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17.1 INTRODUCTION

17.1.1 Map Comparison

 

Map comparisons are fundamental in remote sensing and geospatial data analysis for a wide
range of applications, including accuracy assessment, change detection, and simulation modeling.
Common applications include the comparison of a reference map to one derived from a satellite
image or a map of a real landscape to simulation model outputs. In either case, the map that is
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considered to have the highest accuracy is used to evaluate the map of questionable accuracy.
Throughout this chapter, the term 

 

reference map

 

 refers to the map that is considered to have the
highest accuracy and the term 

 

comparison map

 

 refers to the map that is compared to the reference
map. Typically, one wants to identify similarities and differences between the reference map and
the comparison map.

There are a variety of levels of sophistication by which to compare maps when they share a
common categorical variable (Congalton, 1991; Congalton and Green, 1999). The simplest method
is to compute the proportion of the landscape classified correctly. This method is an obvious first
step; however, the proportion correct fails to inform the scientist of the most important ways in
which the maps differ, and hence it fails to give the scientist information necessary to improve the
comparison map. Thus, it would be helpful to have an analytical technique that budgets the sources
of agreement and disagreement to know in what respects the comparison map is strong and weak.
This chapter introduces map comparison techniques to determine agreement and disagreement
between any two categorical maps based on the quantity and location of the cells in each category;
these techniques apply to both hard and soft (i.e., fuzzy) classifications (Foody, 2002).

This chapter builds on recently published methods of map comparison and extends the concept
to multiple resolutions (Pontius, 2000, 2002). A substantial additional contribution beyond previous
methods is that the methods described in this chapter support stratified analysis. In general, these
new techniques serve to facilitate the computation of several types of useful information from a
generalized confusion matrix (Lewis and Brown, 2001). The following puzzle example illustrates
the fundamental concepts of comparison of quantity and location.

 

17.1.2 Puzzle Example

 

Figure 17.1 shows a pair of maps containing two categories (i.e., light and dark). At the simplest
level of analysis, we compute the proportion of cells that agree between the two maps. The
agreement is 12/16 and the disagreement is 4/16. At a more sophisticated level, we can compute
the disagreement in terms of two components: (1) disagreement due to quantity and (2) disagreement
due to location. A disagreement of quantity is defined as a disagreement between the maps in terms
of the quantity of a category. For example, the proportion of cells in the dark category in the
comparison map is 10/16 and in the reference map is 12/16; therefore, there is a disagreement of
2/16. A disagreement of location is defined as a disagreement such that a swap of the location of
a pair of cells within the comparison map increases overall agreement with the reference map. The
disagreement of location is determined by the amount of spatial rearrangement possible in the
comparison map, so that its agreement with the reference map is maximized. In this example, it
would be possible to swap the #9 cell with the #3, #10, or #13 cell within the comparison map to
increase its agreement with the reference map (Figure 17.1). Either of these is the only swap we

 

Figure 17.1

 

Demonstration puzzle to illustrate agreement of location vs. agreement of quantity. Each map
shows a categorical variable with two categories: dark and light. Numbers identify the individual
grid cells.
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can make to improve the agreement, given the quantity of the comparison map. Therefore, the
disagreement of location is 2/16. The distinction between information of quantity and information
of location is the foundation of this chapter’s philosophy of map comparison. 

It is worthwhile to consider in greater detail this concept of separation of information of quantity
vs. information of location in map comparison before introducing the technical methodology of
the analysis. The remainder of this introduction uses the puzzle example of Figure 17.1 to illustrate
the concepts that the Methods section then formalizes in mathematical detail.

The following analogy is helpful to grasp the fundamental concept. Imagine that the reference
map of Figure 17.1 is an original masterpiece that has been painted with two colors: light and dark.
A forger would like to forge the masterpiece, but the only information that she knows for certain
is that the masterpiece has exactly two colors: light and dark. Armed with partial information about
the masterpiece (reference map), the forger must create a forgery (comparison map).

To create the forgery, the forger must answer two basic questions: What proportion of each
color of paint should be used? Where should each color of paint be placed? The first question
requires information of quantity and the second question requires information of location.

If the forger were to have perfect information about the quantity of each color of paint in the
masterpiece, then she would use 4/16 light paint and 12/16 dark paint for the forgery, so that the
proportion of each color in the forgery would match the proportion of each color in the masterpiece.
The quantity of each color in the forgery must match the quantity of each color in the masterpiece
in order to allow the potential agreement between the forgery and the masterpiece to be perfect.
At the other extreme, if the forger were to have no information on the quantity of each color in
the masterpiece, then she would select half light paint and half dark paint, since she would have
no basis on which to treat either category differently from the other category. In the most likely
case, the forger has a medium level of information, which is a level of information somewhere
between no information and perfect information. Perhaps the forger would apply 6/16 light paint
and 10/16 dark paint to the forgery, as in Figure 17.1.

Now, let us turn our attention to information of location. If the forger were to have perfect
information about the location of each type of paint in the masterpiece, then she would place the
paint of the forgery in the correct location as best as possible, such that the only disagreement
between the forgery and the masterpiece would derive from error (if any) in the quantity of paint.
If the forger were to have no information about the location of each color of paint in the masterpiece,
then the she would spread each color of paint evenly across the canvas, such that each grid cell
would be covered smoothly with light paint and dark paint. In the most likely case, the forger has
a medium level of information of location about the masterpiece, so perhaps the forgery would
have a pair of grid cells that are incorrect in terms of location, as in Figure 17.1. However, in the
case of Figure 17.1, the error of location is not severe, since the error could be corrected by a swap
of neighboring grid cells.

After the forger completes the forgery, we compare the forgery directly to the masterpiece in
order to find the types and magnitudes of agreement between the two. There are two basic types
of comparison, one based on information of quantity and another based on information of location.
Each of the two types of comparisons leads to a different follow-up question.

First, we could ask, Given its medium level of information of quantity, how would the forgery
appear if the forger would have had perfect information on location during the production of the
forgery?  For the example, in Figure 17.1, the answer is that the forger would have adjusted the
forgery by swapping the location of cell #9 with cell #3, #10, or #13. As a result, the agreement
between the adjusted forgery and the masterpiece would be 14/16, because perfect information on
location would imply that the only error would be an error of quantity, which is 2/16.

Second, we could ask, Given its medium level of information of location, how would the forgery
appear if the forger would have had perfect information of quantity during the production of the
forgery?  In this case, the answer is that the forger would have adjusted the forgery by using more
dark paint and less light paint, but each type of paint would be in the same location as in Figure
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17.1. Therefore, the adjusted forgery would appear similar to Figure 17.1; however, the light cells
of Figure 17.1 would be a smooth mix of light and dark, while the dark cells would still be completely
dark. Specifically, the light cells would be adjusted to be 2/3 light and 1/3 dark; hence, the total
amount of light and dark paint in the forgery would equal the total amount of light and dark paint
in the masterpiece. As a result, the agreement between the adjusted forgery and the masterpiece
would be larger than 12/16. The exact agreement would require that we define the agreement between
the light cells of the masterpiece and the partially light cells of the adjusted forgery.

The above analogy prepares the reader for the technical description of the analysis in the
Methods section. In the analogy, the reference map is the masterpiece that represents the ground
information, and the comparison map is the forgery that represents the classification of a remotely
sensed image. The classification rule of the remotely sensed image represents the scientist’s best
attempt to replicate the ground information. In numerous conversations with our colleagues, we
have found that it is essential to keep in mind the analogy of painting a forgery. We have derived
all the equations in the Methods section based on the concepts of the analogy.

 

17.2 METHODS

17.2.1 Example Data

 

Categorical variables consisting of “forest” and “nonforest” are represented in three maps of
example data (Figure 17.2). Each map is a grid of 12 

 

¥

 

 12 cells. The 100 nonwhite cells represent
the study area and the remaining 44 white cells are located out of the study area. We have purposely
made a nonsquare study area to demonstrate the generalized properties of the methods. The methods
apply to a collection of any cells within a grid, even if those cells are not contiguous, as is typically
the case in accuracy assessment. Each map has the same nested stratification structure. The coarser
stratification consists of two strata (i.e., north and south halves) separated by the thick solid line.
The finer stratification consists of four substrata quadrates of 25 cells each, defined as the northeast
(NE), northwest (NW), southeast (SE), and southwest (SW). The set of three maps illustrates the
common characteristics encountered when comparing map classification rules. Imagine that Figure
17.2 represents the output maps from a standard classification rule (COM1), alternative classification
rule (COM2), and the reference data (REF). Typically, a statistical test would be applied to assess
the relative performance of the two classification approaches and to determine important differences
with respect to the reference data. However, it would also be helpful if such a comparison would
offer additional insights concerning the sources of agreement and disagreement.

Table 17.1a and Table 17.1b represent the standard confusion matrix for the comparison of
COM1 and COM2 vs. REF. The agreement in Table 17.1a and Table 17.1b is 70% and 78%,
respectively. Note that the classification in COM2 is identical to the reference data in the south
stratum. In the north stratum, COM2 is the mirror image of REF reflected through the central
vertical axis. Therefore, the proportion of forest in COM2 is identical to that in REF in both the
north and south strata. For the entire study area, REF is 45% forest, as is COM2. COM1 is 47%
forest. A standard accuracy assessment ends with the confusion matrices of  Table 17.1.

 

17.2.2 Data Requirements and Notation

 

We have designed COM1, COM2, and REF to illustrate important statistical concepts. However,
this chapter’s statistical techniques apply to cases that are more general than the sample data of
Figure 17.2. In fact, the techniques can compare any two maps of grid cells that are classified as
any combination of soft or hard categories.

This means that each grid cell can have some membership in each category, ranging from no
membership (0) to complete membership (1). The membership is the proportion of the cell that
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Figure 17.2

 

Three maps of example data.

 

Table 17.1a

 

 

 

Confusion Matrix for COM1 vs. Reference
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Forest Nonforest Total

C
o

m
p

ar
is

o
n

M
ap

Forest

 

31 16 47

 

Nonforest

 

14 39 53

 

Total
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Table 17.1b

 

 

 

Confusion Matrix for COM2 vs. Reference

Reference Map
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45 55 100
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belongs to a particular category; therefore, the sum of the membership values over all categories
is 1. In addition, each grid cell has a weight to denote its membership in any particular stratum,
where the stratum weight can also range from 0 to 1. The weights do not necessarily need to sum
to 1. For example, if a cell’s weights are 0 for all strata, then that cell is eliminated from the
analysis. These ideas are expressed mathematically in Equation 17.1 through Equation 17.4, where

 

j

 

 is the category index, 

 

J

 

 is the number of categories, 

 

R

 

dnj

 

 is the membership of category 

 

j

 

 in cell

 

n

 

 of stratum 

 

d

 

 of the reference map,

 

 S

 

dnj

 

 is the membership of category 

 

j

 

 in cell 

 

n

 

 of stratum 

 

d

 

 of
the comparison map, and 

 

W

 

dn

 

 is the weight for the membership of cell 

 

n

 

 in stratum 

 

d

 

:

(17.1)

(17.2)

(17.3)

(17.4)

Just as each cell has some proportional membership to each category, each stratum has some
proportional membership to each category. We define the membership of each stratum to each
category as the proportion of the stratum that is covered by that category. For each stratum, we
compute this membership to each category as the weighted proportion of the cells that belong to
that category. Similarly, the entire landscape has membership to each particular category, where
the membership is the proportion of the landscape that is covered by that category. We compute
the landscape-level membership by taking the weighted proportion over all grid cells. Equation
17.5 through Equation 17.9 show how to compute these levels of membership for every category
at both the stratum scale and the landscape scale. These equations utilize standard dot notation to
denote summations, where 

 

N

 

d

 

 denotes the number of cells that have some positive membership in
stratum 

 

d

 

 of the map and 

 

D

 

 denotes the number of strata. Equation 17.5 shows that 

 

W

 

d·

 

 denotes
the sum of the cell weights for stratum 

 

d

 

. Equation 17.6 shows that 

 

R

 

d·j

 

 denotes the proportion of
category 

 

j 

 

in stratum 

 

d

 

 of the reference map. Equation 17.7 shows that 

 

R

 

··j

 

 denotes the proportion
of category

 

 j

 

 in the entire reference map. Equation 17.8 shows that 

 

S

 

d·j

 

 denotes the proportion of
category 

 

j

 

 in stratum 

 

d

 

 of the comparison map. Equation 17.9 shows that 

 

S

 

··j

 

 denotes the proportion
of category 

 

j

 

 in the entire comparison map:
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(17.8)

(17.9)

 

17.2.3 Minimum Function

 

The Minimum function gives the agreement between a cell of the reference map and a cell of
the comparison map. Specifically, Equation 17.10 gives the agreement in terms of proportion correct
between the reference map and the comparison map for cell 

 

n

 

 of stratum 

 

d

 

. Equation 17.11 gives
the landscape-scale agreement weighted appropriately with grid cell weights, where M(

 

m

 

) denotes
the proportion correct between the reference map and the comparison map:

(17.10)

(17.11)

The Minimum function expresses agreement between two cells in a generalized way because
it works for both hard and soft classifications. In the case of hard classification, the agreement is
either 0 or 1, which is consistent with the conventional definition of agreement for hard classifica-
tion. In the case of soft classification, the agreement is the sum over all categories of the minimum
membership in each category. The minimum operator makes sense because the agreement for each
category is the smaller of the membership in the reference map and the membership in the
comparison map for the given category. If the two cells are identical, then the agreement is 1.

 

17.2.4 Agreement Expressions and Information Components

 

Figure 17.3 gives the 15 mathematical expressions that lay the foundation of our philosophy
of map comparison. The central expression, denoted M(

 

m

 

), is the agreement between the reference
map and the comparison map, given by Equation 17.11. The other 14 mathematical expressions
show the agreement between the reference map and an “other” map that has a specific combination
of information. The first argument in each Minimum function (e.g., 

 

R

 

dnj

 

) denotes the cells of the
reference map and the second argument in each Minimum function (e.g., 

 

S

 

dnj

 

) denotes the cells of
the other map. The components of information in the other maps are grouped into two orthogonal
concepts: (1) information of quantity and (2) information of location.

There are three levels of information of quantity no, medium, and perfect, denoted, respectively,
as 

 

n
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, and 
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. For the five mathematical expressions in the “no information of quantity” column,
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the other maps are derived from an adjustment to the comparison map, such that the proportion of
membership for each of the 

 

J

 

 categories is 1/

 

J

 

 in the other maps (Foody, 1992). This adjustment
is necessary to answer the question, What would be the agreement between the reference map and
the comparison map, if the scientist who created the comparison map would have had no information
of quantity during its production? The adjustment holds the level of information of location constant
while adjusting each grid cell such that the quantity of each of the 

 

J

 

 categories in the landscape is 1/

 

J

 

.
Equations 17.12 and 17.13 give the necessary adjustment to each grid cell in order to scale the

comparison map to express no information of quantity:

(17.12)

(17.13)

 

Figure 17.3

 

Expressions for 15 points defined by a combination of the information of quantity and location. The
vertical axis shows information of location and the horizontal axis shows information of quantity.
The text defines the variables.

MIN(R..j,
1
J

)
j = 1

J

∑ MIN(R..j, S..j)
j = 1

J

∑ MIN(R..j, R..j)
j=1

J

∑

Wd⋅ MIN(Rd⋅j, Ed⋅j)
j

J

∑
 

  = 1

 
 

 

 
 
 

d = 1

D

∑

Wd⋅
d = 1

D

∑

Wd⋅ MIN(Rd⋅j, Sd⋅j)
j

J

∑
 

  = 1

 
 

 

 
 
 

d = 1

D

∑

Wd⋅
d=1

D

∑

Wd⋅ MIN(Rd⋅j, Fd⋅j)
j

J

∑
 

  = 1

 
 

 

 
 
 

d = 1

D

∑

Wd⋅
d = 1

D

∑

Wdn MIN(Rdnj, Adnj)
j

J

∑
 

  = 1

 
 

 

 
 
 n = 1

Nd Nd Nd

∑
d = 1

n = 1d = 1

D

∑

Wdn∑
D

∑

n = 1d = 1

n = 1d = 1

MIN(Rdnj, Sdnj)Wdn
j =1

J

∑
 

 
 
 

 

 
 
 ∑

D

∑

Wdn∑
D

∑
n = 1d = 1

n = 1d = 1
Wdn MIN(Rdnj, Bdnj)

j

J

∑
 

  = 1

 
 

 

 
 
 ∑

D

∑

Wdn∑
D

∑

Nd Nd Nd

n = 1d = 1

n = 1d = 1
Wdn∑

D

∑
n = 1d = 1

Wdn∑
D

∑
n = 1d = 1

Wdn∑
D

∑

Wdn MIN(Rdnj, Ed⋅j)
j

J

∑
 

  = 1

 
 

 

 
 
 ∑

D

∑
n = 1d = 1

Wdn MIN(Rdnj, Sd⋅j)
j

J

∑
 

  = 1

 
 

 

 
 
 ∑

D

∑
n = 1d = 1

Wdn MIN(Rdnj, Fd⋅j)
j

J

∑
 

  = 1

 
 

 

 
 
 ∑

D

∑

Nd Nd Nd

n = 1d = 1

n = 1d = 1
Wdn∑

D

∑
n = 1d = 1

Wdn∑
D

∑
n = 1d = 1

Wdn∑
D

∑

Wdn MIN(Rdnj,    )
j

J

∑
 

  = 1

 
 

 

 
 
 ∑

D

∑
n = 1d = 1

Wdn MIN(Rdnj, S⋅⋅j)
j

J

∑
 

  = 1

 
 

 

 
 
 ∑

D

∑
n = 1d = 1

Wdn MIN(Rdnj, R⋅⋅j)
j

J

∑
 

  = 1

 
 

 

 
 
 ∑

D

∑

In
fo

rm
at

io
n 

of
 L

oc
at

io
n

N
(x

)
H

(x
)

M
(x

)
P

(x
)

K
(x

)

Nd Nd Nd

Nd

NdNd

Nd

Nd

Nd

1
J

n m
Information of Quantity

p

A S J
S

Jdnj dnj
j

jS= £
◊◊

Ê

Ë
Á
Á

ˆ

¯
˜
˜ ◊ ◊1 1/ , /if

= - -Ê
Ë

ˆ
¯

◊ ◊Ê
ËÁ

ˆ
¯̃

1 1
1

S S
J

dnj
j

/
, else

E S J
S

Jd j d j
j

jS◊ ◊
◊◊

Ê

Ë
Á
Á

ˆ

¯
˜
˜ ◊ ◊= £1 1/ , /if

 

L1443_C17.fm  Page 240  Saturday, June 5, 2004  10:45 AM



 

COMPONENTS OF AGREEMENT BETWEEN CATEGORICAL MAPS AT MULTIPLE RESOLUTIONS 241

 

Equation 17.12 performs the scaling at the grid cell level, and hence creates an “other” map,
denoted 

 

A

 

dnj

 

. Equation 17.13 performs the scaling at the stratum level, and hence creates an “other”
map, denoted 

 

E

 

d

 

◊

 

j

 

.
The logic of the scaling is as follows, where the word “paint” can be substituted for the word

“category” to continue the painting analogy. If the quantity of category 

 

j

 

 in the comparison map
is less than 1/

 

J

 

, then more of category 

 

j

 

 must be added to the comparison map. In this case, category

 

j

 

 is increased in cells that are not already 100% members of category 

 

j

 

. If the quantity of category

 

j

 

 in the comparison map is more than 1/

 

J

 

, then some of category

 

 j

 

 must be removed from the
comparison map. In that case, category 

 

j

 

 is decreased in cells that have some of category 

 

j

 

.
For expressions in the “medium information” column of Figure 17.3, the other maps have the

same quantities as the comparison map. For the expressions in the “perfect information” column,
the other maps are derived such that the proportion of membership for each of the 

 

J

 

 categories
matches perfectly with the proportions in the reference map. This adjustment is necessary to answer
the question, What would be the agreement between the reference map and the comparison map,
if the scientist would have had perfect information of quantity during the production of the
comparison map? The adjustment holds the level of information of location constant while adjusting
each grid cell such that the quantity of each of the 

 

J

 

 categories in the landscape matches the
quantities in the reference map. The logic of the adjustment is similar to the scaling procedure
described for the other maps in the “no information of quantity” column of Figure 17.3.

Equation 17.14 and Equation 17.15 give the necessary mathematical adjustments to scale the
comparison map to express perfect information of quantity:

(17.14)

(17.15)

Equation 17.14 performs this scaling at the grid cell level, and hence creates an “other” map,
denoted 
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. Equation 17.15 performs this scaling at the stratum level, and hence creates an “other”
map, denoted 
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.
There are five levels of information of location: no, stratum, medium, perfect within stratum,

and perfect, denoted, respectively, as N(
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). Figure 17.3 shows the
differences in the 15 mathematical expressions among these various levels of information of
location. In N(
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), H(

 

x

 

), and M(
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) rows, the mathematical expressions of Figure 17.3 consider the
reference map at the grid cell level, as indicated by the use of all three subscripts: 
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expressions consider the other maps at the grid cell level, as indicated by the use of all three
subscripts: 

 

d

 

, 

 

n

 

, and 

 

j

 

. In the H(

 

x

 

) and K(

 

x

 

) rows, the expressions consider the other maps at the
stratum level, as indicated by the use of two subscripts: 

 

d

 

 and 

 

j

 

. In the N(

 

x

 

) and P(

 

x

 

) rows, the
expressions consider the other maps at the study area level, as indicated by the use of one subscript: 

 

j

 

.
The concepts behind these combinations of components of information of location are as

follows. In row N(

 

x

 

), the categories of the other maps are spread evenly across the landscape, such
that every grid cell has an identical multinomial distribution of categories. In row H(

 

x

 

), the
categories of the other maps are spread evenly within each stratum, such that every grid cell in
each stratum has an identical multinomial distribution of categories. In row M(

 

x

 

), the grid cell level
information of location in the other maps is the same as in the comparison map. In row K(

 

x

 

), the
other maps derive from the comparison map, whereby the locations of the categories in the
comparison map are swapped within each stratum in order to match as best as possible the reference
map; however, this swapping of grid cell locations does not occur across stratum boundaries. In
row P(

 

x

 

), the other maps derive from the comparison map, whereby the locations of the categories
in the comparison map are swapped in order to match as best as possible the reference map, and
this swapping of grid cell locations can occur across stratum boundaries.

Each of the 15 mathematical expressions of Figure 17.3 is denoted by its location in the table.
The 

 

x

 

 denotes the level of information of quantity. For example, the overall agreement between
the reference map and the comparison map is denoted M(

 

m

 

), since the comparison map has a
medium level of information of quantity and a medium level of information of location, by
definition. The expression P(

 

p

 

) is in the upper right of Figure 17.3 and is always equal to 1, because
P(

 

p

 

) is the agreement between the reference map and the other map that has perfect information
of quantity and perfect information of location.

There are seven mathematical expressions that are especially interesting and helpful. They are
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), K(

 

m
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), and P(

 

p

 

). For N(

 

n

 

), each cell of the other map is the same
and has a membership in each category equal to 1/

 

J

 

. For N(

 

m

 

), each cell of the other map is the
same and has a membership in each category equal to the proportion of that category in the
comparison map. For H(

 

m

 

), each cell within each stratum of the other map is the same and has a
membership in each category equal to the proportion of that category in each stratum of the
comparison map. For M(

 

m

 

), the other map is the comparison map. For K(

 

m

 

), the other map is the
comparison map with the locations of the grid cells swapped within each stratum, so as to have
the maximum possible agreement with the reference map within each stratum. For P(

 

m

 

), the other
map is the comparison map with the locations of the grid cells swapped anywhere within the map,
so as to have the maximum possible agreement with the reference map. For P(

 

p

 

), the other map
is the reference map, and therefore the agreement is perfect.

 

17.2.5 Agreement and Disagreement

 

The seven mathematical expressions N(
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), N(

 

m

 

), H(

 

m

 

), M(

 

m

 

), K(

 

m

 

), P(

 

m

 

), and P(

 

p

 

) constitute
a sequence of measures of agreement between the reference map and other maps that have
increasingly accurate information. Therefore, usually 0 < N(

 

n

 

) < N(

 

m

 

) < H(

 

m

 

) < M(

 

m

 

) < K(

 

m

 

)
< P(

 

m

 

) < P(

 

p

 

) = 1. This sequence partitions the interval [0,1] into components of the agreement
between the reference map and the comparison map. M(

 

m

 

) is the total proportion correct, and 1
– M(

 

m

 

) is the total proportion error between the reference map and the comparison map. Hence,
the sequence of N(

 

n

 

), N(

 

m

 

), H(

 

m

 

), and M(

 

m) defines components of agreement, and the sequence
of M(m), K(m), P(m), and P(p) defines components of disagreement. 

Table 17.2 defines these components mathematically. Beginning at the bottom of the table and
working up, the first component is agreement due to chance, which is usually N(n). However, if
the agreement between the reference map and the comparison map is less than would be expected
by chance, then the component of agreement due to chance may be less than N(n). Therefore, Table
17.2 defines the component of agreement due to chance as the minimum of N(n), N(m), H(m),
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and M(m). The component of agreement due to quantity is usually N(m) – N(n); Table 17.2 gives
a more general definition to account for the possibility that the comparison map’s information of
quantity can be worse than no information of quantity. The component of agreement at the stratum
level is usually H(m) – N(m); Table 17.2 gives a more general definition to restrict this component
of agreement to be nonnegative. Similarly, the component of agreement at the grid cell level is
usually M(m) – H(m); Table 17.2 restricts this component of agreement to be nonnegative. Table
17.2 also defines the components of disagreement. It is a mathematical fact that M(m) £ K(m) £
P(m) £ P(p); therefore, the components of disagreement are the simple definitions of Table 17.2.

The partition of the components of agreement can be performed for any stratification structure.
Table 17.2 shows the results for the comparison of REF and COM1 at both the stratum level and
the substratum level. Figure 17.4 shows this information in graphical form. The stratum bar shows
the components at the stratum level and the substratum bar shows the components at the substratum
level. Since the substrata are nested within the strata, it makes sense to overlay the stratum bar on

Table 17.2 Definition and Values of Seven Components of Agreement for COM1 vs. Reference Derived 
from the Mathematical Expressions of Figure 17.3

Name of Component Definition

Percentage of Each 
Component

Stratum Substratum

Disagreement due to 
quantity

P(p) – P(m) 2.0 2.0

Disagreement at stratum 
level

P(m) – K(m) 8.0 8.0

Disagreement at grid cell 
level

K(m) – M(m) 20.0 20.0

Agreement at grid cell level MAX [M(m) – H(m), 0] 12.2 11.5
Agreement at stratum level If MIN [N(m), H(m), M(m)] = N(m),

then MIN [H(m) – N(m), M(m) – N(m)],
else 0

7.5 8.2

Agreement due to quantity If MIN [N(n),N(m), H(m), M(m)] = N(n), 
then MIN [N(m) – N(n), H(m) – N(n), M(m) – N(n)],
else 0

0.3 0.3

Agreement due to chance MIN [N(n),N(m), H(m), M(m)] 50.0 50.0

Figure 17.4 Stacked bars showing components of agreement between COM1 and REF. The vertical axis shows
the cumulative percentage of cells in the study area. The nested bar is the stratum bar overlaid
on top of the substratum bar to show agreement at both the stratum and substratum levels. Table
17.2 gives the numerical values for the components in the stratum and substratum bars.
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top of the substratum bar to produce the nested bar. Depending on the nature of the maps, the
nested bar could show nine possible components listed in the legend. In the comparison of REF
and COM1, the bar shows eight nested components.

17.2.6 Multiple Resolutions

Up to this point, our analysis of the maps of Figure 17.2 has been based on a cell-by-cell
analysis with hard classification. The advantage of cell-by-cell analysis with hard classification is
its simplicity. The disadvantage of cell-by-cell analysis with hard classification is that if a specific
cell fails to have the correct category, then it is counted as complete error, even when the correct
category is found in a neighboring cell. Therefore, cell-by-cell analysis can fail to indicate general
agreement of pattern because it fails to consider spatial proximity to agreement. In order to remedy
this problem we perform multiple resolution analysis.

The multiple resolution analysis requires a new set of maps for each new resolution. Figure
17.2 shows maps that are hard classified, whereas Figure 17.5 shows the COM1 map at four coarser
resolutions. Each cell of each map of Figure 17.5 is an average of neighboring cells of the original
COM1 map of Figure 17.2. For example, for resolution 2, four neighboring cells become a single
coarse cell; therefore, the 12 ¥ 12 map of original cells yields a 6 ¥ 6 map. At resolution three,
we obtain a 4 ¥ 4 map of coarse cells, in which the length of the side of each coarse cell is three
times the length of the side of each original fine-resolution cell. At resolution four, we obtain a 2
¥ 2 map of coarse cells, where each coarse cell is its own substratum. At resolution 12, the entire
map is in one cell. For each coarse cell, the membership in each category is the average of the
memberships of the contributing cells. When using this aggregation technique, the lack of a square
study area can result in an unequal number of fine-resolution cells in each of the coarser cells. This

Figure 17.5 Map COM1 at four different resolutions. On the legend, 0 means completely forest, 1 means
completely nonforest, and white is outside of the study area.
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is taken into consideration by the weights that give each cell’s membership in the study area. This
characteristic of the technique allows the method to apply to accuracy assessment where the grid
cells of interest are not contiguous.

Figure 17.5 shows the cell configuration. The darker shading shows stronger membership in
the nonforested category. Figure 17.6 shows this same type of aggregation for the REF map. For
each resolution, we are able to generate a bar similar to the nested bar of Figure 17.4, because the
equations of Figure 17.3 allow for any cell to have partial membership in any category.

17.3 RESULTS

Figure 17.7 shows the components of agreement and disagreement between REF and COM1
at all resolutions. Figure 17.8 shows analogous results for the comparison between REF and COM2.
The overall proportion correct is the top of the component of agreement at the grid cell level and
the overall proportion correct at the coarser resolutions is the top of the component of agreement
due to quantity. Proportion correct tends to rise as resolution becomes coarser; however, the rise
is not monotonic. Proportion correct rises for each resolution that is nested within finer resolutions.
That is, the proportion correct for resolution 1 < proportion correct for resolution 2 < proportion
correct for resolution 6 < proportion correct for resolution 12. In addition, the proportion correct
for resolution 1 < proportion correct for resolution 3 < proportion correct for resolution 6 <
proportion correct for resolution 12. However, the proportion correct for resolution 2 > proportion
correct for resolution 3. Note that resolution 2 is not nested within resolution 3.

The largest component is agreement due to chance, which is 50% at the finest resolution since
there are two categories. Agreement due to chance rises as resolution becomes coarser. Besides the
component due to chance, the largest components at the finest resolution are agreement at the grid

Figure 17.6 Map REF at four different resolutions. On the legend, 0 means completely forest, 1 means
completely nonforest, and white is outside of the study area.
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cell level and disagreement at the grid cell level. As resolution becomes coarser, the grid cell level
information becomes less important, relative to information of quantity. At the coarsest resolution,
where the entire study area is in one cell, the concept of location has no meaning; hence, the only
components are agreement due to chance, agreement due to quantity, and disagreement due to
quantity. COM1 has a component of disagreement due to quantity, which does not change as
resolution changes, since quantity is a concept independent of resolution. COM2 has no disagree-
ment in quantity.

Figure 17.9 shows that at a fine resolution the agreement between COM2 and REF is greater
than the agreement between COM1 and REF. The components that account for the greater agreement
are the agreement at the stratum level and at the grid cell level.

Table 17.3 and Table 17.4 display contingency tables that show the nested stratification structure
of strata and substrata. These tables are another helpful way to present results. The information on
the diagonal indicates the number of cells for each substratum that are in agreement. Therefore,
the number of correct cells may be calculated for each substratum by summing the diagonal for
each subset of the table. Furthermore, the row and column totals indicate stratum-level agreement.
For example, Table 17.3 shows disagreement at the stratum level, since there are 31 forested cells
in COM1 vs. 35 in REF for the north stratum and there are 16 forested cells in COM1 vs. 10 in

Figure 17.7 Stacked bars showing agreement between COM1 and REF. The vertical axis shows the cumulative
percentage of the total study area. The numbers on the horizontal axis give the resolutions.

Figure 17.8 Stacked bars showing agreement between COM2 and REF. The vertical axis shows the cumulative
percentage of the total study area. The numbers on the horizontal axis give the resolutions.
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Figure 17.9 Stacked bars showing comparison of COM1 and COM2 with the REF map at the finest resolution.
The vertical axis shows the cumulative percentage of the total study area.

Table 17.3 Confusion Matrix for COM1 vs. REF by Strata and Substrata; F Denotes Forest Cells and N 
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REF for the south stratum. This disagreement at the stratum level is reflected in the component of
disagreement at the stratum level in Figure 17.7. In contrast, Table 17.4 shows perfect agreement
at the stratum level; hence, Figure 17.8 shows no component of disagreement between COM2 and
REF at the stratum level.

17.4 DISCUSSION

17.4.1 Common Applications

The three maps in Figure 17.2 represent a common situation in map comparison analysis. There
are many applications where a scientist wants to know which of two maps is more similar to a
reference map. Three likely applications are in remote sensing, simulation modeling, and land-
change analysis.

In remote sensing, when a scientist develops a new classification rule, the scientist needs to
compare the map generated by the new rule to the map generated by a standard rule. Two
fundamental questions are (1) Did the new method perform better than the standard method
concerning its estimate of the quantity of each category? and (2) Did the new method perform
better than the standard method concerning its specification of the location of each category? The
format of Figure 17.9 is an effective way to display the results, because it conveys the answer to
both of these questions quickly. Specifically, COM1 makes some error of quantity while COM2

Table 17.4 Confusion Matrix for COM2 vs. REF by Strata and Substrata; F Denotes Forest Cells and N 
Denotes Nonforest Cells
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does not. COM2 shows a better specification of location than does COM1. When the analysis is
stratified, the scientist can see whether errors of location exist at the stratum level, substratum level,
or grid cell level. For example, Figure 17.9 shows that COM1 has errors at the stratum level and
not the substratum level, while COM2 has errors at the substratum level and not at the stratum
level. In another application from remote sensing, we could examine the influence of a hardening
rule, since the techniques work for both hard and soft classification. For example, COM1 could
show the soft category membership before a hardening rule is applied, and COM2 could show the
hard category membership after the hardening rule is applied. The format of Figure 17.9 would
then summarize the influence of the hardening rule.

In simulation modeling, a scientist commonly builds a model to predict how land changes over
time (Veldkamp and Lambin, 2001). The scientist performs validation to see how the model
performs and to obtain ideas for how to improve the model. When the model is run from T1 to T2,
the scientist validates the model by comparing the simulated landscape of T2 with a reference map
T2. A null model would predict no change between T1 and T2. In other words, if the scientist had
no simulation model, then the best guess at the T2 map would be the T1 map. Therefore, to see
whether the simulation model is performing better than a null model, the scientist needs to compare
(1) the agreement between the T2 simulation map and the T2 reference map vs. (2) the agreement
between the T1 map and the T2 reference map. In this situation, the format of Figure 17.9 is perfectly
suited to address this question because the analogy is that COM1 is the T1 map, COM2 is the T2

simulation map, and REF is the T2 reference map.
The methods described here are particularly helpful in this case since land-cover and land-use

(LCLU) change models are typically stratified according to political units because data are typically
available by political unit and because the process of land change often happens by political unit.
For example, land-use activities in Brazil are planned at the regional and household scales, where
the household stratification is nested within the regional stratification. Researchers are dedicating
substantial effort to collecting data at a relevant scale in order to calibrate and to improve change
models. Therefore, it is essential that statistical methods budget the components of agreement and
disagreement at relevant scales, because researchers want to collect new data at the scale at which
the most uncertainty exists.

In land-change analysis, the scientist wants to know the manner in which land categories change
and persist over time. For this application, the methods of this chapter would use COM1 as the T1

map and REF as the T2 map. Figure 17.7 would supply a multiple-resolution analysis of LCLU
change, where agreement means persistence and disagreement means change. A disagreement in
quantity indicates that a category has experienced either a net gain or a net loss. Disagreement at
the stratum level means that a loss of a category in one stratum is accompanied by gain in that
category in another stratum. Disagreement at the grid cell level means that a loss of a category at
one location is accompanied by a gain of that category at another location within the same stratum.
Therefore, Figure 17.7 would show at what scales LCLU change occurs.

17.4.2 Quantity Information

We focus primarily on the center column of mathematical expressions of Figure 17.3, because
those expressions give the components of agreement. However, the other two columns can be
particularly helpful depending on the purpose of map comparison. In the case of remote sensing,
guidance is needed to improve the classification rules. For simulation modeling, guidance is required
to improve the simulation model’s rules. It would be helpful to know the expected improvement
if the rule’s specification of quantity changes, given a specific level of information of location. The
mathematical expressions in the rightmost column of Figure 17.3 show the expected results when
the rule specifies the quantity of each category perfectly with respect to the reference quantities.
At the other end of the spectrum, the mathematical equations of the leftmost column show the
expected results when the rule uses random chance to specify the quantities of each category.
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For example, M(n) expresses the agreement that a scientist would expect between the reference
map and the other map when the other map is the adjusted comparison map that is scaled to show
the quantity in each category as 1/J. M(p) expresses the agreement that a scientist would expect
between the reference map and the other map when the other map is the adjusted comparison map
that is scaled to show the quantity in each category as matching perfectly the reference map.

The definitions of M(n) and M(p) in Table 17.2 are slightly different from the definitions of
M(n) and M(p) in Pontius (2000, 2002). Table 17.2 gives expressions for M(n) and M(p) that
depend on the scaling given by Equation 17.12 through Equation 17.15. The method of scaling
simulates the change in quantity spread evenly across the grid cells as one moves from M(m) to
M(p) or from M(m) to M(n). In contrast, Pontius (2000, 2002) does not scale the comparison map
and does not represent an even spread of the change in quantity across the cells. The methods of
Pontius (2000, 2002) define M(n) and M(p) in a manner that makes sense for applications of land-
cover change simulation modeling and slightly confounds information of quantity with information
of location. Table 17.2 defines M(n) and M(p) in a manner that is appropriate for a wider variety
of applications, since it maintains complete separation of information of quantity from information
of location.

17.4.3 Stratification and Multiple Resolutions

If we think of grid cells as tiny strata, then the maps of Figure 17.2 show a three-tiered, nested
stratification structure. The cells are 100 tiny strata that are nested within the four substrata that
are nested within the two broadest strata. The multiple-resolution procedure grows the cells such
that at the resolution of 6 the four coarse grid cells constitute the four quadrants of the substrata.
Another similarity between strata and cells is that they both can indicate information of location;
hence, they both appear on the vertical axis of Figure 17.3.

However, there are three major conceptual differences between grid cells and strata. First, the
concept of location within a grid cell does not exist because category membership within a grid
cell is completely homogenous. By definition, we cannot say that a particular category is concen-
trated at a particular location within a cell. In contrast, the concept of location within a stratum
does exist because we can say that a particular category is concentrated at a particular location
within a stratum, since strata usually contain numerous cells. Second, the multiple-resolution
procedure increases the lengths of the sides of the grid cells and  thus reduces the number of coarse
grid cells within each stratum, but the multiple-resolution analysis does not change the number of
strata. Third, each cell is a square patch, whereas a stratum can be nonsquare and noncontiguous.
As a consequence of these differences, analysis of multiple resolutions of cells shows how the
landscape is organized in geographic space, whereas analysis of multiple strata shows how the
landscape is organized with respect to the strata definitions.

17.5 CONCLUSIONS

The profession of accuracy assessment is advancing past the point where assessment consists
of only a calculation of percentage correct or Kappa index of agreement (Foody, 2002). Now,
measures of agreement are needed that indicate how to create more-accurate maps. Here we
presented novel methods of accuracy assessment to budget the components of agreement and
disagreement between any two maps that show a categorical variable. The techniques incorporate
stratification, examine multiple resolutions, apply to both hard and soft classifications, and compare
maps in terms of quantity and location. Perhaps most importantly, this chapter shows how to present
the results of a complex analysis in a simple graphical form. We hope that this technique of accuracy
assessment will soon become as common as today’s use of percentage correct.
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17.6 SUMMARY

This chapter presented novel methods of accuracy assessment to budget the components of
agreement and disagreement between a reference map and a comparison map, where each map
shows a categorical variable. The measurements of agreement can take into consideration soft
classification and can analyze multiple resolutions. Ultimately, the techniques express the agreement
between any two maps in terms of various components that sum to 1. The components may be
agreement due to chance, agreement due to quantity, agreement due to location at one of the
stratified levels, agreement due to location at the grid cell level, disagreement due to location at
the grid cell level, disagreement due to location at one of the stratified levels, and/or disagreement
due to quantity. These techniques can be used to compute components of agreement at all resolutions
and to present the results of a complex analysis in a simple graphical form.
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