Topic 5: The Origin of Amniotes

- Where do amniotes fall out on the vertebrate phylogeny?
- What are some stem Amniotes?
- What is an Amniote?
- What changes were involved with the transition to dry habitats?
- What are the three main groups of Amniotes?
- How are Amniote taxa related?

What are some stem Amniotes?

- Palaeontological tree:
 - Anthracosauria, Seymouriamorpha, and Diadectomorpha as extinct outgroups to Amniotes
 - Split between Amniota and Amphibia ~360 Mya

What is an Amniote?

- Synapomorphies associated membranes
 - fertilization
 - maxillary teeth
 - Various other skull and limb characters

The Amniotic Egg

- Contains extraembryonic membranes (4):
 - Amnion
 - Chorion
 - Allantois
 - Yolk sac
The Amniotic Egg

- Surrounds embryo
- Forms space filled with amniotic fluid
- Contains exchange of gases and water
- Assists in development
- Connected to embryo
- Yolk sac
- Allantois
- Chorion

Amnion

- Outermost membrane
- Forms placenta in placental mammals
- Allantois
- Yolk sac

Yolk sac

Involved in formation of placental mammals

Chorion

Posterior part of GI tract

Can be calcified and hard or leathery and soft

What about the shell?

- Form outside embryo
- Connected to embryo
- The shell is deposited by the embryo
- Can be calcified and hard or leathery and soft
- Involved in:
 - Protection
 - Support of the embryo

What changes were involved with the transition to dry habitats?

- Amphibians began moving away from the water
- Many are terrestrial
- However:
 - Skin is still highly permeable to gases and water
 - Reproduction is mainly limited to

Photo © KP Bergmann

Photos © KP Bergmann, PJB
Amniote lifecycle of water

Many live in very dry habitats

Facilitated mainly by adaptation of the:
- ______ (amniotic)
- ______

Adaptations of the Egg
- Amnion, Chorion, Shell
- Protect embryo from
 - Forces are more jarring on land
 - Protect embryo from
 - Less permeable to water

Adaptations of the skin:
- __________
 - Deposition of ________ in epidermis
 - Evolved independently in several groups
 - ________, feathers, hair
- All act to limit water loss

Three different amniote conditions
- Different patterns of temporal fenestration
 - Temporal region of the skull is posterior to the orbit
 - A fenestra is an opening without a structure running through it (L. – “window”)
 - An~ none
 - Syn~ one
 - Di~ two

Three main groups of Amniotes:
- Synapsida – __________ and stem mammals
- Anapsida – __________ and stem turtles
- Diapsida – Archosauria (birds & crocodilians), Lepidosauria (squamates and rhynchocephalians) and various stem groups

Benton 1997 Fig 5.18

Photos © PJB

Photo © KP Bergmann
What are the three main groups of Amniotes?

How are Amniote taxa related?

- Which condition is ancestral?
- Derived?
- What implications do the alternative placements of Testudines (A or B) have on the evolution of the anapsid condition?
- What kinds of data might be brought to bear on this problem?

Pough et al 2004, Fig 2-1
How are Amniote taxa related?

- Which condition is ancestral?
 - __________
 - __________
 - __________

- Derived?
 - A: __________
 - B: __________

- What implications do the placements of Testudines (A or B) have on the evolution of the anapsid condition?
 - A:
 - B:
How are Amniote taxa related?

- What kinds of data might be brought to bear on this problem?
 - __________________________
 - __________________________
 - Each has been used and says something slightly different...

How are Amniote taxa related?

- Traditional hypothesis: A
 - Mainly based on extant taxa and _______________ data
 - Includes only some fossil taxa
 - Assumes that all __________ are related

Synapsida Anapsida Diapsida Pough et al 2004, Fig 2-1
How are Amniote taxa related?

- **Traditional hypothesis:**
 - Basal anapsids
 - “Parareptiles”
 - Plesiosaurs
 - Procolophids

Fig. 5.15 Benton

- **Hypothesis B:**
 - Based on extensive fossil sampling and no *a priori* assumptions of relationship
 - Testudines have an anapsid condition
 - Sister to Parareptiles

Fig. 2-9 Pough et al.

- **Hypothesis B:**
 - Testudines fit in? (support for B)

- **Hypothesis C:**
 - Hypothesis B: What do ________
 - Extensive fossil sampling and no *a priori* assumptions of relationship
 - Testudines have an anapsid condition
 - Sister to Parareptiles

Testudines? Not the *Lepidosauria*

Fig. 2-9 Modified from Pough et al.

- **Hypothesis B:**
 - Testudines fit in? (support for B)

- **Hypothesis C:**
 - Hypothesis B: What do ________
 - Extensive fossil sampling and no *a priori* assumptions of relationship
 - Testudines have an anapsid condition
 - Sister to Parareptiles

Fig. 2-9 Modified from Pough et al.

- **Who are the Amniota?**
 - Crocodilians
 - Birds
 - Rhynchocephalia
 - Squamata
 - Snakes
 - Lizards
 - “Lizards”
 - “Lizards”

Fig. 2-1 Pough et al. 2004
Without birds is Archosauria

Reptilia (5)
- Includes the remaining amniotes to be monophyletic
- Without birds is
- Many obscure synapomorphies
- They have (even birds – on feet)

Aves (Birds)
- Birds are dinosaurs, & dinosaurs are Archosaurs
- Aves have many synapomorphies:
 - No teeth
 - Wings
 - Feathers (shared with some dinos)
- Not covered further in this course

Reptilia
- Lots of diversity
- ~8000 spp. without birds
- Online Reptile database:
 http://www.reptile-database.org/

Testudines
Rhynchocephalia
Squamata
Crocodilia
Aves

Photos © PJB & KP Bergmann