Application of Remotely Sensed Data and Technology to Monitor Land Change in Massachusetts

Sam Blanchard, Nick Bumbarger, Joe Fortier, and Alina Taus
Advisor: John Rogan • Geography Department, Clark University
Presentation Outline

• Introduction to project

• Summer accomplishments
 • Statewide Land-cover map
 • Data collection
 • Disappearing Drumlins

• Future work
To establish a retrospective, long term, forest monitoring project for Massachusetts.

Employ non-parametric machine learning digital image classification to map land-cover with an emphasis on forest cover.

Use extant spectral and environmental data.

Examine changes in forest condition and abundance from 1973-present.

Arboreocentric Science ‘We go where the trees take us.’
Finalized Methodology

- Multiple Landsat Scenes
- "Raw" Image Acquisition
- Haze Removal
- Geometric Processing
- Images shifted to match at the pixel level
- Georegistered Image
- Decision Tree Classification
- Georegistered Image
- Ancillary Data
- Validation
- Final Land Cover Map
- 3X3 Filter
- SPCMA83 Projected Imagery
- Atmospheerically Corrected Imagery
- Projection
- Image to Image Georegistration
- GCP Provider
- GCP Recipient
- Data Collected from Aerial Photography
Fieldwork 2007

- 49 points in 2005
- 22 points in 2006
- 42 points in 2007
Overall accuracy of 82% for statewide classification.
Statewide Classification (Circa 2000)

Each classification employed the use of:

Landsat TM/ETM+ multi-temporal spectral imagery acquired 1999-2002
- September (onset of senescence in vegetation)
- October (advanced senescence in vegetation)

Four environmental GIS variables
- Digital Elevation Model (DEM)
- Slope
- Precipitation
- Surficial Geology

Overall accuracy of 82% for statewide classification
Statewide Classification
Forest Type Location/Accuracy

Excellent separation between conifer and deciduous, mixed confuses with both
Statewide Classification
MaFoMP Forest Locations

Total Forested area: 1,291,441.14 ha (62% of the state)
Statewide Classification
MassGIS Forest Locations

Total Forested area: **1,200,283.38** hectares (57% of the State)
Statewide Classification
Forest Locations: MassGIS vs. MaFoMP
Statewide Classification
Web Publication

http://www.clarku.edu/departments/hero/forestchange.cfm

Service FIA plot data. This project will therefore contribute to improving the accuracy and efficiency of large-scale land-use change monitoring initiatives in Massachusetts and elsewhere.

View MaTeMP's current research proposal.

Research Products

<table>
<thead>
<tr>
<th>Research Posters</th>
<th>Research Presentations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapping 10 years of forest cover change in Massachusetts: A comparison of pixel-based and object-based classification (Jones 2006)</td>
<td>Monitoring Forest Cover Disturbance in Massachusetts Using Remote Sensing Data and Techniques (PDF)</td>
</tr>
<tr>
<td>MaTeMP Research Presentation - Summer 2005</td>
<td>MaTeMP Research Poster 2004-05</td>
</tr>
</tbody>
</table>

Click the map below to see our circa 2000 land-cover product.

Please contact Professor John Fugate at johnf@clarku.edu for more information.

© 2007 Clark University - Environmental Policy
Researched freely available imagery for circa 1997 and 2004 to continue our temporal mapping of Massachusetts.
Problems with 2004 and beyond

Landsat 7:
SLC failure on May 31st, 2003
Problems with 2004 and beyond

Landsat 5:

sensor turbulence, and cloud issues.
Pilot Study Paper

Writing a paper detailing the Pilot Study research from 2005-2007 highlighting:
-Inclusion of Remote Sensing and Ancillary variables for Land-cover mapping
-Use of Multi-seasonal imagery for improved map accuracy

To be submitted to Remote Sensing of Environment before the school year
Disappearing Drumlin Project: Background

Drumlins - Glacial Landforms (small tear shaped hills)

A major part of Massachusetts’ landscape historical identity

Currently in danger of removal/ flattening for major development projects

Potential Effects:
- Aesthetics
- Habitat loss (biodiversity loss)
- Change in wind / water runoff

Alden (1925). Drumlin Map
Goals:
Generate and create a database of Digital Elevation Models (DEM) which coincide temporally with the MaFoMP landcover map products.

Identify Drumlins and monitor any change

Method:
Geomorphometric Analysis via DEM using
-ASTER –
 15 m resolution (1999-Present)
-SPOT 5 –
 10 m resolution (2002-Present)
Stereo pair:
Two image bands of the exact same wavelength taken from different angles

The same objects on the ground will appear in different location of the image as a result of the changed viewing angle (parallax).

The greater the Parallax the greater elevation difference.
Drumlin Extraction from DEM: Time 2
Drumlin Area Analysis

We have developed a technique for calculating volumetric change across multiple dates through the use of image differencing.
Drumlin Project: Geomorphometric Analysis (Continued)...

Converging Drumlin and Landcover Monitoring Research:

1) Determine/monitor location of drumlins within the state
2) Assess direction and volume of landscape change
3) Assess type of land conversion (land-cover lost/gained)
Future Work

• Acquire available data for 1997 & or 2004 statewide land-cover map
• Explore multi-sensor spectral change analysis techniques
• Explore the use of temporally invariant training sites for map classification 1973- present
• Complete field validation in the west for 2000 statewide map
• Continue research and support for drumlin project
Acknowledgements

Human Environmental Regional Observatory of Central Massachusetts (HERO CM)
The Henry David Thoreau Foundation
Clark University, Department of Geography
Clark Labs (Idrisi Andes)
John Rogan & Deborah Woodcock
Field Workers: Nagraj Rao & James Wilson
Thank You

Questions???