is, the model is guaranteed to attain a
percent of success greater than or equal to the upper
boundary of the lower two triangles of Fig. 4. When
the model specifies a percent of change near 10%,
then the model is guaranteed to attain a high percent
success, even when the suitability map’s specification
of location is poor. Even if none of the cells classified
as “change” by the model are “change” in reality, the
percent correct would be high.

Fig. 4 shows that the percent correct for any model
must lie within the parallelogram defined by the points
(1 − R, 0), (1, R), (R, 1) and (0, 1 − R), where R
is the proportion change in the map of reality. When
R is near 0 or 100%, then the model’s percent cor-
rect is influenced dramatically by the model’s ability
to specify quantity. Notice in Fig. 4 that for a given
specification of quantity in the model, the maximum
and minimum percent correct are very close. Within
this parallelogram, the model’s actual percent correct
is determined by the quality of the map of suitabil-
ity. If the suitability map were to assign locations at
random, then the percent success falls on the line that
bisects the parallelogram. So if the map of suitabil-
ity were better than random, then the percent success
would lie with an extremely narrow range. Clearly, it
is not reasonable to judge the quality of the map of
suitability on its ability to attain a large percent correct
for a single simulation run, because the percent correct
fails to separate error due to quantification from er-
rors due to location (Pontius, 2000). The result of any
single simulation run depends on a single use of the
map of suitability and a single specification of quan-
tity. If the quantity of change were different, it is not
clear how the model would perform. Furthermore, two

substantially different suitability maps can give an
identical percent correct.

Therefore, in order to assess the quality of a model,
it is advantageous: (1) to use an indicator other than
percent success, (2) to measure its performance over
a variety of scenarios of quantity of change, and (3) to
illustrate the validation with a figure that shows clearly
how a high agreement differs from a low agreement.
The ROC satisfies all these goals. Although the ROC
does not separate explicitly error due to quantity from
error due to location, the ROC aggregates into a single
index of agreement the success of several model sce-
narios of various quantities of change. The ROC is pre-
sented visually in a success space that is re-scaled, so
that it is much more illustrative than Fig. 4. Scientists
in Engineering, Medicine, Meteorology, Psychology,
and several other fields have used the ROC to measure
the relationship between a signal and reality (Ogilvie
and Creelman, 1968; Egan, 1975; Metz, 1978; Swets,
1986a,b, 1988). This paper brings the ROC to the
field of land-cover change modeling to measure rela-
tionship between simulated change and real change.
Many authors have shown clever ways to glean use-
ful information from contingency tables (Carstensen,
1987; Congalton, 1991; Congalton and Green, 1999).
The ROC should be added to those methods.

2. Methods

2.1. Map preparation

To compute the ROC, the methodology described
in this paper assumes the modeler has both: (1) a
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suitability map that shows the relative likelihood that
a cell undergoes land-cover change, and (2) a map of
reality used for validation, where each cell is catego-
rized as either change or non-change. The suitability
map shows the sequence in which the model selects
grid cells for change (Fig. 2).

The ROC is explained in terms of a suitability map
that shows the priority in which grid cells are selected
for change because it is easiest to understand the
ROC in terms of a suitability map. Many modelers
will want to use a similar technique to evaluate their
own maps of suitability or probability. However, it is
not necessary that the model use a “suitability map”
per se. For example, cellular automata models can
select locations for predicted deforestation according
to a variety of decision rules (Wagner, 1997). ROC
can validate any model that can generate a series of
simulation maps where each grid cell is classified as
a homogenous category. It is best if each simulated
scenario has a different quantity of change.

The ROC works for exactly two land types. If the
modeler has more than two land-cover types, then the
modeler can create an ROC for each land type. This
can be accomplished by reclassifying the maps into the
category of interest versus other, thus each category
can have its own ROC.

The first step in creating the ROC is to reclassify the
map of suitability by slicing it into a map of several
suitability percentile groups, for example 10 deciles. A
possible reclassification rule assigns 10% of the cells
that have the largest suitability values to group 1. The
rule assigns another 10% of the cells that have the next

Table 2
Cross tabulation of grid cells in a map of reality versus a map of suitability for 11 scenarios of deforestation. All numbers are percents

Scenario’s suitability
group

Reality Reality (cumulative) Scenario statistics

Change Non-change Change Non-change Change Correct False positive True positive

– – – – – 0.0 95.4 0.0 0.0
1 0.4 3.5 0.4 3.5 3.9 92.3 3.7 8.7
2 0.1 1.0 0.5 4.5 5.0 91.4 4.7 10.7
3 0.6 5.0 1.1 9.5 10.6 87.0 10.0 23.1
4 0.7 8.2 1.8 17.7 19.5 79.5 18.6 39.4
5 0.7 9.9 2.5 27.6 30.1 70.3 28.9 55.0
6 0.5 8.6 3.0 36.2 39.3 62.2 38.0 66.2
7 0.6 9.6 3.6 45.9 49.5 53.2 48.1 78.8
8 0.5 10.1 4.1 56.0 60.1 43.6 59.7 90.5
9 0.2 5.7 4.3 61.1 66.0 38.1 64.6 94.6

10 0.2 33.8 4.6 95.4 100.0 4.6 100.0 100.0

largest suitability values to group 2, and so on till the
rule assigns 10% of the cells that have the smallest
suitability values to group 10. Therefore, each of the
10 groups contains 10% of the cells in the study area. It
is not absolutely necessary for each group to have the
exact same percent of grid cells, however, it is desir-
able to have the slices between groups spread among
various percentiles of suitability values. It is possible
theoretically to have many more than 10 groups. The
maximum number of groups is the number of unique
suitability values. An increase in number of groups in-
creases accuracy of the estimated ROC, but increases
also the complexity of calculations.

Next, the modeler overlays the map of suitability
groups with the map of reality. A tabular result shows
the proportion of grid cells of each suitability group
that are categorized as change versus non-change in
reality, as in the first two columns of Table 2. Think of
Table 2 as an efficient way to show two-by-two con-
tingency tables for 11 scenarios of land-cover change.
Each of the 11 scenarios uses the same map of reality
and the same map of suitability, however, the quantity
of change in each scenario is different. The scenario
in the top row of the table is a special case in which
the quantity of change is 0, therefore none of the
10 suitability groups are classified as change in the
scenario. The next scenario simulates change in only
suitability group 1, the subsequent scenario simulates
change in suitability groups 1 and 2, and so on till the
last scenario simulates change in all 10 groups. For
each scenario, the two cumulative columns of Table 2
give the percent of grid cells that each scenario clas-
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sifies as non-change and change. For each scenario, a
number of the “Reality (cumulative) Change” column
of Table 2 shows a percent of grid cells that is analo-
gous to a value of A in Table 1, and a number of the
“Reality (cumulative) Non-change” column of Table 2
shows a percent of grid cells that is analogous to a
value of B in Table 1. The bottom row of the “Reality
(cumulative) Change” column of Table 2 shows the
percent of grid cells that is analogous to a value of
A + C in Table 1, and the bottom row of the “Reality
(cumulative) Non-change” column of Table 2 shows
a percent of grid cells that is analogous to a value of
B + D in Table 1. The “Scenario Statistics Change”
column is the sum of the two “Reality (cumulative)”
columns, hence it gives the percent of cells modelled
as change in the scenarios. The “Scenario Statistics
Correct” column gives the percent classified correctly
by the each scenario. The final two columns give the
percent of true-positives and false-positives, which
are explained next.

If a grid cell is simulated as change in a scenario, it is
a ‘positive’. Therefore, a ‘true-positive’ is a cell that is
categorized as change in both reality and the modeled
scenario. A ‘false-positive’ is a cell that is categorized
as non-change in reality and as change in the modeled
scenario. Therefore, in a two-by-two contingency table
such as Table 1, the rate of true-positives is A/(A +
C) and the rate of false positives is B/(B + D). For
each of the 11 scenarios, Table 2 shows the rate of
true-positives and false-positives.

The rates of true-positives and false-positives con-
tain the same information as the rates of true-negatives
and false-negatives, so it would be redundant to per-
form analysis on the rates of negatives. If one were
to switch the order of the rows in the contingency
table (Table 1), then one could analyze the situation
in terms of negatives. Analysis of the positives gives
the same ROC as analysis of the negatives.

2.2. Relative operating characteristic

To define the ROC, Fig. 5 plots the rate of
true-positives on the vertical axis versus the rate of
false-positives on the horizontal axis for each of the
11 scenarios. Each scenario corresponds to a point in
the plotted space. The ROC statistic is the area under
the curve that connects the plotted points. Eq. (1)
uses integral calculus’ trapezoidal rule to compute

the area, where xi is the rate of false positives for
scenario i, yi the rate of true positives for scenario i,
and n the number of suitability groups:

Area under curve

=
n∑

i=1

[xi+1 − xi][yi + yi+1 − yi/2] (1)

If the sequence of the suitability values matches per-
fectly the sequence in which real land-cover change
has occurred, then ROC equal to 1, because as the
quantity of change in the scenarios increases from 0
to 100%, the ROC curve begins at the origin, goes up
the horizontal axis to the point (0, 100%), then passes
to the right to the point (100, 100%). More generally,
ROC equal to 1 for any suitability map for which the
locations that experience change have larger suitabil-
ity values than the locations that do not experience
change. Note several different suitability maps could
have ROC of 1.

If the order of suitability values were assigned
at random locations across the landscape, then the
expected value of the ROC would be 0.5, as shown
by the dashed line in Fig. 5. Under random alloca-
tion of suitability values, the expected number of
true-positives is (A + B)(A + C)/(A + B + C + D)

and the expected number of false-positives is

Fig. 5. ROC curves to validate models of deforestation in the
Ipswich watershed between 1985 and 1991 using three suitability
maps based on: random location (bottom ROC = 50%), logistic
regression with protected areas (middle ROC = 65%), and MCE
with a spatial filter and protected areas (upper ROC = 70%).
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(A + B)(B + D)/(A + B + C + D). Therefore, both
the expected rate of true-positives and the expected
rate of false-positives are (A + B)/(A + B + C + D).
However, for any particular assignment of random
locations, there will be some variation from these ex-
pected rates. Therefore, Monte Carlo analysis is per-
formed to compute the ROC for 10 000 runs, where
the locations are selected at random for each run. This
Monte Carlo analysis tests whether the model assigns
locations that are significantly different than random,
by comparing the ROC of the model to the range of
the ROC values among the Monte Carlo runs.

2.3. Application to the Ipswich watershed,
Massachusetts

To illustrate the theoretical concepts, the ROC sta-
tistical methodology is applied to a land-cover change
model that uses suitability maps such as Fig. 2 to
predict the location of new deforestation from 1985
to 1991 in the watershed of Ipswich Massachusetts,
USA. The suitability maps are calibrated with maps
of socio-physical characteristics and forest areas in
1971 and 1985. The model assigns relatively high
suitability values to those locations that have a com-
bination of socio-physical characteristics similar to
land that has experienced deforestation from 1971 to
1985. The State of Massachusetts supplies the maps
for calibration and validation (MassGIS, 1999).

The ROC methodology compares two suitability
maps that are generated by two different techniques.
The first suitability map is generated by logistic
regression where Y = 1 if a cell undergoes deforesta-
tion from 1971 to 1985, and 0 otherwise. The inde-
pendent variables are elevation, slope and distance to
residential areas. Then, the resulting map is overlaid
with a map of protected areas, hence any protected
areas have the minimum suitability value. The second
suitability map is generated by multi-criteria evalu-
ation (MCE) (Pereira and Duckstein, 1993; Eastman
et al., 1995; Eastman and Jiang, 1996). Based on
empirical analysis, the MCE assigns large suitability
values to locations near existing residential areas and
have topography desirable for residential development
(Schneider and Pontius, 2001). Also, any protected
areas are forced to have the minimum suitability
value in the same manner as in the first suitability
map. In addition, a spatial filter is applied so that the

suitability value at any one cell is an average of the
suitability values of neighboring cells.

The model is validated with a map of actual defor-
estation from 1985 to 1991, shown in Fig. 3. Forested
locations are the only candidates for deforestation,
therefore the study area for simulation and validation
is restricted to cells in the watershed that were forest
in 1985, which are black or gray in Figs. 2 and 3. Each
suitability map generates one ROC.

The ROC methodology is applied with 10 suitability
categories, however, it helpful to define some of the
suitability groups for scenarios of special interest.
For one scenario, the quantity of deforestation from
1985 to 1991 is based on linear extrapolation of
the historic quantity of change. Therefore, the most
suitable group (group 1) has a quantity of simulated
deforestation equal to 4% of the forest area of 1985,
which is the “best guess” at the real quantity of de-
forestation. The second most suitable group (group 2)
is set such that the sum of the quantities in groups
1 and 2 is the quantity of deforestation that actually
occurred between 1985 and 1991, which is 5% of the
forested area. Most of the other groups have approx-
imately 10% of the 1985 forest area. However, the
last suitability group (group 10) consists of forested
areas that have some form of legal protection, which
constitutes 34% of the 1985 forest area.

3. Results

Logistic regression produces a suitability map
with an ROC of 65%, and MCE produces a suit-
ability map with an ROC of 70%. Table 2 gives the
points on the curve of the MCE-based suitability
map. Fig. 5 plots the ROC curves for the suitability
maps.

The point at the origin in each ROC curve is the
scenario that has zero simulated deforestation; there-
fore both false positives and true positives are zero.
The next point on each curve has simulated deforesta-
tion in suitability group 1 only. This scenario shows a
quantity of deforestation equal to the best guess at the
quantity of deforestation. For the MCE-based suit-
ability map, 92% is the percent success for the “best
guess” scenario, however, most of those successes
are correct simulation of non-change. The correct
simulation of change is 9% of the total real change.
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Each consecutive point on the ROC curve repre-
sents a scenario that has a larger quantity of simulated
deforestation. The final point on the curve at (100%,
100%) shows a scenario for which the entire study
area is simulated as deforested, hence both false pos-
itives and true positives are 100%. The second to last
point shows the scenario where all unprotected forest
of 1985 is simulated as deforested, and all protected
land is simulated as forest maintenance. Notice that
5% of the real deforestation between 1985 and 1991
occurs on protected land.

The dashed line in Fig. 5 shows the expected ROC
for a model that selects grid cells at random. This
ROC expected due to chance is 0.5, however, for any
particular random sequence of selected cells, there is
some variation around 0.5. Over 10 000 Monte Carlo
runs in which the sequence of grid cells were selected
at random, the ROC ranged from a minimum of 48%
to a maximum of 52%. Therefore, the ROCs of 65 and
70% are significantly better than random.

4. Discussion

What constitutes a “good” ROC? Any ROC above
50% is better than random. The results from the Monte
Carlo analysis show that for the Ipswich example, any
ROC above 52% is statistically better than random.
But “better than random”, does not necessarily mean
“good”. In other fields, ROCs have ranged from: 71
to 89% for weather forecasting, 75 to 97% for library
information retrieval, 81 to 93% for medical imaging
diagnosis, 68 to 93% for material strength testing, and
55 to 98% for polygraph lie detection. So the results of
the Ipswich land-use change example are comparable
with other fields.

Most importantly, the ROC helps to guide decisions
concerning modeling strategy. The ROC has guided
the decisions whether to use MCE or logistic regres-
sion, whether or not to force protected areas to have
the minimum suitability values, whether or not to use
a spatial filter, etc. In short, the ROC tells which mod-
eling approach generates the best maps of suitability.

Results are sensitive to how the modeler defines
the study area. Usually there are two approaches to
define the study area. The first definition states that
the study area consists of any cell that is in the region
of interest, for example any cell in the watershed. The

second definition is that the study area consists of the
subset cells in the region of interest that are candi-
dates for change, for example any forested cell in the
watershed. The first definition usually will result in a
higher percent success and a higher ROC because the
model gets credit for predicting future non-forest at
locations that did not have forest at the beginning of
the simulation. In situations where forest re-growth is
not of interest, the second definition should be used.
The Ipswich watershed example used the second
definition.

The ROC validates the model at quantities that can
be far from the estimated best guess quantity. Even
though the model is fairly accurate at predicting the
quantity of change between 1985 and 1991, it is im-
portant to validate the model at several different quan-
tities because it is necessary to know whether high
(medium or low) suitability values have a relatively
high (medium or low) amount of real change. This
is important when the suitability map extrapolates the
pattern of land change over several decades, hence into
years for which there are large percents of land change.
Even if the model does not extrapolate far into the fu-
ture, it is desirable to confirm that small suitability val-
ues have little or no change. For example, the high rate
of true positives on second to last point on the ROC
curves shows that the suitability map uses the informa-
tion of protected status in an intelligent manner. If the
validation method had concentrated on only the best
guess quantity, then the contribution of the protected
status to the validation would have been less clear.

A weakness of the ROC is that it is does not account
for the spatial arrangement of the model’s successes
and errors. All of the information for the ROC comes
from contingency tables that show only cell-by-cell
analyses of association between a map of real change
and maps of simulated change, where each grid cell is
a homogenous category. This weakness is shared by
any index of agreement that is based on a contingency
table, because a contingency table is a summariza-
tion that contains no information of location. Other in-
dices that share this weakness are percent correct, any
chi-square based statistic such as phi, and any kappa
based statistic such as Kstandard, Kno, Klocation, or
Kquantity (Pontius, 2000). Therefore the ROC should
be supplemented with visual comparison and addi-
tional measures of association that account for spatial
pattern (Costanza, 1989; Turner et al., 1989).
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The next stage of development of the ROC and
other non-spatial indices of agreement is to derive
multiple resolution versions of them. A multiple
resolution method would measure the agreement at
various resolutions, by aggregating neighboring cells
into an increasingly coarse grid, or window. At every
grid resolution, the aggregation process will create
heterogeneous cells that could have any proportion
of the possible categories. Therefore, the method to
measure agreement between a simulated cell and a
real cell must be able to measure fractional agree-
ment, i.e. agreement between 0 and 1. If a statistical
method can address fractional agreement, then it will
not be necessary for the cells at the finest resolution
to be homogenous; hence the cells in the maps of
simulation and reality can be fuzzy categories. The
general method to derive multiple resolution statistics
is the topic of an upcoming paper.

5. Conclusions

The ROC enables land-cover change modelers to
validate a model’s ability to specify location, while
maintaining the freedom from committing to a spe-
cific quantity of change. ROC is used in Engineering,
Medicine, Meteorology, Psychology, and several
other scientific disciplines. Land-use change modelers
should also use the ROC.
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