Subtending the Right Angle

Mathew Maleky
Flash in the Pan Music Matthew Malisky
©1988
Chorale IVa

Calmly (take tempo from oboe)

Fl.

Ob.

Cl.

A.S.

Tpt.

Tbn.

Pno.

B.
Chorale VI
Broadly but with motion
Coda
Very slow and calmly, with soft interjections
L.56
Let ABC be a right-angled triangle having the angle BAC right; I say that the square on BC is equal to the squares on BA, AC.

For let there be described on BC the square $BDEC$, and on the BA, AC the squares GB, HC; through A let AL be drawn parallel to either BE or CE, and let AD, FC be joined.

Then, since each of the angles BAC, BAH is right, it follows that with a straight line BA, and at the point A on it, the two straight lines AG, AG not lying on the same side make adjacent angles equal to two right angles; therefore CA is in a straight line with AG.

For the same reason BA is also in a straight line with AH.

And, since the angle DBG is equal to the angle FBA; for each is right: let the angle ABC be added to each; therefore the whole angle DBA is equal to the whole angle FBC.

And, since DB is equal to BC, and FB to BA, the two sides AB, BD are equal to the two sides FB, BC respectively; and the angle ABD is equal to the angle FBC; therefore the base AD is equal to the base FC, and the triangle ABD is equal to the triangle FBC.

Now the parallelogram BL is double of the triangle ABD, for they have the same base BD and are in the same parallels BD, AD.

And the square GB is double of the triangle FBC, for again they have the same base FB and are in the same parallels FB, GC.

(But the doubles of equals are equal to one another.)

Therefore the parallelogram BL is also equal to the square GB.

Similarly if AE, BK be joined, the parallelogram GL can also be proved equal to the square HC; therefore the whole square $BDEC$ is equal to the two squares GB, HC.

And the square $BDEC$ is described on BC, and the squares GB, HC on BA, AC.

Therefore the square on the side BC is equal to the squares on the sides BA, AC.

Therefore in right-angled triangles the square on the side equal to the squares on the side containing the right angle.

Quod erat demonstrandum.