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Abstract

The Ipswich watershed in northeastern Massachusetts, USA, is experiencing important land-use changes, which are con-
tributing to severe environmental problems such as eutrophication, ground water depletion and loss of wildlife. The objective
of this paper is to model deforestation between 1971, 1985 and 1991 in the watershed of the Ipswich River in Massachusetts,
USA, where most of the forest loss is attributable to new residential development. The maps of suitability for deforestation
are calibrated with maps of real change between 1971 and 1985 by using logistic regression, multi-criteria analysis and spatial
filters. The maps of 1971 and 1985 serve also as the basis to extrapolate the quantity of predicted future deforestation. Then,
the calibrated suitability maps and extrapolated quantities predict the location of deforestation between 1985 and 1991. The
predicted deforestation maps are validated with the map of real forest loss of 1985-1991. relative operating characteristic
(ROC) and variations of the Kappa index of agreement (Kno, Klocation and Kquantity) measure the validation. For most
simulation runs, Kno = 93%, Klocation = 8% and Kquantity = 100%. The best predictor of quantity of deforestation from
1985 to 1991 is linear extrapolation forward in time of the deforestation that occurred from 1971 to 1985. It is difficult to
predict the exact locations of deforestation in the watershed because only 2% of the watershed is deforested from 1971 to
1991, the patches of deforestation are scattered evenly across the landscape, and the some of the most important variables are
not readily available in digital form. Nevertheless, the best predictor of location of deforestation (ROC = 70%) is a suitability
map that uses a spatial filter and multi-criteria evaluation of elevation, slope, and proximity to existing residential areas. The
locations that are most threatened are those that are unprotected, near existing residential development and in towns where
the demand for new residential development is high. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A major element of environmental change is the
modification of natural land-cover due to human land
uses. Human activities are altering the land at unprece-
dented rates, magnitudes and spatial scales (Turner,
1994; Vitousek et al., 1997). Modeling is an important
tool for studying land-use change due to its ability to
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integrate measurements of changes in land-cover and
the associated drivers (Lambin et al., 1999). Lambin
(1997) points out that models of land-use/land-cover
processes can help scientists generate hypotheses
and in some cases answer three main questions: (1)
What biophysical and socioeconomic variables ex-
plain land-cover changes? (2) Where are the locations
affected by changes? (3) At what rate do land-cover
changes advance? Models then help to explain and/or
predict land-use/land-cover processes (Pontius, 1994;
Hall et al., 1995; Veldkamp and Fresco, 1996;
Lambin, 1997).
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One important reason for answering these questions
is that land-cover change affects dramatically the
structure and functioning of ecosystems (Vitousek
et al.,, 1997). For example in watersheds, land con-
version is the most important factor influencing water
quality and runoff (Hopkinson and Vallino, 1995).
Deforestation disrupts original patterns of water and
material output from watersheds to rivers, thus af-
fects the metabolism and productivity of important
ecosystems such as estuaries (Hopkinson and Vallino,
1995).

Drivers of land transformation such as deforestation
and urban sprawl are complex and regionally depen-
dent (Kasperson et al., 1997). In industrialized coun-
tries like US, conversion of forest into residential areas
is usually caused by regional economic growth, which
generates jobs, attracts workers, increases per capita
income and creates demand for larger residential plots
(Bradshaw and Muller, 1998).

Descriptive models such as those based on regres-
sion provide an exploratory tool to test the existence of
links between land-cover change and candidate driving
forces or their proxies. Future land-cover change loca-
tions can be predicted by combining spatial statistical
models with spatially explicit data in a geographical
information system (GIS) environment. Multi-criteria
evaluation can be also used to predict land-cover
change. Spatial variables are defined as criteria and
their information is combined to create a single index
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of evaluation similar to an estimation of a probability.
Criteria then can be combined and trade off can be
assessed (Eastman et al., 1995). To estimate the quan-
tity of land-use change, it is important to know the
extent to which socioeconomic and physical variables
explain and predict land change such as deforestation.

The goal of this paper is to develop and vali-
date a model to predict the location and quantity of
deforestation in the Ipswich watershed, using logistic
regression and multi-criteria evaluation. Empirical
analysis calibrates maps of suitability for deforesta-
tion, and then the maps of suitability are used to pre-
dict deforestation. The methods are validated using
ROC and variations on the kappa index of agreement
(Pontius, 2000).

2. Methods
2.1. Study area and digital maps

The Ipswich River watershed is in Northeastern
Massachusetts, 30 miles north of the city of Boston
(Fig. 1). The watershed covers 404 km? and includes
parts of 21 towns. Human’s use of the watershed’s
resources is so intensive that the river runs dry during
hot summers. When it has water, the Ipswich River
flows into Plum Island Sound, which is a Long Term
Ecological Research site of the Untied States National
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Fig. 1. The Ipswich watershed and town boundaries.
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Science Foundation. In order to understand the nu-
trient dynamics and hence economic productivity of
the sound, it is necessary to understand the land-use
change in the watershed.

The watershed’s human population is approxi-
mately 130,000 with median family income of
$50,000, whereas the US median family income is
$39,000. The area is attractive to upper-middle class
people who wish to commute to the city of Boston.
Urbanization occurred along the southern portion of
the watershed following a rapid urban expansion of
the city of Boston. In the last 20 years, the most impor-
tant change in the Ipswich watershed is the replace-
ment of forest by large residential plots. Almost a
quarter of the Ipswich watershed has been set aside
for land conservation and the remaining land is used
primarily for suburban-residential areas.

Although deforestation is usually referred to as the
transformation of old-growth forest, the current forest
cover in the watershed is a product of recent suc-
cession. Primary forest in New England underwent
constant cutting and burning due to agricultural prac-
tices during the last 400 years, however, the current
forest is approximating the pre-settlement landscape
(Foster, 1995). After decades of forest recovery fol-
lowing intense agricultural practices, the recent trend
has been a rapid conversion of forest into residential
areas. Therefore, the models developed here focus on
deforestation.

The Executive Office of Environmental Affairs
(EOEA) of Massachusetts supplies the maps through
the MassGIS program. Land-use maps were avail-
able for three points in time: 1971, 1985 and 1991
(MassGIS, 1999). To highlight the major processes
of land-cover change in the watershed, the original
classification of 21 land categories was aggregated
to 4: forest, residential/commercial, open land and
wetlands. The original classification includes classes
such cropland, pasture, open land, mining and differ-
ent levels of residential based on lot areas. An addi-
tional map of wetlands, which is from 1:12,000 scale
color-infrared stereo photography, was overlaid on
the original land-use maps to revise the information
of wetlands in the watershed.

As of 1991, the distribution of major land-cover
types in the watershed is 44% forest, 31% residential/
commercial, 17% wetlands and 8% open land. Resi-
dential/commercial areas include multi-family units,
small and large residential plots, shopping centers
and industry. Open lands include cropland, pastures,
vacant undeveloped land, and open urban areas such
institutional green space. Maps of land-cover for
1971, 1985 and 1991 show that a conversion of for-
est into residential areas is the predominant land-use
change (Fig. 2).

A digital elevation model was created from a map
of 1:250,000 scale contour lines using the triangu-
lated irregular network (TIN) procedure. Slope was
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Fig. 2. Distribution of land types in 1971, 1985 and 1991.
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calculated from the elevation map using the rook’s
case procedure. Two other important data layers are
distance in meters from residential/commercial areas
derived from the land-use maps of 1971 and 1985.
All the maps are geographic data layers stored in the
raster-based GIS IDRISI (Eastman, 1999). The reso-
lution of all map layers is 30 m x 30 m grid cells.

2.2. Calibration of location of deforestation

Models of land-use change usually have three com-
ponents: (1) maps of land-cover from more than one
point in time, (2) a function of change that modi-
fies the values and spatial arrangement of an initial
land-cover map, and (3) the resulting prediction map
(Lambin, 1994). Indeed, the model discussed in this
paper has these three components. The change func-
tion can be created either by empirical analyses of
historical patterns or by mathematical functions that
describe hypothesized processes of future change
(Lambin, 1994, 1997; Pontius, 2000). A variety of
empirical methods to create change functions are
compared. Specifically, logistic regression is com-
pared to two types of multi-criteria evaluation (MCE)
in order to predict location of change.

Each of these methods expresses its change func-
tion as a map of suitability for future deforestation at
the grid cell scale. The suitability value gives the se-
quence in which grid cells are selected for change,
where larger values of suitability are selected first.
The value of the suitability indicates only the relative
priority of land change, not necessarily the absolute
likelihood of land change. Suitability values are not
probabilities. The theorems of probability theory do
not necessarily apply to suitability values. The suit-
ability map displays all of the watershed’s grid cells,
where the value of each cell is a real number that
indicates the predicted sequence of change from for-
est to non-forest. In a perfect map of suitability, the
order of the suitability values would match the order
in which the landscape changes, with the largest suit-
ability values changing first and the smallest last. A
map of suitability for forest loss guides the sequence
in which the model selects grid cells for predicted
deforestation.

The suitability maps developed for the watershed
are calibrated with data from 1971 to 1985. The
model predicts deforestation that occurred from 1985

to 1991. Actual deforestation from 1985 to 1991 is
used for validation. The theoretical basis and ap-
plication of logistic regression and MCE to model
deforestation in the watershed are as follows.

2.2.1. Logistic regression

In the application of logistic regression, each
“observation” is a grid cell. The dependent variable
is a binary presence or absence event, where 1 =
forestloss and O = other, for the period 1971-1985.
The logistic function gives the probability of forest
loss as a function of the explanatory variables. The
function is a monotonic curvilinear response bounded
between 0 and 1, given by a logistic function of the
form:

b= E(Y) = exp(Bo + B1X1 + B1 X2 + B1X3)
1 +exp(Bo + B1 X1 + B2 X2 + B3X3)
(D

where p is the probability of forest loss in the cell,
E(Y) the expected value of the binary dependent vari-
able Y, Bo a constant to be estimated, 8; a coefficient
to be estimated for each independent variable X;.
The logistic function can be transformed into a linear
response with the transformation:

' =log, (£ — 2
p Oge<1_p) 2
hence

p'=PBo+ BiXi+ BX2+ BiX3 3)

The transformation (Eq. (2)) from the curvilinear
response (Eq. (1)) to a linear function (Eq. (3)) is
called a logit or logistic transformation. The trans-
formed function allows linear regression to estimate
each B;. Since each of the observations is a cell, the
final result is a probability score (p) for each cell.
For the Ipswich watershed, the independent vari-
ables are elevation, slope and distance from residential
areas of 1971. Elevation should be important in this
landscape that is prone to flooding. Slope is impor-
tant to developers who want to minimize landscaping
costs. Distance from residential areas should show
how residential development tends to be clustered.
These three variables are the only ones available in
digital form that show the landscape of 1971. Other
factors such as roads and land prices are clearly im-
portant, but those data are not available for 1971.
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Slope and elevation are selected as explanatory vari-
ables because they are stable through time, hence
it is valid to use elevation, slope and residential ar-
eas of 1971 as variables to explain and to predict
deforestation after 1971.

Distance from residential areas in 1971 is used to
estimate the regression parameters, however to pre-
dict the suitability for deforestation between 1985
and 1991, the estimated parameters are applied to
distance from residential areas in 1985. The model
assumes the relation between deforestation and dis-
tance from residential areas is the same from 1971 to
1991. Fig. 3 shows the estimated logistic relationship
between suitability for deforestation and distance
from existing residential areas. The final output is
a map of suitability for deforestation for the entire
watershed.

The model uses the unbiased estimates from the
logistic regression, because one of the major purposes
is to compare the logistic regression approach to the
MCE approach, where each approach uses the same
variables. Spatial auto-correlation in the error terms
of the logistic regression causes bias in the standard
errors of the parameter estimates. Therefore it is
potentially hazardous to make strong conclusions con-
cerning the statistical significance of the parameters.

2.2.2. MCE with two sizes of bins

MCE is a decision support tool used in GIS. In
this paper, the model must decide the location of
future deforestation. Similar to logistic regression,
MCE produces a suitability map to show likelihood
of deforestation. The suitability map in MCE is cre-
ated based on one or more independent variables. The
independent variables are again elevation, slope and
distance from residential areas of 1971. Each inde-
pendent variable map is reclassified as a real number
that indicates the relative suitability at a value of the
independent variable. The original values (e.g., eleva-
tion, slope, and distance) are reclassified to suitability
values using fuzzy membership functions (Eastman
and Jiang, 1996). Fig. 3 shows how the fuzzy set
membership functions are calibrated empirically.

The first step is to calibrate the fuzzy member-
ship function is to express each factor as a map of
categories. The three factors are expressed as real
numbers, therefore each real number is placed into
a bin in the same manner that a histogram places
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Fig. 3. Three methods to show the relationship between the percent
of area that underwent deforestation from 1971 to 1985 versus the
distance from residential areas of 1971. The fuzzy membership
functions are based on logistic regression in the first plot (a), MCE
with 30 m bins in the second plot (b), and MCE with 100 m bins
in the third plot (c).

real numbers into bins. Then each bin is assigned a
suitability value equal to the proportion of cells in
the bin that experienced deforestation from 1971 to
1985. In this manner, each factor map is transformed
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into a suitability map. The suitability maps of each
of the three factors are combined by overlaying and
averaging the three suitability values on a cell-by-cell
basis using a weighted linear combination proce-
dure in which each explanatory variable is weighted
equally.

Two bin sizes, small and large, are compared. The
small bin method places distance to existing residen-
tial areas in bins of 30 m increments, and the large
bin method uses 100 m increments. For elevation, the
small bins are 1 m increments and the large bins are
50 m increments. For slope, both small and large bins
are 1degree increments. Larger bins tend to make
smoother fuzzy relationships (Fig. 3 (c)).

2.2.3. Constraints

A constraint is a physical or legal characteristic of
a cell that prevents the cell from being deforested.
Therefore, a constraint variable is a Boolean variable
that indicates that the cell either is or is not available
for deforestation. There are two constraints for pre-
diction of deforestation. First, cells that are non-forest
in 1985 are obviously not candidates for deforesta-
tion between 1985 and 1991. Second, cells that are
protected legally from deforestation are assigned the
absolute lowest suitability value in the final suitability
maps. These constraints are applied to the suitability
maps created by logistic regression and the two MCE
methods. The legal constraints derive from a variety
of laws concerning zoning, proximity to wetlands,
proximity to rivers and other factors. Either the town
or the state can change these laws for environmental
or cultural reasons. The constraints are those that are
available in digital form.

2.2.4. Spatial dependence

Spatial dependence is the phenomenon where the
value at a location is a function of the value of
neighboring locations. Spatial dependence is created
explicitly in the suitability maps by using a spatial
filter with kernel size of 35 acres, which is the average
patch size of the areas deforested from 1971 to 1985.
Thus, the suitability value of each cell is changed to a
weighted average of the value of itself and the values
of the cells in the surrounding 35 acres. This addi-
tional step is necessary because the logistic and MCE
methods treat cells as independent observations with-
out considering the characteristics of neighbor cells.

2.3. Calibration of quantity of deforestation

Independent of the suitability maps, the model
predicts the quantity of cells to convert from for-
est to non-forest. Quantity of deforestation in each
town is estimated using various methods: multivari-
ate regression using socioeconomic factors, bivariate
regression using total amount of forest of 1971, and
linear extrapolation over time.

For the multivariate linear regression by town,
the dependent variable is the annual amount of area
deforested from 1971 to 1985, and the independent
variables of 1971 are population density, median
household income, percentage of the population with
college degree, and poverty level.

In the bivariate linear regression by town, again
the dependent variable is the annual amount of area
deforested from 1971 to 1985 by town. The regres-
sion uses as its explanatory variable the amount of
standing forest in 1971. Then the estimated equa-
tions with the information of 1985 are used to
predict the quantity of deforestation from 1985 to
1991.

The final method to predict quantity of deforesta-
tion from 1985 to 1991 is to extrapolate linearly over
time for each town. Hence the model assumes that an-
nual quantity of deforestation from 1971 to 1985 stays
constant through 1985 to 1991.

2.4. Prediction and validation

A simulation run combines a suitability map and a
predicted quantity of deforestation to predict a map
of deforestation between 1985 and 1991. The model
simulates land-use conversion for the predicted quan-
tity of cells that have highest relative suitability. The
model can allocate deforestation to the largest suit-
ability values within each town, or the model can
allocate deforestation to the largest suitability values
within the entire watershed.

For validation, the model’s output is compared to a
map of forest areas that changed from 1985 to 1991.
There is a two-stage process of validation. The ROC
is an index of discrimination accuracy that can vali-
date suitability maps independently of any specified
quantity of deforestation (Swets, 1988; Pontius and
Schneider, 2001). The suitability map with the highest
ROC is used for final simulations.
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In the final simulations, the model combines the
best suitability map with the various predicted quanti-
ties of deforestation. Kno, which is a variation of the
standard kappa index of agreement, gives the over-
all accuracy of a simulation run. Also, two indices,
Klocation and Kquantity, validate the simulation’s
ability to predict location and quantity, respectively.
Kno, Klocation and Kquantity are equal to 1 when
the simulation’s success rate is perfect, and are equal
to 0 when the simulation’s success rate is equivalent
to that due to chance (Pontius, 2000).

3. Results
3.1. Location of deforestation

Six maps of suitability of deforestation were pro-
duced. The best suitability map uses the MCE method
with large bins and a spatial filter (Fig. 4). The differ-
ent methodologies used to create the suitability maps
yield minor differences in term of ROC, which range
from 0.65 to 0.70 (Table 1). In all cases, the spatial
filter improves the suitability maps. Among method-
ologies, the MCE methods are consistently superior
to the logistic method. In logistic regression, all the
coefficients are significant due to the large num-
ber of degrees of freedom. The odds ratio is largest

Table 1

ROC to validate six maps of suitability for deforestation. Maps are
calibrated by logistic regression, MCE with small bins, or MCE
with large bins. Each map either uses or does not use a spatial
filter

No spatial filter

Spatial filter

Small bins

Large bins

Small bins  Large bins

MCE 0.6745 0.

No spatial filter

6743 0.6770 0.7044
Spatial filter

0.6679

Logistic  0.6506

Table 2

Logistic regression parameters estimated from actual deforestation
between 1971 and 1985, hence used to predict deforestation from
1985 to 1991. Each observation is one of 151,071 grid cells.
Variables are distance from developed areas, elevation and the
logarithm of slope

Variable Coefficient t-Value p-Value QOdds ratio
Log-slope —0.246 —7.008 0.000 —0.218
Distance —0.027 —2.383 0.028 —0.026
Elevation 0.004 22.947 0.000 0.004

in magnitude for slope, followed by distance from
residential areas and finally elevation (Table 2). Recall
that the observations are the cells in the watershed

map.

I:I Non-Forest

High suitability

Low suitability

Fig. 4. Suitability map from MCE with large bins and a spatial filter.
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Table 3

Variations of kappa index of agreement to validate deforestation from 1985 to 1991. Each of the six cases relates to a different specification

of quantity as described and shown in Fig. 5

Kappa variation Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Kno 93.1 93.1 92.8 92.9 92.5 92.8
Klocation 8.1 8.2 7.8 9.6 7.8 11.6
Kquantity 100.7 100.7 100.4 100.4 100.0 100.0

3.2. Quantity of deforestation

Regression with town level data has poor to fair
ability to explain or predict quantity of deforestation.
Multivariate regression with socioeconomic variables
explains only 40% of the variation in forest loss from
1971 to 1985, and none of the independent variables
are significant. Therefore the multivariate regression
equation is not used to predict the quantity of de-
forestation from 1985 to 1991. The amount of forest
area in 1971 explains 81% of the variation, with more
forest area being associated with significantly more
deforestation (p-value = 0.00). When this bivariate
regression equation predicts the deforestation from
1985 to 1991, the quantity predicted is 1.7% of
the forested area of 1985. However, simple linear
extrapolation over time predicts that 1.9% of the

Case 1 Case 3

Case 2 Case 4

forested area of 1985 becomes deforested. In reality,
2.1% of the forested area of 1985 became deforested
by 1991.

Table 3 shows three variations of the kappa index of
agreement for each of the simulations of deforestation
from 1985 to 1991. Four of the simulations are based
on a slightly inaccurate prediction of the quantity of
deforestation. For comparison, Table 3 shows also sim-
ulation cases 5 and 6 that have the correct quantity of
deforestation. Each run uses the suitability map with
the best ROC, which is the one produced by the MCE
method with large bins and a spatial filter. The results
from the simulated maps show that the model is more
accurate at predicting the quantity than the location of
deforestation. In general, the maps show high values
of Kno, high values of Kquantity and low but positive
values of Klocation (Table 3).

Case 5

Case 6

Reality

Fig. 5. Predicted deforestation from 1985 to 1991 for six cases of quantity specification. For cases 1 and 2, quantity is based on a regression
equation and the amount of forest area in 1985. For cases 3 and 4, quantity is based on a linear extrapolation over time of deforestation
from 1971 to 1985. For cases 5 and 6, quantity set equal to reality. In cases 1, 3 and 5, deforestation is allocated by watershed. In cases
2, 4 and 6, deforestation is allocated by town. The map of reality is the actual deforestation from 1985 to 1991. In all maps, deforested
areas are in black.
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However, it is important to validate also by visual
inspection of the spatial pattern of deforestation in
the predicted maps (Fig. 5). Variations in the spatial
pattern are observed when quantity of deforestation
is allocated at different scales. Some models allocate
quantities of land-cover change to the study area as a
whole, however in the case of the Ipswich watershed,
the study area composed of several towns, each one
with a particular set of regulations that affect defor-
estation. Allocating quantities of change to each town
provides a better representation of the current spatial
pattern of deforestation (Fig. 5). When the quantity
is allocated by the watershed, most of the predicted
deforestation occurs in the west. When the quantities
are allocated by towns, the predicted deforestation is
more accurately dispersed (Fig. 5).

4. Discussion
4.1. Quantity versus location

Quantitative measurements of validation, such
as the variations of the kappa index of agreement,
are very useful in accounting independently for the
accuracy in quantity and location of simulated de-
forestation. This insight can help scientists to decide
whether to dedicate energy to improve a simulation’s
ability to specify quantity versus location (Pontius,
2000).

For quantities, simple extrapolation through time
gives better predictions than more complicated ex-
planatory models. A set of variables that are related
to complex social processes should be able to explain
quantity of deforestation. However, proxies for these
variables such population and income were not sig-
nificant at explaining deforestation at the town level.
Even the amount of existing forest is better at ex-
plaining and predicting the amount of deforestation
than are general socioeconomic factors. If forest area
change over the last half century is a guide, then the
linear extrapolation should be accurate over a decade
or two. In the last 50 years, the rate of forest loss
has been fairly stable, with only a slight increase in
the rate of forest loss recently. However, during the
first half of the 1900s, forest area was increasing as
a result of abandonment of agricultural land, so over
periods of several decades the rate can change sign.

Clearly, the challenge in the Ipswich watershed is
to improve the model’s ability to predict location, i.e.,
to improve the suitability map. From a pure math-
ematical point of view, it is difficult use empirical
data to capture and validate a signal of deforestation
when the spatial pattern is disperse (non-clustered)
and when only a small proportion of deforestation
exists in the watershed. Fortunately, the ROC reveals
the quality of the suitability map over a wide range of
amounts of land-use change, so the ROC can validate
the suitability map independent of a predicted quan-
tity of change. ROC results show that large suitability
values are more closely associated with change than
are small suitability values.

The MCE bin methods yield larger ROCs than the
logistic regression methods because the empirical re-
lationship between deforestation and elevation, slope
and distance from residential areas is not necessarily
smooth or monotonic, as is assumed by the logis-
tic approach (Fig. 2). Under the empirical MCE bin
method, the fuzzy membership function reflects the
relationship found in the data used to calibrate the
model. The smoothing effect of logistic regression can
lead to loss of important information that the regres-
sion treats as noise. At the other extreme, a method
that uses extremely small bins can pay too much at-
tention to the noise, hence it can miss the signal. The
ROC results show that a choice of large bins is best
for the application to the Ipswich watershed. This is
an important result because many researchers assume
that logistic regression is more robust because it is
more often taught as the standard method. However,
it is just as empirical as MCE analysis because both
procedures are driven by the data.

There is a link between scale and the specifica-
tion quantity and location. The grid cell is the finest
scale, which is analyzed in terms of location. The
model is slightly better than random at modeling at
this finest scale. The town is a medium scale and has
components of both location and quantity. The model
specifies the quantity in each town, but when it allo-
cates each quantity to a town, it specifies the general
location within the watershed. The watershed is the
coarsest scale, which is analyzed in terms of quan-
tity only. The model performs well at this coarsest
scale. Other models have also shown increasing per-
formance as scale becomes coarser (Kok et al., 2001).
This phenomenon can be understood in terms of



92 L.C. Schneider, R.G. Pontius Jr./Agriculture, Ecosystems and Environment 85 (2001) 83-94

quantity becoming relatively more important at coarser
scales.

4.2. Explanatory variables

Nevertheless, all the simulations are only slightly
better than random at predicting the location of
deforestation. A reason could lie in the explana-
tory variables. Slope and elevation can be important
biophysical variables when one tries to predict de-
forestation in a rural context (Lambin, 1997). In the
Ipswich watershed, there is more land change at
higher elevations perhaps as a result of concern for
flooding, and there is more land change on flat land
as developers avoid expensive landscaping on steeper
slopes. However, elevation and slope do not have
strong explanatory power due to both the small vari-
ation in topography and socioeconomic complexity.

Residential development in areas like the
Northeastern US could be explained in terms of eco-
nomic development attracting new corporations and
employees, increasing the average income in the area
and increasing the demand for larger residential plots
(Cadwallader, 1992). The greatest proportion of land
by far in the watershed is zoned for residential use.
Minimum lot sizes for new homes, regulated by each
town, have also increased in recent years. Developers
used to be able to build before on % to % acre lots, but
now they must now purchase between 1 and 3 acre
lots on which to build a house. With land values
rising sharply, lot size increases favor the more afflu-
ent classes and lead to a highly dispersed pattern of
land-cover change (Burgess, 2000). These changes in
town level land-use policy influence the relationship
between new development and proximity to existing
development, therefore the relationship between those
two variables should be updated when new laws are
passed.

Predicting actual location of urban sprawl in the
Ipswich watershed is challenging because important
social processes are specific to each of the 21 towns in
the study area. In general, local zoning laws that reg-
ulate lot sizes have promoted expansion of suburban
development (Leo et al., 1998). These codes prohibit
both small lot sizes and mixed use development,
however these laws can change quickly and some
development occurs despite the laws because develop-
ers can obtain special permits from the towns. There

were not sufficient resources to collect, compile and
digitize this information for each of the 21 towns.
Other data are highly relevant but difficult to access
such as data that relate to the behavior of local de-
velopers, who are the key agents of sprawl (Jackson,
1985). Burgess (2000) interviewed several developers
in the watershed. Some of their responses confirm
that the model has incorporated some of the impor-
tant variables. Other responses suggest additional
variables that either do not exist in digital form or do
not have clearly quantifiable definitions, for example
proximity to reputable schools and proximity to cul-
tural events. Additionally, there are other factors that
are even less quantifiable with empirical data, such as
a cultural predilection for the pastoral ideal promoted
by suburban communities, white flight from inner city
racial tension and a car-dependent culture (Bollier,
1988). A potential variable of interest is the age of
the owner. Both developers and environmental groups
know that land becomes available when the owner
dies. In Massachusetts, both developers and environ-
mental groups tend to contact elderly owners before
they die in order to plan for future land use. A map of
the age of owners is not available for privacy reasons.

4.3. Comparison with other approaches

This paper’s model does not have complicated
dynamics, in contrast to other models such as GEO-
MOD?2 (Pontius et al., 2001) and CLUE (Veldkamp
and Fresco, 1996). GEOMOD2 updates every year
the candidates for deforestation, in order to force new
deforestation to grow from existing non-forest. The
spatial filter and the proximity to existing residential
areas factor in the Ipswich example captures some of
this effect, and the Ipswich model is nearly equivalent
to a non-dynamic run of GEOMOD2. GEOMOD?2 per-
forms just as well when it runs in a non-dynamic mode
as when it runs in a dynamic mode. So it is not clear
how the model’s lack of dynamics influences accuracy.

The CLUE model links the quantity of change to the
location of change. This approach would be potentially
fruitful in the Ipswich watershed because the quan-
tity of deforestation at the town level is related to the
quantity of forest area. Therefore, location of change
within the watershed could be related to the quantity
of future change within the towns over long periods
of time.
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Other dynamic models are based primarily on
economic theory. Irwin and Geoghegan (2001) have
created a model that is both theoretical and dynamic,
in that it updates probabilities of conversion every
year, based in part on land and housing prices. These
models require a different database for calibration
because theoretically based economic models assume
that human behavior is driven primarily by prices.
Clearly, developers are out to make money, however
local politics can cause variations from this general
principal. Developers in the Ipswich watershed say
that they will avoid even potentially profitable ven-
tures in towns where they have poor relations with
the town planning boards because boards can cause
complications in permitting. From the point of view
of economics, this complication in permitting can
be viewed as a cost. However, to model these costs
would require data on the personal relationships be-
tween developers and town planners. Such data are
probably what are required to predict accurately the
precise locations of land change at the watershed
scale over the period of a few years.

5. Conclusions

In this attempt to predict land-use change in the
Ipswich watershed, the most successful component
of model is its prediction of the quantity of defor-
estation between 1985 and 1991. For this component,
the most accurate approach proved to be the sim-
plest approach, i.e., linear extrapolation over time by
town. The model’s prediction of the exact locations
of deforestation in the watershed was slightly better
than the success rate expected by random chance.
Both the high success in predicting the quantity and
the lower success in predicting location are related
to the fact that only 2% of the watershed became
deforested from 1971 to 1991. In addition, the dif-
ficulty in predicting location is related to the fact
that the patches of deforestation are scattered evenly
across the landscape, and some of the most important
variables are not readily available in digital form.
Nevertheless, the best predictor of location of de-
forestation (ROC = 70%) is a suitability map that
uses a spatial filter and MCE. The locations that
are most threatened are those that are unprotected,
near existing residential development and in towns

where the demand for new residential development
is high.
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